1
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
2
|
Marchesani F, Michielon A, Viale E, Bianchera A, Cavazzini D, Pollegioni L, Murtas G, Mozzarelli A, Bettati S, Peracchi A, Campanini B, Bruno S. Phosphoserine Aminotransferase Pathogenetic Variants in Serine Deficiency Disorders: A Functional Characterization. Biomolecules 2023; 13:1219. [PMID: 37627284 PMCID: PMC10452355 DOI: 10.3390/biom13081219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
In humans, the phosphorylated pathway (PP) converts the glycolytic intermediate D-3-phosphoglycerate (3-PG) into L-serine through the enzymes 3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase (PSAT) and phosphoserine phosphatase. From the pathogenic point of view, the PP in the brain is particularly relevant, as genetic defects of any of the three enzymes are associated with a group of neurometabolic disorders known as serine deficiency disorders (SDDs). We recombinantly expressed and characterized eight variants of PSAT associated with SDDs and two non-SDD associated variants. We show that the pathogenetic mechanisms in SDDs are extremely diverse, including low affinity of the cofactor pyridoxal 5'-phosphate and thermal instability for S179L and G79W PSAT, loss of activity of the holo form for R342W PSAT, aggregation for D100A PSAT, increased Km for one of the substrates with invariant kcats for S43R PSAT, and a combination of increased Km and decreased kcat for C245R PSAT. Finally, we show that the flux through the in vitro reconstructed PP at physiological concentrations of substrates and enzymes is extremely sensitive to alterations of the functional properties of PSAT variants, confirming PSAT dysfunctions as a cause of SSDs.
Collapse
Affiliation(s)
| | | | | | | | - Davide Cavazzini
- Department of Chemistry/Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Loredano Pollegioni
- The Protein Factory 2.0, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Giulia Murtas
- The Protein Factory 2.0, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | | | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, 43124 Parma, Italy
- Biopharmanet-TEC, University of Parma, 43124 Parma, Italy
- Institute of Biophysics, CNR, 56124 Pisa, Italy
| | - Alessio Peracchi
- Department of Chemistry/Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
- Biopharmanet-TEC, University of Parma, 43124 Parma, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
- Biopharmanet-TEC, University of Parma, 43124 Parma, Italy
| |
Collapse
|
3
|
Human Serine Racemase Weakly Binds the Third PDZ Domain of PSD-95. Int J Mol Sci 2022; 23:ijms23094959. [PMID: 35563349 PMCID: PMC9105370 DOI: 10.3390/ijms23094959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Human serine racemase (hSR) is a pyridoxal-5'-phosphate (PLP)-dependent dimer that catalyzes the formation of D-serine from L-serine, as well as the dehydration of both L- and D-serine to pyruvate and ammonia. As D-serine is a co-agonist of N-methyl-D-aspartate receptors (NMDARs), hSR is a key enzyme in glutamatergic neurotransmission. hSR activity is finely regulated by Mg2+, ATP, post-translational modifications, and the interaction with protein partners. In particular, the C-terminus of murine SR binds the third PDZ domain (PDZ3) of postsynaptic density protein 95 (PSD-95), a member of the membrane-associated guanylate kinase (MAGUK) family involved in the trafficking and localization of glutamate receptors. The structural details of the interaction and the stability of the complex have not been elucidated yet. We evaluated the binding of recombinant human PSD-95 PDZ3 to hSR by glutaraldehyde cross-linking, pull-down assays, isothermal titration calorimetry, nuclear magnetic resonance, and enzymatic assays. Overall, a weak interaction was observed, confirming the binding for the human orthologs but supporting the hypothesis that a third protein partner (i.e., stargazin) is required for the regulation of hSR activity by PSD-95 and to stabilize their interaction.
Collapse
|
4
|
Koulouris CR, Gardiner SE, Harris TK, Elvers KT, Mark Roe S, Gillespie JA, Ward SE, Grubisha O, Nicholls RA, Atack JR, Bax BD. Tyrosine 121 moves revealing a ligandable pocket that couples catalysis to ATP-binding in serine racemase. Commun Biol 2022; 5:346. [PMID: 35410329 PMCID: PMC9001717 DOI: 10.1038/s42003-022-03264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Human serine racemase (hSR) catalyses racemisation of L-serine to D-serine, the latter of which is a co-agonist of the NMDA subtype of glutamate receptors that are important in synaptic plasticity, learning and memory. In a 'closed' hSR structure containing the allosteric activator ATP, the inhibitor malonate is enclosed between the large and small domains while ATP is distal to the active site, residing at the dimer interface with the Tyr121 hydroxyl group contacting the α-phosphate of ATP. In contrast, in 'open' hSR structures, Tyr121 sits in the core of the small domain with its hydroxyl contacting the key catalytic residue Ser84. The ability to regulate SR activity by flipping Tyr121 from the core of the small domain to the dimer interface appears to have evolved in animals with a CNS. Multiple X-ray crystallographic enzyme-fragment structures show Tyr121 flipped out of its pocket in the core of the small domain. Data suggest that this ligandable pocket could be targeted by molecules that inhibit enzyme activity.
Collapse
Affiliation(s)
- Chloe R Koulouris
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QG, UK
| | - Sian E Gardiner
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Tessa K Harris
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Karen T Elvers
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - S Mark Roe
- Department of Biochemistry and Biomedicine, University of Sussex, Brighton, BN1 9QJ, UK
| | - Jason A Gillespie
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Olivera Grubisha
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Robert A Nicholls
- MRC Laboratory of Molecular Biology, Francis Crick Ave, CB2 0QH, Cambridge, UK
| | - John R Atack
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| | - Benjamin D Bax
- Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
5
|
Zhu X, Li K, Gao Y. Adeno-associated virus-mediated in vivo suppression of expression of EPHX2 gene modulates the activity of paraventricular nucleus neurons in spontaneously hypertensive rats. Biochem Biophys Res Commun 2022; 606:121-127. [PMID: 35344709 DOI: 10.1016/j.bbrc.2022.03.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hypertension can be attributed to increased sympathetic activities. Presympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus are capable of modulating sympathetic outflow, thus contributing to the pathogenesis of neurogenic hypertension. Epoxyeicosatrienoic acids (EETs) were reported to have anti-hypertensive effects, which could be degraded by soluble epoxide hydrolase (sEH), encoded by EPHX2. However, the potential effect of EETs on PVN neuron activity and the underlying molecular mechanism are largely unknown. METHODS Knockdown of EPHX2 in spontaneously hypertensive rats (SHRs) was achieved by tail-intravenous injection of AAV plasmid containing shRNA targeting EPHX2. Whole-cell patch clamp was used to record action potentials of PVN neurons. An LC-MS/MS System was employed to determine 14,15-EET levels in rat cerebrospinal fluid. qPCR and western blotting were applied to examine the expression level of EPHX2 in various tissues. ELISA and immunofluorescence staining were applied to examine the levels of ATP, D-serine and glial fibrillary acidic protein (GFAP) in isolated astrocytes. RESULTS The expression level of EPHX2 was higher, while the level of 14,15-EET was lower in SHRs than normotensive Wistar-Kyoto rats (WKY) rats. The spike firing frequency of PNV neurons in SHRs was higher than in WKY rats at a given stimulus current, which could be reduced by either EPHX2 downregulation or 14,15-EET administration. In isolated hypothalamic astrocytes, the elevated intracellular ATP or D-serine induced by Angiotensin II (Ang II) treatment could be rescued by 14,15-EET addition or 14,15-EET combing serine racemase (SR) downregulation by siRNA, respectively. Furthermore, 14,15-EET treatment reduced the Ang II-induced elevation of GFAP immunofluorescence. CONCLUSIONS The elevation of EET levels by EPHX2 downregulation reduced presympathetic neuronal activity in the PVN of SHRs, leading to a reduced sympathetic outflow in hypertension rats. The ATP/SR/D-serine pathway of astrocytes is involved in EET-mediated neuroprotection.
Collapse
Affiliation(s)
- Xiaoming Zhu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Kuibao Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Yuanfeng Gao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
A Competitive O-Acetylserine Sulfhydrylase Inhibitor Modulates the Formation of Cysteine Synthase Complex. Catalysts 2021. [DOI: 10.3390/catal11060700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cysteine is the main precursor of sulfur-containing biological molecules in bacteria and contributes to the control of the cell redox state. Hence, this amino acid plays an essential role in microbial survival and pathogenicity and the reductive sulfate assimilation pathway is considered a promising target for the development of new antibacterials. Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS-A), the enzymes catalyzing the last two steps of cysteine biosynthesis, engage in the formation of the cysteine synthase (CS) complex. The interaction between SAT and OASS-A finely tunes cysteine homeostasis, and the development of inhibitors targeting either protein–protein interaction or the single enzymes represents an attractive strategy to undermine bacterial viability. Given the peculiar mode of interaction between SAT and OASS-A, which exploits the insertion of SAT C-terminal sequence into OASS-A active site, we tested whether a recently developed competitive inhibitor of OASS-A exhibited any effect on the CS stability. Through surface plasmon resonance spectroscopy, we (i) determined the equilibrium constant for the Salmonella Typhimurium CS complex formation and (ii) demonstrated that the inhibitor targeting OASS-A active site affects CS complex formation. For comparison, the Escherichia coli CS complex was also investigated, with the aim of testing the potential broad-spectrum activity of the candidate antimicrobial compound.
Collapse
|
7
|
Marchesani F, Zangelmi E, Bruno S, Bettati S, Peracchi A, Campanini B. A Novel Assay for Phosphoserine Phosphatase Exploiting Serine Acetyltransferase as the Coupling Enzyme. Life (Basel) 2021; 11:life11060485. [PMID: 34073563 PMCID: PMC8229081 DOI: 10.3390/life11060485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 01/01/2023] Open
Abstract
Phosphoserine phosphatase (PSP) catalyzes the final step of de novo L-serine biosynthesis—the hydrolysis of phosphoserine to serine and inorganic phosphate—in humans, bacteria, and plants. In published works, the reaction is typically monitored through the discontinuous malachite green phosphate assay or, more rarely, through a continuous assay that couples phosphate release to the phosphorolysis of a chromogenic nucleoside by the enzyme purine nucleoside phosphorylase (PNP). These assays suffer from numerous drawbacks, and both rely on the detection of phosphate. We describe a new continuous assay that monitors the release of serine by exploiting bacterial serine acetyltransferase (SAT) as a reporter enzyme. SAT acetylates serine, consuming acetyl-CoA and releasing CoA-SH. CoA-SH spontaneously reacts with Ellman’s reagent to produce a chromophore that absorbs light at 412 nm. The catalytic parameters estimated through the SAT-coupled assay are fully consistent with those obtained with the published methods, but the new assay exhibits several advantages. Particularly, it depletes L-serine, thus allowing more prolonged linearity in the kinetics. Moreover, as the SAT-coupled assay does not rely on phosphate detection, it can be used to investigate the inhibitory effect of phosphate on PSP.
Collapse
Affiliation(s)
- Francesco Marchesani
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (F.M.); (S.B.)
| | - Erika Zangelmi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (F.M.); (S.B.)
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy;
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
| | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
- Correspondence: (A.P.); (B.C.); Tel.: +39-0521-905137 (A.P.); +39-0521-906333 (B.C.)
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (F.M.); (S.B.)
- Correspondence: (A.P.); (B.C.); Tel.: +39-0521-905137 (A.P.); +39-0521-906333 (B.C.)
| |
Collapse
|
8
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
9
|
Marchesani F, Gianquinto E, Autiero I, Michielon A, Campanini B, Faggiano S, Bettati S, Mozzarelli A, Spyrakis F, Bruno S. The allosteric interplay between S-nitrosylation and glycine binding controls the activity of human serine racemase. FEBS J 2020; 288:3034-3054. [PMID: 33249721 DOI: 10.1111/febs.15645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Human serine racemase (hSR) catalyzes the biosynthesis of D-serine, an obligatory co-agonist of the NMDA receptors. It was previously found that the reversible S-nitrosylation of Cys113 reduces hSR activity. Here, we show by site-directed mutagenesis, fluorescence spectroscopy, mass spectrometry, and molecular dynamics that S-nitrosylation stabilizes an open, less-active conformation of the enzyme. The reaction of hSR with either NO or nitroso donors is conformation-dependent and occurs only in the conformation stabilized by the allosteric effector ATP, in which the ε-amino group of Lys114 acts as a base toward the thiol group of Cys113. In the closed conformation stabilized by glycine-an active-site ligand of hSR-the side chain of Lys114 moves away from that of Cys113, while the carboxyl side-chain group of Asp318 moves significantly closer, increasing the thiol pKa and preventing the reaction. We conclude that ATP binding, glycine binding, and S-nitrosylation constitute a three-way regulation mechanism for the tight control of hSR activity. We also show that Cys113 undergoes H2 O2 -mediated oxidation, with loss of enzyme activity, a reaction also dependent on hSR conformation.
Collapse
Affiliation(s)
- Francesco Marchesani
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| | - Eleonora Gianquinto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Italy
| | - Ida Autiero
- Molecular Horizon Srl, Bettona, PG, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, Napoli, Italy
| | - Annalisa Michielon
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| | - Serena Faggiano
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Pisa, Italy
| | - Stefano Bettati
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Pisa, Italy.,Dipartimento di Medicina e Chirurgia, Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Pisa, Italy
| | - Francesca Spyrakis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Italy
| |
Collapse
|
10
|
Michielon A, Marchesani F, Faggiano S, Giaccari R, Campanini B, Bettati S, Mozzarelli A, Bruno S. Human serine racemase is inhibited by glyceraldehyde 3-phosphate, but not by glyceraldehyde 3-phosphate dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140544. [PMID: 32971286 DOI: 10.1016/j.bbapap.2020.140544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 11/28/2022]
Abstract
Murine serine racemase (SR), the enzyme responsible for the biosynthesis of the neuromodulator d-serine, was reported to form a complex with glyceraldehyde 3-phosphate dehydrogenase (GAPDH), resulting in SR inhibition. In this work, we investigated the interaction between the two human orthologues. We were not able to observe neither the inhibition nor the formation of the SR-GAPDH complex. Rather, hSR is inhibited by the hGAPDH substrate glyceraldehyde 3-phosphate (G3P) in a time- and concentration-dependent fashion, likely through a covalent reaction of the aldehyde functional group. The inhibition was similar for the two G3P enantiomers but it was not observed for structurally similar aldehydes. We ruled out a mechanism of inhibition based on the competition with either pyridoxal phosphate (PLP) - described for other PLP-dependent enzymes when incubated with small aldehydes - or ATP. Nevertheless, the inhibition time course was affected by the presence of hSR allosteric and orthosteric ligands, suggesting a conformation-dependence of the reaction.
Collapse
Affiliation(s)
- Annalisa Michielon
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesco Marchesani
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Serena Faggiano
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Istituto di Biofisica, CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Roberta Giaccari
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Stefano Bettati
- Dipartimento di Medicina e Chirurgia, Via Volturno 39, 43125 Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; Istituto di Biofisica, CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
11
|
Wolosker H, Balu DT. D-Serine as the gatekeeper of NMDA receptor activity: implications for the pharmacologic management of anxiety disorders. Transl Psychiatry 2020; 10:184. [PMID: 32518273 PMCID: PMC7283225 DOI: 10.1038/s41398-020-00870-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Fear, anxiety, and trauma-related disorders, including post-traumatic stress disorder (PTSD), are quite common and debilitating, with an estimated lifetime prevalence of ~28% in Western populations. They are associated with excessive fear reactions, often including an inability to extinguish learned fear, increased avoidance behavior, as well as altered cognition and mood. There is an extensive literature demonstrating the importance of N-methyl-D-aspartate receptor (NMDAR) function in regulating these behaviors. NMDARs require the binding of a co-agonist, D-serine or glycine, at the glycine modulatory site (GMS) to function. D-serine is now garnering attention as the primary NMDAR co-agonist in limbic brain regions implicated in neuropsychiatric disorders. L-serine is synthesized by astrocytes, which is then transported to neurons for conversion to D-serine by serine racemase (SR), a model we term the 'serine shuttle.' The neuronally-released D-serine is what regulates NMDAR activity. Our review discusses how the systems that regulate the synaptic availability of D-serine, a critical gatekeeper of NMDAR-dependent activation, could be targeted to improve the pharmacologic management of anxiety-related disorders where the desired outcomes are the facilitation of fear extinction, as well as mood and cognitive enhancement.
Collapse
Affiliation(s)
- Herman Wolosker
- grid.6451.60000000121102151Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096 Israel
| | - Darrick T. Balu
- grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA 02115 USA ,grid.240206.20000 0000 8795 072XTranslational Psychiatry Laboratory, McLean Hospital, Belmont, MA 02478 USA
| |
Collapse
|
12
|
Ohshima K, Nojima S, Tahara S, Kurashige M, Kawasaki K, Hori Y, Taniguchi M, Umakoshi Y, Okuzaki D, Wada N, Ikeda JI, Fukusaki E, Morii E. Serine racemase enhances growth of colorectal cancer by producing pyruvate from serine. Nat Metab 2020; 2:81-96. [PMID: 32694681 DOI: 10.1038/s42255-019-0156-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/29/2019] [Indexed: 11/09/2022]
Abstract
Serine racemase (SRR) catalyses not only the racemization but also the dehydration of L-serine and D-serine, resulting in the formation of pyruvate and ammonia. Although SRR activity is important in the central nervous system, SRR has not been linked to cancer metabolism before. Here we show that SRR supports proliferation of colorectal-cancer cells. We find that SRR expression is upregulated in colorectal adenoma and adenocarcinoma lesions compared with non-neoplastic mucosa in human colorectal-cancer specimens. SRR-mediated dehydration of serine contributes to the pyruvate pool in colon-cancer cells, enhances proliferation, maintains mitochondrial mass and increases basal reactive oxygen species production, which has anti-apoptotic effects. Moreover, SRR promotes acetylation of histone H3 by maintaining intracellular acetyl-CoA levels. Inhibition of SRR suppresses growth of colorectal tumours in mice and augments the efficacy of 5-fluorouracil treatment. Our findings highlight a previously unknown mechanism through which a racemase supports cancer-cell growth and suggest that SRR might be a molecular target for colorectal-cancer therapy.
Collapse
Affiliation(s)
- Kenji Ohshima
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinichiro Tahara
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masako Kurashige
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keisuke Kawasaki
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yumiko Hori
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Moyu Taniguchi
- Department of Biotechnology, Osaka University Graduate School of Engineering, Suita, Osaka, Japan
| | - Yutaka Umakoshi
- Department of Biotechnology, Osaka University Graduate School of Engineering, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Naoki Wada
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Diagnostic Pathology, Osaka City University, Osaka, Osaka, Japan
| | - Jun-Ichiro Ikeda
- Department of Diagnostic Pathology, Chiba University Graduate School of Medicine, Chiba, Chiba, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Osaka University Graduate School of Engineering, Suita, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
13
|
The NMDA receptor activation by d-serine and glycine is controlled by an astrocytic Phgdh-dependent serine shuttle. Proc Natl Acad Sci U S A 2019; 116:20736-20742. [PMID: 31548413 DOI: 10.1073/pnas.1909458116] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Astrocytes express the 3-phosphoglycerate dehydrogenase (Phgdh) enzyme required for the synthesis of l-serine from glucose. Astrocytic l-serine was proposed to regulate NMDAR activity by shuttling to neurons to sustain d-serine production, but this hypothesis remains untested. We now report that inhibition of astrocytic Phgdh suppressed the de novo synthesis of l-and d-serine and reduced the NMDAR synaptic potentials and long-term potentiation (LTP) at the Schaffer collaterals-CA1 synapse. Likewise, enzymatic removal of extracellular l-serine impaired LTP, supporting an l-serine shuttle mechanism between glia and neurons in generating the NMDAR coagonist d-serine. Moreover, deletion of serine racemase (SR) in glutamatergic neurons abrogated d-serine synthesis to the same extent as Phgdh inhibition, suggesting that neurons are the predominant source of the newly synthesized d-serine. We also found that the synaptic NMDAR activation in adult SR-knockout (KO) mice requires Phgdh-derived glycine, despite the sharp decline in the postnatal glycine levels as a result of the emergence of the glycine cleavage system. Unexpectedly, we also discovered that glycine regulates d-serine metabolism by a dual mechanism. The first consists of tonic inhibition of SR by intracellular glycine observed in vitro, primary cultures, and in vivo microdialysis. The second involves a transient glycine-induce d-serine release through the Asc-1 transporter, an effect abolished in Asc-1 KO mice and diminished by deleting SR in glutamatergic neurons. Our observations suggest that glycine is a multifaceted regulator of d-serine metabolism and implicate both d-serine and glycine in mediating NMDAR synaptic activation at the mature hippocampus through a Phgdh-dependent shuttle mechanism.
Collapse
|
14
|
Raboni S, Marchetti M, Faggiano S, Campanini B, Bruno S, Marchesani F, Margiotta M, Mozzarelli A. The Energy Landscape of Human Serine Racemase. Front Mol Biosci 2019; 5:112. [PMID: 30687716 PMCID: PMC6333871 DOI: 10.3389/fmolb.2018.00112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Human serine racemase is a pyridoxal 5′-phosphate (PLP)-dependent dimeric enzyme that catalyzes the reversible racemization of L-serine and D-serine and their dehydration to pyruvate and ammonia. As D-serine is the co-agonist of the N-methyl-D-aspartate receptors for glutamate, the most abundant excitatory neurotransmitter in the brain, the structure, dynamics, function, regulation and cellular localization of serine racemase have been investigated in detail. Serine racemase belongs to the fold-type II of the PLP-dependent enzyme family and structural models from several orthologs are available. The comparison of structures of serine racemase co-crystallized with or without ligands indicates the presence of at least one open and one closed conformation, suggesting that conformational flexibility plays a relevant role in enzyme regulation. ATP, Mg2+, Ca2+, anions, NADH and protein interactors, as well as the post-translational modifications nitrosylation and phosphorylation, finely tune the racemase and dehydratase activities and their relative reaction rates. Further information on serine racemase structure and dynamics resulted from the search for inhibitors with potential therapeutic applications. The cumulative knowledge on human serine racemase allowed obtaining insights into its conformational landscape and into the mechanisms of cross-talk between the effector binding sites and the active site.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Council, Pisa, Italy
| | | | - Stefano Bruno
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Council, Pisa, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
15
|
Glutamine 89 is a key residue in the allosteric modulation of human serine racemase activity by ATP. Sci Rep 2018; 8:9016. [PMID: 29899358 PMCID: PMC5998037 DOI: 10.1038/s41598-018-27227-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/25/2018] [Indexed: 11/17/2022] Open
Abstract
Serine racemase (SR) catalyses two reactions: the reversible racemisation of L-serine and the irreversible dehydration of L- and D-serine to pyruvate and ammonia. SRs are evolutionarily related to serine dehydratases (SDH) and degradative threonine deaminases (TdcB). Most SRs and TdcBs – but not SDHs – are regulated by nucleotides. SR binds ATP cooperatively and the nucleotide allosterically stimulates the serine dehydratase activity of the enzyme. A H-bond network comprising five residues (T52, N86, Q89, E283 and N316) and water molecules connects the active site with the ATP-binding site. Conservation analysis points to Q89 as a key residue for the allosteric communication, since its mutation to either Met or Ala is linked to the loss of control of activity by nucleotides. We verified this hypothesis by introducing the Q89M and Q89A point mutations in the human SR sequence. The allosteric communication between the active site and the allosteric site in both mutants is almost completely abolished. Indeed, the stimulation of the dehydratase activity by ATP is severely diminished and the binding of the nucleotide is no more cooperative. Ancestral state reconstruction suggests that the allosteric control by nucleotides established early in SR evolution and has been maintained in most eukaryotic lineages.
Collapse
|
16
|
Takahara S, Nakagawa K, Uchiyama T, Yoshida T, Matsumoto K, Kawasumi Y, Mizuguchi M, Obita T, Watanabe Y, Hayakawa D, Gouda H, Mori H, Toyooka N. Design, synthesis, and evaluation of novel inhibitors for wild-type human serine racemase. Bioorg Med Chem Lett 2018; 28:441-445. [DOI: 10.1016/j.bmcl.2017.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/01/2017] [Accepted: 12/10/2017] [Indexed: 01/23/2023]
|
17
|
Marchesani F, Bruno S, Paredi G, Raboni S, Campanini B, Mozzarelli A. Human serine racemase is nitrosylated at multiple sites. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:813-821. [PMID: 29410194 DOI: 10.1016/j.bbapap.2018.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 11/26/2022]
Abstract
Serine racemase is a pyridoxal 5'‑phosphate dependent enzyme responsible for the synthesis of d‑serine, a neuromodulator of the NMDA receptors. Its activity is modulated by several ligands, including ATP, divalent cations and protein interactors. The murine orthologue is inhibited by S-nitrosylation at Cys113, a residue adjacent to the ATP binding site. We found that the time course of inhibition of human serine racemase by S-nitrosylation is markedly biphasic, with a fast phase associated with the reaction of Cys113. Unlike the murine enzyme, two additional cysteine residues, Cys269, unique to the human orthologue, and Cys128 were also recognized as S-nitrosylation sites through mass spectrometry and site-directed mutagenesis. The effect of S-nitrosylation on the fluorescence of tryptophan residues and on that of the pyridoxal phosphate cofactor indicated that S-nitrosylation produces a partial interruption of the cross-talk between the ATP binding site and the active site. Overall, it appears that the inhibition results from a conformational change rather than the direct displacement of ATP.
Collapse
Affiliation(s)
- Francesco Marchesani
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy.
| | - Gianluca Paredi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Samanta Raboni
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy; Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
18
|
|
19
|
Nelson DL, Applegate GA, Beio ML, Graham DL, Berkowitz DB. Human serine racemase structure/activity relationship studies provide mechanistic insight and point to position 84 as a hot spot for β-elimination function. J Biol Chem 2017; 292:13986-14002. [PMID: 28696262 DOI: 10.1074/jbc.m117.777904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/26/2017] [Indexed: 11/06/2022] Open
Abstract
There is currently great interest in human serine racemase, the enzyme responsible for producing the NMDA co-agonist d-serine. Reported correlation of d-serine levels with disorders including Alzheimer's disease, ALS, and ischemic brain damage (elevated d-serine) and schizophrenia (reduced d-serine) has further piqued this interest. Reported here is a structure/activity relationship study of position Ser84, the putative re-face base. In the most extreme case of functional reprogramming, the S84D mutant displays a dramatic reversal of β-elimination substrate specificity in favor of l-serine over the normally preferred l-serine-O-sulfate (∼1200-fold change in kcat/Km ratios) and l (l-THA; ∼5000-fold change in kcat/Km ratios) alternative substrates. On the other hand, the S84T (which performs l-Ser racemization activity), S84A (good kcat but high Km for l-THA elimination), and S84N mutants (nearly WT efficiency for l-Ser elimination) displayed intermediate activity, all showing a preference for the anionic substrates, but generally attenuated compared with the native enzyme. Inhibition studies with l-erythro-β-hydroxyaspartate follow this trend, with both WT serine racemase and the S84N mutant being competitively inhibited, with Ki = 31 ± 1.5 μm and 1.5 ± 0.1 mm, respectively, and the S84D being inert to inhibition. Computational modeling pointed to a key role for residue Arg-135 in binding and properly positioning the l-THA and l-serine-O-sulfate substrates and the l-erythro-β-hydroxyaspartate inhibitor. Examination of available sequence data suggests that Arg-135 may have originated for l-THA-like β-elimination function in earlier evolutionary variants, and examination of available structural data suggests that a Ser84-H2O-Lys114 hydrogen-bonding network in human serine racemase lowers the pKa of the Ser84re-face base.
Collapse
Affiliation(s)
- David L Nelson
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Greg A Applegate
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Matthew L Beio
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Danielle L Graham
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - David B Berkowitz
- From the Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588.
| |
Collapse
|
20
|
Bruno S, Margiotta M, Marchesani F, Paredi G, Orlandi V, Faggiano S, Ronda L, Campanini B, Mozzarelli A. Magnesium and calcium ions differentially affect human serine racemase activity and modulate its quaternary equilibrium toward a tetrameric form. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:381-387. [PMID: 28089597 DOI: 10.1016/j.bbapap.2017.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 11/18/2022]
Abstract
Serine racemase is the pyridoxal 5'-phosphate dependent enzyme that catalyzes both production and catabolism of d-serine, a co-agonist of the NMDA glutamate receptors. Mg2+, or, alternatively, Ca2+, activate human serine racemase by binding both at a specific site and - as ATP-metal complexes - at a distinct ATP binding site. We show that Mg2+ and Ca2+ bind at the metal binding site with a 4.5-fold difference in affinity, producing a similar thermal stabilization and partially shifting the dimer-tetramer equilibrium in favour of the latter. The ATP-Ca2+ complex produces a 2-fold lower maximal activation in comparison to the ATP-Mg2+ complex and exhibits a 3-fold higher EC50. The co-presence of ATP and metals further stabilizes the tetramer. In consideration of the cellular concentrations of Mg2+ and Ca2+, even taking into account the fluctuations of the latter, these results point to Mg2+ as the sole physiologically relevant ligand both at the metal binding site and at the ATP binding site. The stabilization of the tetramer by both metals and ATP-metal complexes suggests a quaternary activation mechanism mediated by 5'-phosphonucleotides similar to that observed in the distantly related prokaryotic threonine deaminases. This allosteric mechanism has never been observed before in mammalian fold type II pyridoxal 5'-phosphate dependent enzymes.
Collapse
Affiliation(s)
| | | | | | - Gianluca Paredi
- Interdepartment Center SITEIA.PARMA, University of Parma, Italy
| | | | | | - Luca Ronda
- Department of Neurosciences, University of Parma, Italy
| | | | - Andrea Mozzarelli
- Department of Pharmacy, University of Parma, Italy; Institute of Biophysics, CNR, Pisa, Italy; National Institute of Biostructures and Biomolecules, Rome, Italy
| |
Collapse
|
21
|
Human serine racemase is allosterically modulated by NADH and reduced nicotinamide derivatives. Biochem J 2016; 473:3505-3516. [PMID: 27493223 DOI: 10.1042/bcj20160566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/04/2016] [Indexed: 11/17/2022]
Abstract
Serine racemase catalyzes both the synthesis and the degradation of d-serine, an obligatory co-agonist of the glutamatergic NMDA receptors. It is allosterically controlled by adenosine triphosphate (ATP), which increases its activity around 7-fold through a co-operative binding mechanism. Serine racemase has been proposed as a drug target for the treatment of several neuropathologies but, so far, the search has been directed only toward the active site, with the identification of a few, low-affinity inhibitors. Following the recent observation that nicotinamide adenine dinucleotide (reduced form) (NADH) inhibits serine racemase, here we show that the inhibition is partial, with an IC50 of 246 ± 63 μM, several-fold higher than NADH intracellular concentrations. At saturating concentrations of NADH, ATP binds with a 2-fold lower affinity and without co-operativity, suggesting ligand competition. NADH also reduces the weak activity of human serine racemase in the absence of ATP, indicating an additional ATP-independent inhibition mechanism. By dissecting the NADH molecule, we discovered that the inhibitory determinant is the N-substituted 1,4-dihydronicotinamide ring. Particularly, the NADH precursor 1,4-dihydronicotinamide mononucleotide exhibited a partial mixed-type inhibition, with a KI of 18 ± 7 μM. Docking simulations suggested that all 1,4-dihydronicotinamide derivatives bind at the interdimeric interface, with the ring positioned in an unoccupied site next to the ATP-binding site. This newly recognized allosteric site might be exploited for the design of high-affinity serine racemase effectors to finely modulate d-serine homeostasis.
Collapse
|
22
|
Zou L, Song Y, Wang C, Sun J, Wang L, Cheng B, Fan J. Crystal structure of maize serine racemase with pyridoxal 5'-phosphate. Acta Crystallogr F Struct Biol Commun 2016; 72:165-71. [PMID: 26919519 PMCID: PMC4774874 DOI: 10.1107/s2053230x16000960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/16/2016] [Indexed: 11/10/2022] Open
Abstract
Serine racemase (SR) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that is responsible for D-serine biosynthesis in vivo. The first X-ray crystal structure of maize SR was determined to 2.1 Å resolution and PLP binding was confirmed in solution by UV-Vis absorption spectrometry. Maize SR belongs to the type II PLP-dependent enzymes and differs from the SR of a vancomycin-resistant bacterium. The PLP is bound to each monomer by forming a Schiff base with Lys67. Structural comparison with rat and fission yeast SRs reveals a similar arrangement of active-site residues but a different orientation of the C-terminal helix.
Collapse
Affiliation(s)
- Lingling Zou
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, People’s Republic of China
| | - Yang Song
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Chengliang Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Jiaqi Sun
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, People’s Republic of China
| | - Leilei Wang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, People’s Republic of China
| | - Beijiu Cheng
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, People’s Republic of China
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, People’s Republic of China
| |
Collapse
|
23
|
Dellafiora L, Marchetti M, Spyrakis F, Orlandi V, Campanini B, Cruciani G, Cozzini P, Mozzarelli A. Expanding the chemical space of human serine racemase inhibitors. Bioorg Med Chem Lett 2015; 25:4297-303. [DOI: 10.1016/j.bmcl.2015.07.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 01/17/2023]
|
24
|
Beato C, Pecchini C, Cocconcelli C, Campanini B, Marchetti M, Pieroni M, Mozzarelli A, Costantino G. Cyclopropane derivatives as potential human serine racemase inhibitors: unveiling novel insights into a difficult target. J Enzyme Inhib Med Chem 2015; 31:645-52. [PMID: 26133542 DOI: 10.3109/14756366.2015.1057720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
d-Serine is the co-agonist of NMDA receptors and binds to the so-called glycine site. d-Serine is synthesized by human serine racemase (SR). Over activation of NMDA receptors is involved in many neurodegenerative diseases and, therefore, the inhibition of SR might represent a novel strategy for the treatment of these pathologies. SR is a very difficult target, with only few compounds so far identified exhibiting weak inhibitory activity. This study was aimed at the identification of novel SR inhibitor by mimicking malonic acid, the best-known SR inhibitor, with a cyclopropane scaffold. We developed, synthesized, and tested a series of cyclopropane dicarboxylic acid derivatives, complementing the synthetic effort with molecular docking. We identified few compounds that bind SR in high micromolar range with a lack of significant correlation between experimental and predicted binding affinities. The thorough analysis of the results can be exploited for the development of more potent SR inhibitors.
Collapse
Affiliation(s)
- Claudia Beato
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| | - Chiara Pecchini
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| | - Chiara Cocconcelli
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| | - Barbara Campanini
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| | | | - Marco Pieroni
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| | - Andrea Mozzarelli
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy .,b Istituto Nazionale Biostrutture e Biosistemi -- Consorzio Interuniversitario , Roma , Italy , and.,c Istituto di Biofisica, CNR , Pisa , Italy
| | - Gabriele Costantino
- a Dipartimento di Farmacia , Università degli studi di Parma , Parma , Italy
| |
Collapse
|
25
|
ATP binding to synaspsin IIa regulates usage and clustering of vesicles in terminals of hippocampal neurons. J Neurosci 2015; 35:985-98. [PMID: 25609616 DOI: 10.1523/jneurosci.0944-14.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Synaptic transmission is expensive in terms of its energy demands and was recently shown to decrease the ATP concentration within presynaptic terminals transiently, an observation that we confirm. We hypothesized that, in addition to being an energy source, ATP may modulate the synapsins directly. Synapsins are abundant neuronal proteins that associate with the surface of synaptic vesicles and possess a well defined ATP-binding site of undetermined function. To examine our hypothesis, we produced a mutation (K270Q) in synapsin IIa that prevents ATP binding and reintroduced the mutant into cultured mouse hippocampal neurons devoid of all synapsins. Remarkably, staining for synaptic vesicle markers was enhanced in these neurons compared with neurons expressing wild-type synapsin IIa, suggesting overly efficient clustering of vesicles. In contrast, the mutation completely disrupted the capability of synapsin IIa to slow synaptic depression during sustained 10 Hz stimulation, indicating that it interfered with synapsin-dependent vesicle recruitment. Finally, we found that the K270Q mutation attenuated the phosphorylation of synapsin IIa on a distant PKA/CaMKI consensus site known to be essential for vesicle recruitment. We conclude that ATP binding to synapsin IIa plays a key role in modulating its function and in defining its contribution to hippocampal short-term synaptic plasticity.
Collapse
|
26
|
Schiroli D, Ronda L, Peracchi A. Kinetic characterization of the human O-phosphoethanolamine phospho-lyase reveals unconventional features of this specialized pyridoxal phosphate-dependent lyase. FEBS J 2014; 282:183-99. [PMID: 25327712 DOI: 10.1111/febs.13122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 11/28/2022]
Abstract
Human O-phosphoethanolamine (PEA) phospho-lyase is a pyridoxal 5'-phosphate (PLP) dependent enzyme that catalyzes the degradation of PEA to acetaldehyde, phosphate and ammonia. Physiologically, the enzyme is involved in phospholipid metabolism and is expressed mainly in the brain, where its expression becomes dysregulated in the course of neuropsychiatric diseases. Mechanistically, PEA phospho-lyase shows a remarkable substrate selectivity, strongly discriminating against other amino compounds structurally similar to PEA. Herein, we studied the enzyme under steady-state and pre-steady-state conditions, analyzing its kinetic features and getting insights into the factors that contribute to its specificity. The pH dependence of the catalytic parameters and the pattern of inhibition by the product phosphate and by other anionic compounds suggest that the active site of PEA phospho-lyase is optimized to bind dianionic groups and that this is a prime determinant of the enzyme specificity towards PEA. Single- and multiple-wavelength stopped-flow studies show that upon reaction with PEA the main absorption band of PLP (λmax = 412 nm) rapidly blue-shifts to ~ 400 nm. Further experiments suggest that the newly formed and rather stable 400-nm species most probably represents a Michaelis (noncovalent) complex of PEA with the enzyme. Accumulation of such an early intermediate during turnover is unusual for PLP-dependent enzymes and appears counterproductive for absolute catalytic performance, but it can contribute to optimize substrate specificity. PEA phospho-lyase may hence represent a case of selectivity-efficiency tradeoff. In turn, the strict specificity of the enzyme seems important to prevent inactivation by other amines, structurally resembling PEA, that occur in the brain.
Collapse
Affiliation(s)
- Davide Schiroli
- Department of Life Sciences, Laboratory of Biochemistry, Molecular Biology and Bioinformatics, University of Parma, Italy
| | | | | |
Collapse
|
27
|
Marchetti M, Bruno S, Campanini B, Bettati S, Peracchi A, Mozzarelli A. Regulation of human serine racemase activity and dynamics by halides, ATP and malonate. Amino Acids 2014; 47:163-73. [PMID: 25331425 DOI: 10.1007/s00726-014-1856-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/09/2014] [Indexed: 02/03/2023]
Abstract
D-Serine is a non-proteinogenic amino acid that acts as a co-agonist of the NMDA receptors in the central nervous system. D-Serine is produced by human serine racemase (hSR), a homodimeric pyridoxal 5'-phosphate (PLP)-dependent enzyme that also catalyzes the physiologically relevant β-elimination of both L- and D-serine to pyruvate and ammonia. After improving the protein purification yield and stability, which had so far limited the biochemical characterization of hSR, we found that the catalytic activity is affected by halides, in the order fluoride > chloride > bromide. On the contrary, iodide elicited a complete inhibition, accompanied by a modulation of the tautomeric equilibrium of the internal aldimine. We also investigated the reciprocal effects of ATP and malonate, an inhibitor that reversibly binds at the active site, 20 Å away from the ATP-binding site. ATP increased ninefold the affinity of hSR for malonate and malonate increased 100-fold that of ATP, confirming an allosteric interaction between the two binding sites. To further investigate this allosteric communication, we probed the active site accessibility by quenching of the coenzyme fluorescence in the absence and presence of ATP. We found that ATP stabilizes a closed conformation of the external aldimine Schiff base, suggesting a possible mechanism for ATP-induced hSR activation.
Collapse
|
28
|
Vorlová B, Nachtigallová D, Jirásková-Vaníčková J, Ajani H, Jansa P, Rezáč J, Fanfrlík J, Otyepka M, Hobza P, Konvalinka J, Lepšík M. Malonate-based inhibitors of mammalian serine racemase: kinetic characterization and structure-based computational study. Eur J Med Chem 2014; 89:189-97. [PMID: 25462239 DOI: 10.1016/j.ejmech.2014.10.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
Overactivation of NMDA receptors has been implicated in various neuropathological conditions, including brain ischaemia, neurodegenerative disorders and epilepsy. Production of d-serine, an NMDA receptor co-agonist, from l-serine is catalyzed in vivo by the pyridoxal-5'-phosphate (PLP)-dependent enzyme serine racemase. Specific inhibition of this enzyme has been proposed as a promising strategy for treatment of neurological conditions caused by NMDA receptor dysfunction. Here we present the synthesis and activity analysis of a series of malonate-based inhibitors of mouse serine racemase (mSR). The compounds possessed IC50 values ranging from 40 ± 11 mM for 2,2-bis(hydroxymethyl)malonate down to 57 ± 1 μM for 2,2-dichloromalonate, the most effective competitive mSR inhibitor known to date. The structure-activity relationship of the whole series in the human orthologue (hSR) was interpreted using Glide docking, WaterMap analysis of hydration and quantum mechanical calculations based on the X-ray structure of the hSR/malonate complex. Docking into the hSR active site with three thermodynamically favourable water molecules was able to discern qualitatively between good and weak inhibitors. Further improvement in ranking was obtained using advanced PM6-D3H4X/COSMO semiempirical quantum mechanics-based scoring which distinguished between the compounds with IC50 better/worse than 2 mM. We have thus not only found a new potent hSR inhibitor but also worked out a computer-assisted protocol to rationalize the binding affinity which will thus aid in search for more effective SR inhibitors. Novel, potent hSR inhibitors may represent interesting research tools as well as drug candidates for treatment of diseases associated with NMDA receptor overactivation.
Collapse
Affiliation(s)
- Barbora Vorlová
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Jana Jirásková-Vaníčková
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Haresh Ajani
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46 Olomouc, Czech Republic
| | - Petr Jansa
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Jan Rezáč
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46 Olomouc, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46 Olomouc, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Natural Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic.
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Gilead Sciences and IOCB Research Centre, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
29
|
Abstract
Allostery is the most direct and efficient way for regulation of biological macromolecule function, ranging from the control of metabolic mechanisms to signal transduction pathways. Allosteric modulators target to allosteric sites, offering distinct advantages compared to orthosteric ligands that target to active sites, such as greater specificity, reduced side effects, and lower toxicity. Allosteric modulators have therefore drawn increasing attention as potential therapeutic drugs in the design and development of new drugs. In recent years, advancements in our understanding of the fundamental principles underlying allostery, coupled with the exploitation of powerful techniques and methods in the field of allostery, provide unprecedented opportunities to discover allosteric proteins, detect and characterize allosteric sites, design and develop novel efficient allosteric drugs, and recapitulate the universal features of allosteric proteins and allosteric modulators. In the present review, we summarize the recent advances in the repertoire of allostery, with a particular focus on the aforementioned allosteric compounds.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai, China
| | | | | |
Collapse
|
30
|
Canu N, Ciotti MT, Pollegioni L. Serine racemase: a key player in apoptosis and necrosis. Front Synaptic Neurosci 2014; 6:9. [PMID: 24795622 PMCID: PMC4000995 DOI: 10.3389/fnsyn.2014.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022] Open
Abstract
A fine balance between cell survival and cell death is required to sculpt the nervous system during development. However, an excess of cell death can occur following trauma, exposure to neurotoxins or alcohol, and some developmental and neurodegenerative diseases, such as Alzheimer's disease (AD). N-Methyl-D-aspartate receptors (NMDARs) support synaptic plasticity and survival of many neuronal populations whereas inappropriate activation may promote various forms of cell death, apoptosis, and necrosis representing the two extremes of a continuum of cell death processes both “in vitro” and “in vivo.” Hence, by identifying the switches controlling pro-survival vs. apoptosis and apoptosis vs. pro-excitotoxic outcome of NMDAR stimulation, NMDAR modulators could be developed that selectively block the cell death enhancing pro-survival signaling or synaptic plasticity mediated by NMDAR. Among these modulators, a role is emerging for the enzyme serine racemase (SR) that synthesizes D-serine, a key co-agonist with glutamate at NMDAR. This review summarizes the experimental evidence from “in vitro” neuronal cultures—with special emphasis on cerebellar granule neurons (CGNs)—and “in vivo” models of neurodegeneration, where the dual role of the SR/D-serine pathway as a master regulator of apoptosis and the apoptosis-necrosis shift will be discussed.
Collapse
Affiliation(s)
- Nadia Canu
- Dipartimento di Medicina dei Sistemi, Università degli Studi di Roma Roma, Italy ; Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche Roma, Italy
| | - Maria Teresa Ciotti
- Istituto di Biologia Cellulare e Neurobiologia, Consiglio Nazionale delle Ricerche Roma, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria Varese, Italy ; Centro Interuniversitario di Ricerca in Biotecnologie Proteiche "The Protein Factory," Politecnico di Milano, ICRM-CNR Milano and Università degli studi dell'Insubria Milano, Italy
| |
Collapse
|
31
|
Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat Rev Drug Discov 2014; 12:866-85. [PMID: 24172334 DOI: 10.1038/nrd3893] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycine transporters are endogenous regulators of the dual functions of glycine, which acts as a classical inhibitory neurotransmitter at glycinergic synapses and as a modulator of neuronal excitation mediated by NMDA (N-methyl-D-aspartate) receptors at glutamatergic synapses. The two major subtypes of glycine transporters, GlyT1 and GlyT2, have been linked to the pathogenesis and/or treatment of central and peripheral nervous system disorders, including schizophrenia and related affective and cognitive disturbances, alcohol dependence, pain, epilepsy, breathing disorders and startle disease (also known as hyperekplexia). This Review examines the rationale for the therapeutic potential of GlyT1 and GlyT2 inhibition, and surveys the latest advances in the biology of glycine reuptake and transport as well as the drug discovery and clinical development of compounds that block glycine transporters.
Collapse
|