1
|
Dobrucki IT, Miskalis A, Nelappana M, Applegate C, Wozniak M, Czerwinski A, Kalinowski L, Dobrucki LW. Receptor for advanced glycation end-products: Biological significance and imaging applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1935. [PMID: 37926944 DOI: 10.1002/wnan.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The receptor for advanced glycation end-products (RAGE or AGER) is a transmembrane, immunoglobulin-like receptor that, due to its multiple isoform structures, binds to a diverse range of endo- and exogenous ligands. RAGE activation caused by the ligand binding initiates a cascade of complex pathways associated with producing free radicals, such as reactive nitric oxide and oxygen species, cell proliferation, and immunoinflammatory processes. The involvement of RAGE in the pathogenesis of disorders such as diabetes, inflammation, tumor progression, and endothelial dysfunction is dictated by the accumulation of advanced glycation end-products (AGEs) at pathologic states leading to sustained RAGE upregulation. The involvement of RAGE and its ligands in numerous pathologies and diseases makes RAGE an interesting target for therapy focused on the modulation of both RAGE expression or activation and the production or exogenous administration of AGEs. Despite the known role that the RAGE/AGE axis plays in multiple disease states, there remains an urgent need to develop noninvasive, molecular imaging approaches that can accurately quantify RAGE levels in vivo that will aid in the validation of RAGE and its ligands as biomarkers and therapeutic targets. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Iwona T Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Academy of Medical and Social Applied Sciences, Elblag, Poland
| | - Angelo Miskalis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael Nelappana
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Catherine Applegate
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
| | - Marcin Wozniak
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| | - Andrzej Czerwinski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Leszek Kalinowski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Sakthivel P, Sakthivel I, Paramasivam S, Perumal SS, Ekambaram SP. Underpinning Endogeneous Damp EDA-Fibronectin in the Activation of Molecular Targets of Rheumatoid Arthritis and Identifcation of its Effective Inhibitors by Computational Methods. Appl Biochem Biotechnol 2023; 195:7037-7059. [PMID: 36976508 DOI: 10.1007/s12010-023-04451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Rheumatoid arthritis (RA) is one of the most severe inflammatory diseases that cause swelling, stiffness and pain in the joints, which pose a significant threat worldwide. Damage-associated molecular patterns (DAMPs) are danger molecules of endogenous origin, released during cell injury or cell death, interacts with various Pattern recognition receptors (PRRs) and activates various inflammatory diseases. One of the DAMP molecules, so-called EDA-fibronectin (Fn) is also responsible for causing RA. EDA-Fn triggers RA through its interaction with TLR4. Apart from TLR4, it is divulged that certain other PRR's are also responsible for RA, but the identity and mechanism of those PRRs remain unknown until now. Hence, for the first time, we tried to reveal those PRR's interaction with EDA-Fn in RA through computational methods. Protein-protein interaction (PPI) was checked using ClusPro between EDA-Fn and certain Pattern recognition receptors (PRRs) to explore the binding affinities of the potential PRRs. Protein-protein docking unveiled that TLR5, TLR2 and RAGE has good interaction with EDA-Fn than the well-reported TLR4. Macromolecular simulation was performed for TLR5, TLR2 and RAGE complexes along with the control group TLR4 for 50 ns to further investigate the stability, leading to the identification of TLR2, TLR5 and RAGE as the stable complexes. Hence, TLR2, TLR5 and RAGE on interaction with EDA-Fn may lead to the progression of RA that may need additional validations through in vitro and in vivo animal models. Molecular docking was used to analyse the binding force of the top 33 active anti-arthritic compounds with the target protein EDA-Fn. Molecular docking study showed that withaferin A has a good binding activity with EDA-fibronectin target. Hence, it is emphasized that guggulsterone and berberine could modulate the EDA-Fn-mediated TLR5/TLR2/RAGE pathways, thereby it could inhibit the deteriorating effects of RA which needs further in vitro and in vivo experimental validations.
Collapse
Affiliation(s)
- Premnath Sakthivel
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Indrajith Sakthivel
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Sivasakthi Paramasivam
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Senthamil Selvan Perumal
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Sanmuga Priya Ekambaram
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
3
|
Muthyalaiah YS, Arockiasamy S, P A A. Exploring the molecular interactions and binding affinity of resveratrol and calcitriol with RAGE and its intracellular proteins and kinases involved in colorectal cancer. J Biomol Struct Dyn 2023; 42:10800-10823. [PMID: 37732363 DOI: 10.1080/07391102.2023.2258993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Colorectal cancer (CRC) burden is progressively increasing in young population due to dietary and lifestyle pattern. Advanced glycation end products (AGEs), one of the dietary compounds, form complex aggregates with proteins, lipids, and nucleic acids distorting their structure and function. AGE's pro-tumorigenic role is mediated through the receptor for AGEs (RAGE) triggering an array of signaling pathways. The current study aimed to target AGE-RAGE axis signaling proteins and kinases at multiple levels with calcitriol (CAL) and trans-resveratrol (RES) through in silico analysis using molecular docking (MD), molecular dynamic simulation(MDS), MM-PBSA analysis, and in vitro study. In silico analysis of CAL and RES showed significant binding affinity toward RAGE and its signaling proteins such as NF-kB, PI3K/AKT, ERK1/2, and PKC compared to its reference inhibitors through better hydrogen, hydrophobic, pi-pi stacking interactions. MD and MDS studies have revealed stable and compact protein-ligand complexes. Binding free energies of protein-ligand complex were estimated using MM/PBSA analysis thatprovided an assessment of overall interacting free energies of complexes and revealed the presence of low binding energy within the active site. Furthermore, in the in vitro study, methylglyoxal (MG), an AGE-precursor showed a proliferative effect on HCT116, however, CAL and RES showed an inhibitory effect against MG induced effect with an IC50 value of 51 nM and 110 µM respectively. Thus, the study suggests the possible target binding sites of AGE-RAGE signaling proteins and kinases with CAL and RES, thereby exploiting it for developing CAL with RES as adjuvant therapy along with chemo drug for CRC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yadav Sangeeta Muthyalaiah
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Abhinand P A
- Department of Bioinformatics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
4
|
Zhou J, Liu S, Bi S, Kong W, Qian R, Xie X, Zeng M, Jiang X, Liao Z, Shuai M, Liu W, Cheng L, Wu M. The RAGE signaling in osteoporosis. Biomed Pharmacother 2023; 165:115044. [PMID: 37354815 DOI: 10.1016/j.biopha.2023.115044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023] Open
Abstract
Osteoporosis (OP), characterized by an imbalance of bone remodeling between formation and resorption, has become a health issue worldwide. The receptor for advanced glycation end product (RAGE), a transmembrane protein in the immunoglobin family, has multiple ligands and has been involved in many chronic diseases, such as diabetes and OP. Increasing evidence shows that activation of the RAGE signaling negatively affects bone remodeling. Ligands, such as advanced glycation end products (AGEs), S100, β-amyloid (Aβ), and high mobility group box 1 (HMGB1), have been well documented that they may negatively regulate the proliferation and differentiation of osteoblasts and positively stimulate osteoclastogenesis by activating the expression of RAGE. In this review, we comprehensively discuss the structure of RAGE and its biological functions in the pathogenesis of OP. The research findings suggest that RAGE signaling has become a potential target for the therapeutic management of OP.
Collapse
Affiliation(s)
- Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Shengrong Bi
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Rui Qian
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Ming Zeng
- Department of Orthopedics, Ruijin Traditional Chinese Medicine Hospital, Ruijin 342500, China
| | - Xiaowei Jiang
- Department of Joint Surgery, Ningdu County People's Hospital, Ningdu 342800, China
| | - Zhibin Liao
- Department of Joint Surgery, Ningdu County People's Hospital, Ningdu 342800, China
| | - Ming Shuai
- Department of Orthopedics, Chongyi County People's Hospital, Chongyi 341300, China
| | - Wei Liu
- Department of Orthopedics, Ningdu County Traditional Chinese Medicine Hospital, Ningdu 342800, China
| | - Long Cheng
- Department of Orthopedics, Ningdu County Traditional Chinese Medicine Hospital, Ningdu 342800, China
| | - Moujian Wu
- Department of Orthopedics, Xingguo County Traditional Chinese Medicine Hospital, Xingguo 342400, China
| |
Collapse
|
5
|
Pujals M, Mayans C, Bellio C, Méndez O, Greco E, Fasani R, Alemany-Chavarria M, Zamora E, Padilla L, Mitjans F, Nuciforo P, Canals F, Nonell L, Abad M, Saura C, Tabernero J, Villanueva J. RAGE/SNAIL1 signaling drives epithelial-mesenchymal plasticity in metastatic triple-negative breast cancer. Oncogene 2023; 42:2610-2628. [PMID: 37468678 DOI: 10.1038/s41388-023-02778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Epithelial/Mesenchymal (E/M) plasticity plays a fundamental role both in embryogenesis and during tumorigenesis. The receptor for advanced glycation end products (RAGE) is a driver of cell plasticity in fibrotic diseases; however, its role and molecular mechanism in triple-negative breast cancer (TNBC) remains unclear. Here, we demonstrate that RAGE signaling maintains the mesenchymal phenotype of aggressive TNBC cells by enforcing the expression of SNAIL1. Besides, we uncover a crosstalk mechanism between the TGF-β and RAGE pathways that is required for the acquisition of mesenchymal traits in TNBC cells. Consistently, RAGE inhibition elicits epithelial features that block migration and invasion capacities. Next, since RAGE is a sensor of the tumor microenvironment, we modeled acute acidosis in TNBC cells and showed it promotes enhanced production of RAGE ligands and the activation of RAGE-dependent invasive properties. Furthermore, acute acidosis increases SNAIL1 levels and tumor cell invasion in a RAGE-dependent manner. Finally, we demonstrate that in vivo inhibition of RAGE reduces metastasis incidence and expands survival, consistent with molecular effects that support the relevance of RAGE signaling in E/M plasticity. These results uncover new molecular insights on the regulation of E/M phenotypes in cancer metastasis and provide rationale for pharmacological intervention of this signaling axis.
Collapse
Affiliation(s)
- Mireia Pujals
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carla Mayans
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Chiara Bellio
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Olga Méndez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Emanuela Greco
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Roberta Fasani
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mercè Alemany-Chavarria
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Esther Zamora
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laura Padilla
- LEITAT Technological Center, 08028, Barcelona, Spain
| | | | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Lara Nonell
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María Abad
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Altos Labs Cambridge Institute of Science, Cambridge, UK
| | - Cristina Saura
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Josep Tabernero
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- IOB Institute of Oncology, Quiron Group (Quiron-IOB), Barcelona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Villanueva
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Plemmenos G, Tzimogianni V, Fili C, Piperi C. Contributing Role of High Mobility Group Box 1 Signaling in Oral Cancer Development and Therapy. Life (Basel) 2023; 13:1577. [PMID: 37511951 PMCID: PMC10381251 DOI: 10.3390/life13071577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most frequent type of oral cancer of multifactorial origin, characterized by histological and clinical manifestations. To date, there are no specific biomarkers or treatment modalities available to efficiently manage this neoplasia, demanding further research on the molecular background of OSCC pathology. Elucidation of signal transduction pathways and associated molecules with differential expression and function in OSCC are expected to enhance the future development of molecular targeted therapies. Among signaling proteins with a potential functional role in OSCC, the High Mobility Group Box 1 (HMGB1) protein has stimulated scientific interest due to frequent upregulation, and implication in the progression of many types of head and neck cancer types. HMGB1 is a nuclear nonhistone protein and an extracellularly secreted cytokine that can interact with several signaling molecules implicated in the pathogenic pathways of OSCC. Binding of HMGB1 to specific receptors on OSCC cells such as the receptor of AGE (RAGE) and the toll-like receptor (TLR) has been shown to initiate several intercellular signaling cascades that can promote OSCC growth, invasion, and metastasis, indicating a potential target for patient prognosis and therapeutic approaches. The purpose of this review is to explore the functional role and associated signaling of HMGB1 in OSCC in order to reveal potential therapeutic targeting options.
Collapse
Affiliation(s)
- Grigorios Plemmenos
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 11527 Athens, Greece
| | - Valentini Tzimogianni
- Department of Biology, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Christina Fili
- Medicine and Surgery, Department of Pharmacy and Medicine, Sapienza Universita di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
7
|
Reddy VP, Aryal P, Soni P. RAGE Inhibitors in Neurodegenerative Diseases. Biomedicines 2023; 11:biomedicines11041131. [PMID: 37189749 DOI: 10.3390/biomedicines11041131] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Nonenzymatic reactions of reducing sugars with primary amino groups of amino acids, proteins, and nucleic acids, followed by oxidative degradations would lead to the formation of advanced glycation endproducts (AGEs). The AGEs exert multifactorial effects on cell damage leading to the onset of neurological disorders. The interaction of AGEs with the receptors for advanced glycation endproducts (RAGE) contribute to the activation of intracellular signaling and the expression of the pro-inflammatory transcription factors and various inflammatory cytokines. This inflammatory signaling cascade is associated with various neurological diseases, including Alzheimer's disease (AD), secondary effects of traumatic brain injury (TBI), amyotrophic lateral sclerosis (ALS), and diabetic neuropathy, and other AGE-related diseases, including diabetes and atherosclerosis. Furthermore, the imbalance of gut microbiota and intestinal inflammation are also associated with endothelial dysfunction, disrupted blood-brain barrier (BBB) and thereby the onset and progression of AD and other neurological diseases. AGEs and RAGE play an important role in altering the gut microbiota composition and thereby increase the gut permeability and affect the modulation of the immune-related cytokines. The inhibition of the AGE-RAGE interactions, through small molecule-based therapeutics, prevents the inflammatory cascade of events associated with AGE-RAGE interactions, and thereby attenuates the disease progression. Some of the RAGE antagonists, such as Azeliragon, are currently in clinical development for treating neurological diseases, including AD, although currently there have been no FDA-approved therapeutics based on the RAGE antagonists. This review outlines the AGE-RAGE interactions as a leading cause of the onset of neurological diseases and the current efforts on developing therapeutics for neurological diseases based on the RAGE antagonists.
Collapse
Affiliation(s)
- V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Puspa Aryal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Pallavi Soni
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
8
|
Petrushanko IY, Mitkevich VA, Makarov AA. Effect of β-amyloid on blood-brain barrier properties and function. Biophys Rev 2023; 15:183-197. [PMID: 37124923 PMCID: PMC10133432 DOI: 10.1007/s12551-023-01052-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The deposition of beta-amyloid (Aβ) aggregates in the brain, accompanied by impaired cognitive function, is a characteristic feature of Alzheimer's disease (AD). An important role in this process is played by vascular disorders, in particular, a disturbance of the blood-brain barrier (BBB). The BBB controls the entry of Aβ from plasma to the brain via the receptor for advanced glycation end products (RAGE) and the removal of brain-derived Aβ via the low-density lipoprotein receptor-related protein (LRP1). The balance between the input of Aβ to the brain from the periphery and its output is disturbed during AD. Aβ changes the redox-status of BBB cells, which in turn changes the functioning of mitochondria and disrupts the barrier function of endothelial cells by affecting tight junction proteins. Aβ oligomers have the greatest toxic effect on BBB cells, and oligomers are most rapidly transferred by transcytosis from the brain side of the BBB to the blood side. Both the cytotoxic effect of Aβ and the impairment of barrier function are partly due to the interaction of Aβ monomers and oligomers with membrane-bound RAGE. AD therapies based on the disruption of this interaction or the creation of decoys for Aβ are being developed. The question of the transfer of various Aβ isoforms through the BBB is important, since it can influence the development of AD. It is shown that the rate of input of Aβ40 and Aβ42 from the blood into the brain is different. The actual question of the transfer of pathogenic Aβ isoforms with post-translational modifications or mutations through the BBB still remains open.
Collapse
Affiliation(s)
- Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
9
|
Taguchi K, Fukami K. RAGE signaling regulates the progression of diabetic complications. Front Pharmacol 2023; 14:1128872. [PMID: 37007029 PMCID: PMC10060566 DOI: 10.3389/fphar.2023.1128872] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes, the ninth leading cause of death globally, is expected to affect 642 million people by 2040. With the advancement of an aging society, the number of patients with diabetes having multiple underlying diseases, such as hypertension, obesity, and chronic inflammation, is increasing. Thus, the concept of diabetic kidney disease (DKD) has been accepted worldwide, and comprehensive treatment of patients with diabetes is required. Receptor for advanced glycation endproducts (RAGE), a multiligand receptor, belonging to the immunoglobulin superfamily is extensively expressed throughout the body. Various types of ligands, including advanced glycation endproducts (AGEs), high mobility group box 1, S100/calgranulins, and nucleic acids, bind to RAGE, and then induces signal transduction to amplify the inflammatory response and promote migration, invasion, and proliferation of cells. Furthermore, the expression level of RAGE is upregulated in patients with diabetes, hypertension, obesity, and chronic inflammation, suggesting that activation of RAGE is a common denominator in the context of DKD. Considering that ligand–and RAGE–targeting compounds have been developed, RAGE and its ligands can be potent therapeutic targets for inhibiting the progression of DKD and its complications. Here, we aimed to review recent literature on various signaling pathways mediated by RAGE in the pathogenesis of diabetic complications. Our findings highlight the possibility of using RAGE–or ligand–targeted therapy for treating DKD and its complications.
Collapse
|
10
|
RAGE Inhibitors for Targeted Therapy of Cancer: A Comprehensive Review. Int J Mol Sci 2022; 24:ijms24010266. [PMID: 36613714 PMCID: PMC9820344 DOI: 10.3390/ijms24010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin family that is overexpressed in several cancers. RAGE is highly expressed in the lung, and its expression increases proportionally at the site of inflammation. This receptor can bind a variety of ligands, including advanced glycation end products, high mobility group box 1, S100 proteins, adhesion molecules, complement components, advanced lipoxidation end products, lipopolysaccharides, and other molecules that mediate cellular responses related to acute and chronic inflammation. RAGE serves as an important node for the initiation and stimulation of cell stress and growth signaling mechanisms that promote carcinogenesis, tumor propagation, and metastatic potential. In this review, we discuss different aspects of RAGE and its prominent ligands implicated in cancer pathogenesis and describe current findings that provide insights into the significant role played by RAGE in cancer. Cancer development can be hindered by inhibiting the interaction of RAGE with its ligands, and this could provide an effective strategy for cancer treatment.
Collapse
|
11
|
Singh H, Agrawal DK. Therapeutic Potential of Targeting the HMGB1/RAGE Axis in Inflammatory Diseases. Molecules 2022; 27:7311. [PMID: 36364135 PMCID: PMC9658169 DOI: 10.3390/molecules27217311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 10/18/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear protein that can interact with a receptor for advanced glycation end-products (RAGE; a multi-ligand immunoglobulin receptor) and mediates the inflammatory pathways that lead to various pathological conditions, such as cancer, diabetes, neurodegenerative disorders, and cardiovascular diseases. Blocking the HMGB1/RAGE axis could be an effective therapeutic approach to treat these inflammatory conditions, which has been successfully employed by various research groups recently. In this article, we critically review the structural insights and functional mechanism of HMGB1 and RAGE to mediate inflammatory processes. More importantly, current perspectives of recent therapeutic approaches utilized to inhibit the communication between HMGB1 and RAGE using small molecules are also summarized along with their clinical progression to treat various inflammatory disorders. Encouraging results are reported by investigators focusing on HMGB1/RAGE signaling leading to the identification of compounds that could be useful in further clinical studies. We highlight the current gaps in our knowledge and future directions for the therapeutic potential of targeting key molecules in HMGB1/RAGE signaling in the pathophysiology of inflammatory diseases.
Collapse
Affiliation(s)
| | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
12
|
Singh H, Agrawal DK. Therapeutic potential of targeting the receptor for advanced glycation end products (RAGE) by small molecule inhibitors. Drug Dev Res 2022; 83:1257-1269. [PMID: 35781678 PMCID: PMC9474610 DOI: 10.1002/ddr.21971] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023]
Abstract
Receptor for advanced glycation end products (RAGE) is a 45 kDa transmembrane receptor of immunoglobulin family that can bind to various endogenous and exogenous ligands and initiate the inflammatory downstream signaling pathways. RAGE is involved in various disorders including cardiovascular and neurodegenerative diseases, cancer, and diabetes. This review summarizes the structural features of RAGE and its various isoforms along with their pathological effects. Mainly, the article emphasized on the translational significance of antagonizing the interactions of RAGE with its ligands using small molecules reported in the last 5 years and discusses future approaches that could be employed to block the interactions in the treatment of chronic inflammatory ailments. The RAGE inhibitors described in this article could prove as a powerful approach in the management of immune‐inflammatory diseases. A critical review of the literature suggests that there is a dire need to dive deeper into the molecular mechanism of action to resolve critical issues that must be addressed to understand RAGE‐targeting therapy and long‐term blockade of RAGE in human diseases.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
13
|
Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells 2022; 11:cells11081312. [PMID: 35455991 PMCID: PMC9029922 DOI: 10.3390/cells11081312] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
Advanced glycation end-products (AGEs) constitute a non-homogenous, chemically diverse group of compounds formed either exogeneously or endogeneously on the course of various pathways in the human body. In general, they are formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amine groups of nucleic acids, proteins, or lipids, followed by further rearrangements yielding stable, irreversible end-products. In the last decades, AGEs have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes and diseases, such as diabetes, cancer, cardiovascular, neurodegenerative diseases, and even infection with the SARS-CoV-2 virus. They are recognized by several cellular receptors and trigger many signaling pathways related to inflammation and oxidative stress. Despite many experimental research outcomes published recently, the complexity of their engagement in human physiology and pathophysiological states requires further elucidation. This review focuses on the receptors of AGEs, especially on the structural aspects of receptor-ligand interaction, and the diseases in which AGEs are involved. It also aims to present AGE classification in subgroups and to describe the basic processes leading to both exogeneous and endogeneous AGE formation.
Collapse
|
14
|
Kinscherf NA, Pehar M. Role and Therapeutic Potential of RAGE Signaling in Neurodegeneration. Curr Drug Targets 2022; 23:1191-1209. [PMID: 35702767 PMCID: PMC9589927 DOI: 10.2174/1389450123666220610171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 01/03/2023]
Abstract
Activation of the receptor for advanced glycation end products (RAGE) has been shown to play an active role in the development of multiple neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Although originally identified as a receptor for advanced glycation end products, RAGE is a pattern recognition receptor able to bind multiple ligands. The final outcome of RAGE signaling is defined in a context and cell type specific manner and can exert both neurotoxic and neuroprotective functions. Contributing to the complexity of the RAGE signaling network, different RAGE isoforms with distinctive signaling capabilities have been described. Moreover, multiple RAGE ligands bind other receptors and RAGE antagonism can significantly affect their signaling. Here, we discuss the outcome of celltype specific RAGE signaling in neurodegenerative pathologies. In addition, we will review the different approaches that have been developed to target RAGE signaling and their therapeutic potential. A clear understanding of the outcome of RAGE signaling in a cell type- and disease-specific manner would contribute to advancing the development of new therapies targeting RAGE. The ability to counteract RAGE neurotoxic signaling while preserving its neuroprotective effects would be critical for the success of novel therapies targeting RAGE signaling.
Collapse
Affiliation(s)
- Noah Alexander Kinscherf
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, USA
| |
Collapse
|
15
|
AGE/Non-AGE Glycation: An Important Event in Rheumatoid Arthritis Pathophysiology. Inflammation 2021; 45:477-496. [PMID: 34787800 DOI: 10.1007/s10753-021-01589-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory, autoimmune disease that gradually affects the synovial membrane and joints. Many intrinsic and/or extrinsic factors are crucial in making RA pathology challenging throughout the disease. Substantial enzymatic or non-enzymatic modification of proteins driving inflammation has gained a lot of interest in recent years. Endogenously modified glycated protein influences disease development linked with AGEs/non-AGEs and is reported as a disease marker. In this review, we summarized current knowledge of the differential abundance of glycated proteins by compiling and analyzing a variety of AGE and non-AGE ligands that bind with RAGE to activate multi-faceted inflammatory and oxidative stress pathways that are pathobiologically associated with RA-fibroblast-like synoviocytes (RA-FLS). It is critical to comprehend the connection between oxidative stress and inflammation generation, mediated by glycated protein, which may bind to the receptor RAGE, activate downstream pathways, and impart immunogenicity in RA. It is worth noting that AGEs and non-AGEs ligands play a variety of functions, and their functionality is likely to be more reliant on pathogenic states and severity that may serve as biomarkers for RA. Screening and monitoring of these differentially glycated proteins, as well as their stability in circulation, in combination with established pre-clinical characteristics, may aid or predict the onset of RA.
Collapse
|
16
|
Kozlyuk N, Gilston BA, Salay LE, Gogliotti RD, Christov PP, Kim K, Ovee M, Waterson AG, Chazin WJ. A fragment-based approach to discovery of Receptor for Advanced Glycation End products inhibitors. Proteins 2021; 89:1399-1412. [PMID: 34156100 PMCID: PMC8492516 DOI: 10.1002/prot.26162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 11/12/2022]
Abstract
The Receptor for Advanced Glycation End products (RAGE) is a pattern recognition receptor that signals for inflammation via the NF-κB pathway. RAGE has been pursued as a potential target to suppress symptoms of diabetes and is of interest in a number of other diseases associated with chronic inflammation, such as inflammatory bowel disease and bronchopulmonary dysplasia. Screening and optimization have previously produced small molecules that inhibit the activity of RAGE in cell-based assays, but efforts to develop a therapeutically viable direct-binding RAGE inhibitor have yet to be successful. Here, we show that a fragment-based approach can be applied to discover fundamentally new types of RAGE inhibitors that specifically target the ligand-binding surface. A series of systematic assays of structural stability, solubility, and crystallization were performed to select constructs of the RAGE ligand-binding domain and optimize conditions for NMR-based screening and co-crystallization of RAGE with hit fragments. An NMR-based screen of a highly curated ~14 000-member fragment library produced 21 fragment leads. Of these, three were selected for elaboration based on structure-activity relationships generated through cycles of structural analysis by X-ray crystallography, structure-guided design principles, and synthetic chemistry. These results, combined with crystal structures of the first linked fragment compounds, demonstrate the applicability of the fragment-based approach to the discovery of RAGE inhibitors.
Collapse
Affiliation(s)
- Natalia Kozlyuk
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Benjamin A. Gilston
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Lauren E. Salay
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Rocco D. Gogliotti
- Chemical Synthesis Core, Vanderbilt University, Nashville, Tennessee, USA
| | - Plamen P. Christov
- Chemical Synthesis Core, Vanderbilt University, Nashville, Tennessee, USA
| | - Kwangho Kim
- Chemical Synthesis Core, Vanderbilt University, Nashville, Tennessee, USA
| | - Mohiuddin Ovee
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Alex G. Waterson
- Chemical Synthesis Core, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Walter J. Chazin
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Azegami T, Nakayama T, Hayashi K, Hishikawa A, Yoshimoto N, Nakamichi R, Itoh H. Vaccination Against Receptor for Advanced Glycation End Products Attenuates the Progression of Diabetic Kidney Disease. Diabetes 2021; 70:2147-2158. [PMID: 34155040 DOI: 10.2337/db20-1257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/14/2021] [Indexed: 11/13/2022]
Abstract
Effective treatment of diabetic kidney disease (DKD) remains a large unmet medical need. Within the disease's complicated pathogenic mechanism, activation of the advanced glycation end products (AGEs)-receptor for AGE (RAGE) axis plays a pivotal role in the development and progression of DKD. To provide a new therapeutic strategy against DKD progression, we developed a vaccine against RAGE. Three rounds of immunization of mice with the RAGE vaccine successfully induced antigen-specific serum IgG antibody titers and elevated antibody titers were sustained for at least 38 weeks. In addition, RAGE vaccination significantly attenuated the increase in urinary albumin excretion in streptozotocin-induced diabetic mice (type 1 diabetes model) and leptin-receptor-deficient db/db mice (type 2 diabetes model). In microscopic analyses, RAGE vaccination suppressed glomerular hypertrophy and mesangial expansion in both diabetic models and significantly reduced glomerular basement membrane thickness in streptozotocin-induced diabetic mice. Results of an in vitro study indicated that the serum IgG antibody elicited by RAGE vaccination suppressed the expression of AGE-induced vascular cell adhesion molecule 1 and intracellular adhesion molecule 1 in endothelial cells. Thus, our newly developed RAGE vaccine attenuated the progression of DKD in mice and is a promising potential therapeutic strategy for patients with DKD.
Collapse
Affiliation(s)
- Tatsuhiko Azegami
- Keio University Health Center, Kanagawa, Japan
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takashin Nakayama
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaori Hayashi
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akihito Hishikawa
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Norifumi Yoshimoto
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ran Nakamichi
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Volpina OM, Koroev DO, Serebryakova MV, Volkova TD, Kamynina AV, Bobkova NV. Proteolytic degradation patterns of the receptor for advanced glycation end products peptide fragments correlate with their neuroprotective activity in Alzheimer's disease models. Drug Dev Res 2021; 82:1217-1226. [PMID: 34060112 DOI: 10.1002/ddr.21836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/10/2022]
Abstract
The receptor for advanced glycation end products (RAGE) plays an essential role in Alzheimer's disease (AD). We previously demonstrated that a fragment (60-76) of RAGE improved the memory of olfactory bulbectomized (OBX) and Tg 5 × FAD mice - animal models of AD. The peptide analog (60-76) with protected N- and C-terminal groups was more active than the free peptide in Tg 5 × FAD mice. This study investigated proteolytic cleavage of the RAGE fragment (60-76) and its C- and N-terminally modified analog by blood serum using HPLC and mass spectrometry. The modified peptide was proteolyzed slower than the free peptide. Degrading the protected analog resulted in shortened fragments with memory-enhancing effects, whereas the free peptide yielded inactive fragments. After administering the different peptides to OBX mice, their performance in a spatial memory task revealed that the effective dose of the modified peptide was five times lower than that of the free peptide. HPLC and mass spectrometry analysis of the proteolytic products allowed us to clarify the differences in the neuroprotective activity conferred by administering these two peptides to AD animal models. The current study suggests that the modified RAGE fragment is more promising for the development of anti-AD therapy than its free analog.
Collapse
Affiliation(s)
- Olga M Volpina
- Department of Molecular Neurobiology, Laboratory of Synthetic Vaccines, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (RAS), Moscow, Russia
| | - Dmitriy O Koroev
- Department of Molecular Neurobiology, Laboratory of Synthetic Vaccines, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (RAS), Moscow, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatyana D Volkova
- Department of Molecular Neurobiology, Laboratory of Synthetic Vaccines, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (RAS), Moscow, Russia
| | - Anna V Kamynina
- Department of Molecular Neurobiology, Laboratory of Synthetic Vaccines, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (RAS), Moscow, Russia.,Research Center for Molecular Mechanisms of Aging and Age Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Natalia V Bobkova
- Laboratory of Cellular Mechanisms of Memory Pathology, Institute of Cell Biophysics (RAS), Pushchino, Russia
| |
Collapse
|
19
|
Moysa A, Steczkiewicz K, Niedzialek D, Hammerschmid D, Zhukova L, Sobott F, Dadlez M. A model of full-length RAGE in complex with S100B. Structure 2021; 29:989-1002.e6. [PMID: 33887170 DOI: 10.1016/j.str.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/03/2021] [Accepted: 04/02/2021] [Indexed: 01/10/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is an immunoglobulin-type multiligand transmembrane protein expressed in numerous cell types, including the central nervous system cells. RAGE interaction with S100B, released during brain tissue damage, leads to RAGE upregulation and initialization of a spiral proinflammatory associated with different neural disorders. Here, we present the structural characterization of the hetero-oligomeric complex of the full-length RAGE with S100B, obtained by a combination of mass spectrometry-based methods and molecular modeling. We predict that RAGE functions as a tightly packed tetramer exposing a positively charged surface formed by V domains for S100B binding. Based on HDX results we demonstrate an allosteric coupling of the distal extracellular V domains and the transmembrane region, indicating a possible mechanism of signal transmission by RAGE across the membrane. Our model provides an insight into RAGE-ligand interactions, providing a basis for the rational design of the therapeutic modifiers of its activity.
Collapse
Affiliation(s)
- Alexander Moysa
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland.
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland.
| | - Dorota Niedzialek
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland
| | - Dietmar Hammerschmid
- Department of Chemistry, King's College London, 7 Trinity Street, SE1 1DB London, UK; Department of Chemistry, Biomolecular & Analytical Mass Spectrometry Group, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lilia Zhukova
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, UK; Department of Chemistry, Biomolecular & Analytical Mass Spectrometry Group, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Michal Dadlez
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-109 Warsaw, Poland
| |
Collapse
|
20
|
Munesue SI, Liang M, Harashima A, Zhong J, Furuhara K, Boitsova EB, Cherepanov SM, Gerasimenko M, Yuhi T, Yamamoto Y, Higashida H. Transport of oxytocin to the brain after peripheral administration by membrane-bound or soluble forms of receptors for advanced glycation end-products. J Neuroendocrinol 2021; 33:e12963. [PMID: 33733541 DOI: 10.1111/jne.12963] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022]
Abstract
Oxytocin (OT) is a neuropeptide hormone. Single and repetitive administration of OT increases social interaction and maternal behaviour in humans and mammals. Recently, it was found that the receptor for advanced glycation end-products (RAGE) is an OT-binding protein and plays a critical role in the uptake of OT to the brain after peripheral OT administration. Here, we address some unanswered questions on RAGE-dependent OT transport. First, we found that, after intranasal OT administration, the OT concentration increased in the extracellular space of the medial prefrontal cortex (mPFC) of wild-type male mice, as measured by push-pull microperfusion. No increase of OT in the mPFC was observed in RAGE knockout male mice. Second, in a reconstituted in vitro blood-brain barrier system, inclusion of the soluble form of RAGE (endogenous secretory RAGE [esRAGE]), an alternative splicing variant, in the luminal (blood) side had no effect on the transport of OT to the abluminal (brain) chamber. Third, OT concentrations in the cerebrospinal fluid after i.p. OT injection were slightly higher in male mice overexpressing esRAGE (esRAGE transgenic) compared to those in wild-type male mice, although this did not reach statistical significance. Although more extensive confirmation is necessary because of the small number of experiments in the present study, the reported data support the hypothesis that RAGE may be involved in the transport of OT to the mPFC from the circulation. These results suggest that the soluble form of RAGE in the plasma does not function as a decoy in vitro.
Collapse
Affiliation(s)
- Sei-Ichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - MingKun Liang
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Jing Zhong
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Kazumi Furuhara
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Elizabeta B Boitsova
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk, Russia
| | - Stanislav M Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk, Russia
| |
Collapse
|
21
|
Sruthi CR, Raghu KG. Advanced glycation end products and their adverse effects: The role of autophagy. J Biochem Mol Toxicol 2021; 35:e22710. [PMID: 33506967 DOI: 10.1002/jbt.22710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/27/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
The critical roles played by advanced glycation endproducts (AGEs) accumulation in diabetes and diabetic complications have gained intense recognition. AGEs interfere with the normal functioning of almost every organ with multiple actions like apoptosis, inflammation, protein dysfunction, mitochondrial dysfunction, and oxidative stress. However, the development of a potential treatment strategy is yet to be established. Autophagy is an evolutionarily conserved cellular process that maintains cellular homeostasis with the degradation and recycling systems. AGEs can activate autophagy signaling, which could be targeted as a therapeutic strategy against AGEs induced problems. In this review, we have provided an overview of the adverse effects of AGEs, and we put forth the notion that autophagy could be a promising targetable strategy against AGEs.
Collapse
Affiliation(s)
- C R Sruthi
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
22
|
May O, Yatime L, Merle NS, Delguste F, Howsam M, Daugan MV, Paul-Constant C, Billamboz M, Ghinet A, Lancel S, Dimitrov JD, Boulanger E, Roumenina LT, Frimat M. The receptor for advanced glycation end products is a sensor for cell-free heme. FEBS J 2020; 288:3448-3464. [PMID: 33314778 DOI: 10.1111/febs.15667] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/06/2020] [Accepted: 12/09/2020] [Indexed: 01/01/2023]
Abstract
Heme's interaction with Toll-like receptor 4 (TLR4) does not fully explain the proinflammatory properties of this hemoglobin-derived molecule during intravascular hemolysis. The receptor for advanced glycation end products (RAGE) shares many features with TLR4 such as common ligands and proinflammatory, prothrombotic, and pro-oxidative signaling pathways, prompting us to study its involvement as a heme sensor. Stable RAGE-heme complexes with micromolar affinity were detected as heme-mediated RAGE oligomerization. The heme-binding site was located in the V domain of RAGE. This interaction was Fe3+ -dependent and competitive with carboxymethyllysine, another RAGE ligand. We confirmed a strong basal gene expression of RAGE in mouse lungs. After intraperitoneal heme injection, pulmonary TNF-α, IL1β, and tissue factor gene expression levels increased in WT mice but were significantly lower in their RAGE-/- littermates. This may be related to the lower activation of ERK1/2 and Akt observed in the lungs of heme-treated, RAGE-/- mice. Overall, heme binds to RAGE with micromolar affinity and could promote proinflammatory and prothrombotic signaling in vivo, suggesting that this interaction could be implicated in heme-overload conditions.
Collapse
Affiliation(s)
- Olivia May
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France.,CHU Lille, Nephrology Department, Univ. Lille, France.,UMR_S 1138, Centre de Recherche des Cordeliers, INSERM, Paris, France
| | - Laure Yatime
- LPHI, UMR 5235, CNRS, INSERM, University of Montpellier, France
| | - Nicolas S Merle
- UMR_S 1138, Centre de Recherche des Cordeliers, INSERM, Paris, France
| | - Florian Delguste
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France
| | - Mike Howsam
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France
| | - Marie V Daugan
- UMR_S 1138, Centre de Recherche des Cordeliers, INSERM, Paris, France
| | | | - Muriel Billamboz
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France.,Yncréa Hauts-de-France, Ecole des Hautes Etudes d'Ingénieur, Health & Environment Department, Team Sustainable Chemistry, Laboratoire de Chimie Durable et Santé, UCLille, France
| | - Alina Ghinet
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France.,Yncréa Hauts-de-France, Ecole des Hautes Etudes d'Ingénieur, Health & Environment Department, Team Sustainable Chemistry, Laboratoire de Chimie Durable et Santé, UCLille, France.,Faculty of Chemistry, 'Alexandru Ioan Cuza' University of Iasi, Romania
| | - Steve Lancel
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France
| | - Jordan D Dimitrov
- UMR_S 1138, Centre de Recherche des Cordeliers, INSERM, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, France
| | - Eric Boulanger
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France
| | - Lubka T Roumenina
- UMR_S 1138, Centre de Recherche des Cordeliers, INSERM, Paris, France.,UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, France
| | - Marie Frimat
- Inserm, Institut Pasteur de Lille, U1167 - RID-AGE, Univ. Lille, France.,CHU Lille, Nephrology Department, Univ. Lille, France
| |
Collapse
|
23
|
RAGE Signaling in Melanoma Tumors. Int J Mol Sci 2020; 21:ijms21238989. [PMID: 33256110 PMCID: PMC7730603 DOI: 10.3390/ijms21238989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Despite recent progresses in its treatment, malignant cutaneous melanoma remains a cancer with very poor prognosis. Emerging evidences suggest that the receptor for advance glycation end products (RAGE) plays a key role in melanoma progression through its activation in both cancer and stromal cells. In tumors, RAGE activation is fueled by numerous ligands, S100B and HMGB1 being the most notable, but the role of many other ligands is not well understood and should not be underappreciated. Here, we provide a review of the current role of RAGE in melanoma and conclude that targeting RAGE in melanoma could be an approach to improve the outcomes of melanoma patients.
Collapse
|
24
|
Effects of the age/rage axis in the platelet activation. Int J Biol Macromol 2020; 166:1149-1161. [PMID: 33161078 DOI: 10.1016/j.ijbiomac.2020.10.270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/28/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
Platelet activity is essential in cardiovascular diseases. Therefore our objective was to evaluate the main effects of activating RAGE in platelets which are still unknown. A search for RAGE expression in different databases showed poor or a nonexistent presence in platelets. We confirmed the expression in platelets and secreted variable of RAGE (sRAGE). Platelets from elderly adults expressed in resting showed 3.2 fold more RAGE from young individuals (p < 0.01) and 3.3 fold with TRAP-6 (p < 0.001). These results could indicate that the expression of RAGE is more inducible in older adults. Then we found that activating RAGE with AGE-BSA-derived from methylglyoxal and subthreshold TRAP-6, showed a considerable increase with respect to the control in platelet aggregation and expression of P-selectin (respectively, p < 0.01). This effect was almost completely blocked by using a specific RAGE inhibitor (FSP-ZM1), confirming that RAGE is important for the function and activation platelet. Finally, we predict the region stimulated by AGE-BSA is located in region V of RAGE and 13 amino acids are critical for its binding. In conclusion, the activation of RAGE affects platelet activation and 13 amino acids are critical for its stimulation, this information is crucial for future possible treatments for CVD.
Collapse
|
25
|
Swami P, Thiyagarajan S, Vidger A, Indurthi VSK, Vetter SW, Leclerc E. RAGE Up-Regulation Differently Affects Cell Proliferation and Migration in Pancreatic Cancer Cells. Int J Mol Sci 2020; 21:E7723. [PMID: 33086527 PMCID: PMC7589276 DOI: 10.3390/ijms21207723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) contributes to many cellular aspects of pancreatic cancer including cell proliferation, migration, and survival. Studies have shown that RAGE activation by its ligands promotes pancreatic tumor growth by stimulating both cell proliferation and migration. In this study, we investigated the effect of RAGE up-regulation on the proliferation and migration of the human pancreatic cancer Panc-1 cell-line. We show that moderate overexpression of RAGE in Panc-1 cells results in increased cell proliferation, but decreased cell migration. The observed cellular changes were confirmed to be RAGE-specific and reversible by using RAGE-specific siRNAs and the small molecule RAGE inhibitor FPS-ZM1. At the molecular level, we show that RAGE up-regulation was associated with decreased activity of FAK, Akt, Erk1/2, and NF-κB signaling pathways and greatly reduced levels of α2 and β1 integrin expression, which is in agreement with the observed decreases in cell migration. We also demonstrate that RAGE up-regulation changes the expression of key molecular markers of epithelial-to-mesenchymal transition (EMT). Our results suggest that in the absence of stimulation by external ligands, RAGE up-regulation can differently modulate cell proliferation and migration in pancreatic cancer cells and regulates partly EMT.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA; (P.S.); (S.T.); (A.V.); (V.S.K.I.); (S.W.V.)
| |
Collapse
|
26
|
De Francesco EM, Vella V, Belfiore A. COVID-19 and Diabetes: The Importance of Controlling RAGE. Front Endocrinol (Lausanne) 2020; 11:526. [PMID: 32760352 PMCID: PMC7375019 DOI: 10.3389/fendo.2020.00526] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of Catania, and ARNAS Garibaldi, P.O. Garibaldi-Nesima, Catania, Italy
| |
Collapse
|
27
|
Tramarin A, Naldi M, Degani G, Lupu L, Wiegand P, Mazzolari A, Altomare A, Aldini G, Popolo L, Vistoli G, Przybylski M, Bartolini M. Unveiling the molecular mechanisms underpinning biorecognition of early-glycated human serum albumin and receptor for advanced glycation end products. Anal Bioanal Chem 2020; 412:4245-4259. [DOI: 10.1007/s00216-020-02674-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
|
28
|
Enhanced oligomerization of full-length RAGE by synergy of the interaction of its domains. Sci Rep 2019; 9:20332. [PMID: 31889156 PMCID: PMC6937306 DOI: 10.1038/s41598-019-56993-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/11/2019] [Indexed: 01/10/2023] Open
Abstract
The pattern recognition receptor RAGE (receptor for advanced glycation end-products) transmits proinflammatory signals in several inflammation-related pathological states, including vascular diseases, cancer, neurodegeneration and diabetes. Its oligomerization is believed to be important in signal transduction, but RAGE oligomeric structures and stoichiometries remain unclear. Different oligomerization modes have been proposed in studies involving different truncated versions of the extracellular parts of RAGE. Here, we provide basic characterization of the oligomerization patterns of full-length RAGE (including the transmembrane (TM) and cytosolic regions) and compare the results with oligomerization modes of its four truncated fragments. For this purpose, we used native mass spectrometry, analytical ultracentrifugation, and size-exclusion chromatography coupled with multi-angle light scattering. Our results confirm known oligomerization tendencies of separate domains and highlight the enhanced oligomerization properties of full-length RAGE. Mutational analyses within the GxxxG motif of the TM region show sensitivity of oligomeric distributions to the TM sequence. Using hydrogen–deuterium exchange, we mapped regions involved in TM-dependent RAGE oligomerization. Our data provide experimental evidence for the major role of the C2 and TM domains in oligomerization, underscoring synergy among different oligomerization contact regions along the RAGE sequence. These results also explain the variability of obtained oligomerization modes in RAGE fragments.
Collapse
|
29
|
Zamoon J, Madhu D, Ahmed I. Dynamic oligomerization of hRAGE's transmembrane and cytoplasmic domains within SDS micelles. Int J Biol Macromol 2019; 130:10-18. [PMID: 30794903 DOI: 10.1016/j.ijbiomac.2019.02.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023]
Abstract
The human Receptor for Advanced Glycation End Products (hRAGE) is a pattern recognition receptor implicated in inflammation and adhesion. It is involved in both innate and adaptive immunity. Its aberrant signaling is tied to the pathogenesis of diabetic complications, neurodegenerative disorders, and chronic inflammatory responses. Previous structural studies have focused on its extracellular domains with their canonical constant and variable Ig folds, and to a much lesser extent, the intrinsically disorder cytoplasmic domain. No experimental data are reported on the transmembrane domain, which is integral to signaling. We have constructed, expressed and purified the transmembrane domain attached to the cytoplasmic domain of hRAGE in E. coli. Multiple self-associated forms of these domains were observed in vitro. This pattern of mixed oligomers resembled previously reported in vivo forms of the complete receptor. The self-association of these two domains was further characterized using: SDS-PAGE, intrinsic tryptophan fluorescence and heteronuclear NMR spectroscopy. NMR conditions were assessed across time and temperature within micelles. Our data show that the transmembrane and cytoplasmic domains of hRAGE undergo dynamic oligomerizations that can occur in the absence of its extracellular domains or ligand binding. And, such associations are only partially disrupted even with prolonged incubation in strong detergents.
Collapse
Affiliation(s)
- Jamillah Zamoon
- Department of Biological Sciences (Biochemistry Program), Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Kuwait.
| | - Dhanya Madhu
- Department of Biological Sciences (Biochemistry Program), Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Kuwait
| | - Ikhlas Ahmed
- Department of Biological Sciences (Biochemistry Program), Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Kuwait
| |
Collapse
|
30
|
Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology 2019; 20:279-301. [PMID: 30968282 DOI: 10.1007/s10522-019-09808-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) was initially characterized and named for its ability to bind to advanced glycation end-products (AGEs) that form upon the irreversible and non-enzymatic interaction between nucleophiles, such as lysine, and carbonyl compounds, such as reducing sugars. The concentrations of AGEs are known to increase in conditions such as diabetes, as well as during ageing. However, it is now widely accepted that RAGE binds with numerous ligands, many of which can be defined as pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). The interaction between RAGE and its ligands mainly results in a pro-inflammatory response, and can lead to stress events often favouring mitochondrial dysfunction or cellular senescence. Thus, RAGE should be considered as a pattern recognition receptor (PRR), similar to those that regulate innate immunity. Innate immunity itself plays a central role in inflammaging, the chronic low-grade and sterile inflammation that increases with age and is a potentially important contributory factor in ageing. Consequently, and in addition to the age-related accumulation of PAMPs and DAMPs and increases in pro-inflammatory cytokines from senescent cells and damaged cells, PRRs are therefore important in inflammaging. We suggest here that, through its interconnection with immunity, senescence, mitochondrial dysfunction and inflammasome activation, RAGE is a key contributor to inflammaging and that the pro-longevity effects seen upon blocking RAGE, or upon its deletion, are thus the result of reduced inflammaging.
Collapse
Affiliation(s)
- Thibault Teissier
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, 59000, Lille, France.
| | - Éric Boulanger
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, 59000, Lille, France.,Department of Geriatrics and Ageing Biology, School of Medicine, Lille University, Lille, France.,Department of Geriatrics, Lille University Hospital, Lille, France
| |
Collapse
|
31
|
Rojas A, Morales M, Gonzalez I, Araya P. Inhibition of RAGE Axis Signaling: A Pharmacological Challenge. Curr Drug Targets 2019; 20:340-346. [PMID: 30124149 DOI: 10.2174/1389450119666180820105956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/18/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
The Receptor for Advanced Glycation End Products (RAGE) is an important cell surface receptor, which belongs to the IgG super family and is now considered as a pattern recognition receptor. Because of its relevance in many human clinical settings, it is now pursued as a very attractive therapeutic target. However, particular features of this receptor such as a wide repertoire of ligands with different binding domains, the existence of many RAGE variants as well as the presence of cytoplasmatic adaptors leading a diverse signaling, are important limitations in the search for successful pharmacological approaches to inhibit RAGE signaling. Therefore, the present review aimed to display the most promising approaches to inhibit RAGE signaling, and provide an up to date review of progress in this area.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Miguel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Ileana Gonzalez
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca, Chile
| | - Paulina Araya
- Biomedical Research Lab., Medicine Faculty, Catholic University of Maule, Talca, Chile
| |
Collapse
|
32
|
Riuzzi F, Sorci G, Sagheddu R, Chiappalupi S, Salvadori L, Donato R. RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9:1213-1234. [PMID: 30334619 PMCID: PMC6351676 DOI: 10.1002/jcsm.12350] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that the signalling of the Receptor for Advanced Glycation End products (RAGE) is critical for skeletal muscle physiology controlling both the activity of muscle precursors during skeletal muscle development and the correct time of muscle regeneration after acute injury. On the other hand, the aberrant re-expression/activity of RAGE in adult skeletal muscle is a hallmark of muscle wasting that occurs in response to ageing, genetic disorders, inflammatory conditions, cancer, and metabolic alterations. In this review, we discuss the mechanisms of action and the ligands of RAGE involved in myoblast differentiation, muscle regeneration, and muscle pathological conditions. We highlight potential therapeutic strategies for targeting RAGE to improve skeletal muscle function.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Roberta Sagheddu
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| |
Collapse
|
33
|
Zhu Q, Smith EA. Diaphanous-1 affects the nanoscale clustering and lateral diffusion of receptor for advanced glycation endproducts (RAGE). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:43-49. [PMID: 30401627 DOI: 10.1016/j.bbamem.2018.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022]
Abstract
The interactions between the cytoplasmic protein diaphanous-1 (Diaph1) and the receptor for advanced glycation endproducts (RAGE) drive the negative consequences of RAGE signaling in several disease processes. Reported in this work is how Diaph1 affects the nanoscale clustering and diffusion of RAGE measured using super-resolution stochastic optical reconstruction microscopy (STORM) and single particle tracking (SPT). Altering the Diaph1 binding site has a different impact on RAGE diffusion compared to when Diaph1 expression is reduced in HEK293 cells. In cells with reduced Diaph1 expression (RAGE-Diaph1-/-), the average RAGE diffusion coefficient is increased by 35%. RAGE diffusion is known to be influenced by the dynamics of the actin cytoskeleton. Actin labeling shows that a reduced Diaph1 expression leads to cells with reduced filopodia density and length. In contrast, when two RAGE amino acids that interact with Diaph1 are mutated (RAGERQ/AA), the average RAGE diffusion coefficient is decreased by 16%. Since RAGE diffusion is slowed when the interaction between Diaph1 and RAGE is disrupted, the interaction of the two proteins results in faster RAGE diffusion. In both RAGERQ/AA and RAGE-Diaph1-/- cells the number and size of RAGE clusters are decreased compared to cells expressing RAGE and native concentrations of Diaph1. This work shows that Diaph1 has a role in affecting RAGE clusters and diffusion.
Collapse
Affiliation(s)
- Qiaochu Zhu
- Department of Chemistry, Iowa State University, Ames, IA 50011, United States
| | - Emily A Smith
- Department of Chemistry, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
34
|
Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflamm Res 2018; 67:801-812. [PMID: 30083975 DOI: 10.1007/s00011-018-1173-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Calprotectin (S100A8/S100A9), a heterodimeric EF-hand Ca2+ binding protein, are abundant in cytosol of neutrophils and are involved in inflammatory processes and several cancerous pathogens. OBJECTIVE The purpose of the present systematic review is to evaluate the pro- and anti-tumorigenic functions of calprotectin and its relation to inflammation. MATERIALS AND METHODS We conducted a review of studies published in the Medline (1966-2018), Scopus (2004-2018), ClinicalTrials.gov (2008-2018) and Google Scholar (2004-2018) databases, combined with studies found in the reference lists of the included studies. RESULTS Elevated levels of S100A8/S100A9 were detected in inflammation, neoplastic tumor cells and various human cancers. Recent data have explained that many cancers arise from sites of infection, chronic irritation, and inflammation. The inflammatory microenvironment which largely includes calprotectin, has an essential role on high producing of inflammatory factors and then on neoplastic process and metastasis. CONCLUSION Scientists have shown different outcomes in inflammation, malignancy and apoptosis whether the source of the aforementioned protein is extracellular or intracellular. These findings are offering new insights that anti-inflammatory therapeutic agents and anti-tumorigenic functions of calprotectin can lead to control cancer development.
Collapse
|
35
|
Khan MI, Su YK, Zou J, Yang LW, Chou RH, Yu C. S100B as an antagonist to block the interaction between S100A1 and the RAGE V domain. PLoS One 2018; 13:e0190545. [PMID: 29444082 PMCID: PMC5812564 DOI: 10.1371/journal.pone.0190545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/15/2017] [Indexed: 11/23/2022] Open
Abstract
Ca2+-binding human S100A1 protein is a type of S100 protein. S100A1 is a significant mediator during inflammation when Ca2+ binds to its EF-hand motifs. Receptors for advanced glycation end products (RAGE) correspond to 5 domains: the cytoplasmic, transmembrane, C2, C1, and V domains. The V domain of RAGE is one of the most important target proteins for S100A1. It binds to the hydrophobic surface and triggers signaling transduction cascades that induce cell growth, cell proliferation, and tumorigenesis. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the interaction between S100A1 and the RAGE V domain. We found that S100B could interact with S100A1 via NMR 1H-15N HSQC titrations. We used the HADDOCK program to generate the following two binary complexes based on the NMR titration results: S100A1-RAGE V domain and S100A1-S100B. After overlapping these two complex structures, we found that S100B plays a crucial role in blocking the interaction site between RAGE V domain and S100A1. A cell proliferation assay WST-1 also supported our results. This report could potentially be useful for new protein development for cancer treatment.
Collapse
Affiliation(s)
- Md. Imran Khan
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Yu-Kai Su
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Jinhao Zou
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Lee-Wei Yang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
- Physics Division, National Center for Theoretical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chin Yu
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| |
Collapse
|
36
|
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand pattern recognition receptor implicated in diverse chronic inflammatory states. RAGE binds and mediates the cellular response to a range of damage-associated molecular pattern molecules (DAMPs) including AGEs, HMGB1, S100s, and DNA. RAGE can also act as an innate immune sensor of microbial pathogen-associated molecular pattern molecules (PAMPs) including bacterial endotoxin, respiratory viruses, and microbial DNA. RAGE is expressed at low levels under normal physiology, but it is highly upregulated under chronic inflammation because of the accumulation of various RAGE ligands. Blocking RAGE signaling in cell and animal models has revealed that targeting RAGE impairs inflammation and progression of diabetic vascular complications, cardiovascular disease (CVD), and cancer progression and metastasis. The clinical relevance of RAGE in inflammatory disease is being demonstrated in emerging clinical trials of novel small-molecule RAGE inhibitors.
Collapse
Affiliation(s)
- Barry I Hudson
- Department of Cell Biology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136, USA; .,University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida 33136, USA
| | - Marc E Lippman
- University of Miami Sylvester Comprehensive Cancer Center, Miami, Florida 33136, USA.,Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136, USA;
| |
Collapse
|
37
|
Bongarzone S, Savickas V, Luzi F, Gee AD. Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective. J Med Chem 2017; 60:7213-7232. [PMID: 28482155 PMCID: PMC5601361 DOI: 10.1021/acs.jmedchem.7b00058] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The
receptor for advanced glycation endproducts (RAGE) is an ubiquitous,
transmembrane, immunoglobulin-like receptor that exists in multiple
isoforms and binds to a diverse range of endogenous extracellular
ligands and intracellular effectors. Ligand binding at the extracellular
domain of RAGE initiates a complex intracellular signaling cascade,
resulting in the production of reactive oxygen species (ROS), immunoinflammatory
effects, cellular proliferation, or apoptosis with concomitant upregulation
of RAGE itself. To date, research has mainly focused on the correlation
between RAGE activity and pathological conditions, such as cancer,
diabetes, cardiovascular diseases, and neurodegeneration. Because
RAGE plays a role in many pathological disorders, it has become an
attractive target for the development of inhibitors at the extracellular
and intracellular domains. This review describes the role of endogenous
RAGE ligands/effectors in normo- and pathophysiological processes,
summarizes the current status of exogenous small-molecule inhibitors
of RAGE and concludes by identifying key strategies for future therapeutic
intervention.
Collapse
Affiliation(s)
- Salvatore Bongarzone
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners , St. Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Vilius Savickas
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners , St. Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Federico Luzi
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners , St. Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Antony D Gee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners , St. Thomas' Hospital, London, SE1 7EH, United Kingdom
| |
Collapse
|
38
|
Yatime L. Un mécanisme d’activation cystéine-dépendant pour les ligands pro-inflammatoires de RAGE ? Med Sci (Paris) 2017; 33:351-354. [DOI: 10.1051/medsci/20173303026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
39
|
Grunwald MS, Ligabue-Braun R, Souza CS, Heimfarth L, Verli H, Gelain DP, Moreira JCF. Putative model for heat shock protein 70 complexation with receptor of advanced glycation end products through fluorescence proximity assays and normal mode analyses. Cell Stress Chaperones 2017; 22:99-111. [PMID: 27858225 PMCID: PMC5225064 DOI: 10.1007/s12192-016-0746-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 12/28/2022] Open
Abstract
Extracellular heat shock protein 70 (HSP70) is recognized by receptors on the plasma membrane, such as Toll-like receptor 4 (TLR4), TLR2, CD14, and CD40. This leads to activation of nuclear factor-kappa B (NF-κB), release of pro-inflammatory cytokines, enhancement of the phagocytic activity of innate immune cells, and stimulation of antigen-specific responses. However, the specific characteristics of HSP70 binding are still unknown, and all HSP70 receptors have not yet been described. Putative models for HSP70 complexation to the receptor for advanced glycation endproducts (RAGEs), considering both ADP- and ATP-bound states of HSP70, were obtained through molecular docking and interaction energy calculations. This interaction was detected and visualized by a proximity fluorescence-based assay in A549 cells and further analyzed by normal mode analyses of the docking complexes. The interacting energy of the complexes showed that the most favored docking situation occurs between HSP70 ATP-bound and RAGE in its monomeric state. The fluorescence proximity assay presented a higher number of detected spots in the HSP70 ATP treatment, corroborating with the computational result. Normal-mode analyses showed no conformational deformability in the interacting interface of the complexes. Results were compared with previous findings in which oxidized HSP70 was shown to be responsible for the differential modulation of macrophage activation, which could result from a signaling pathway triggered by RAGE binding. Our data provide important insights into the characteristics of HSP70 binding and receptor interactions, as well as putative models with conserved residues on the interface area, which could be useful for future site-directed mutagenesis studies.
Collapse
Affiliation(s)
- Marcelo Sartori Grunwald
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Rodrigo Ligabue-Braun
- Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane Santos Souza
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luana Heimfarth
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Hugo Verli
- Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniel Pens Gelain
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Cláudio Fonseca Moreira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
40
|
Yatime L, Betzer C, Jensen R, Mortensen S, Jensen P, Andersen G. The Structure of the RAGE:S100A6 Complex Reveals a Unique Mode of Homodimerization for S100 Proteins. Structure 2016; 24:2043-2052. [DOI: 10.1016/j.str.2016.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/26/2016] [Accepted: 10/05/2016] [Indexed: 01/10/2023]
|
41
|
Syed A, Zhu Q, Smith EA. Ligand binding affinity and changes in the lateral diffusion of receptor for advanced glycation endproducts (RAGE). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3141-3149. [DOI: 10.1016/j.bbamem.2016.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/22/2016] [Accepted: 10/03/2016] [Indexed: 12/16/2022]
|
42
|
Blocking the interaction between S100A9 and RAGE V domain using CHAPS molecule: A novel route to drug development against cell proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1558-69. [DOI: 10.1016/j.bbapap.2016.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 11/18/2022]
|
43
|
Xue J, Manigrasso M, Scalabrin M, Rai V, Reverdatto S, Burz DS, Fabris D, Schmidt AM, Shekhtman A. Change in the Molecular Dimension of a RAGE-Ligand Complex Triggers RAGE Signaling. Structure 2016; 24:1509-22. [PMID: 27524199 DOI: 10.1016/j.str.2016.06.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/20/2016] [Accepted: 06/16/2016] [Indexed: 01/13/2023]
Abstract
The weak oligomerization exhibited by many transmembrane receptors has a profound effect on signal transduction. The phenomenon is difficult to characterize structurally due to the large sizes of and transient interactions between monomers. The receptor for advanced glycation end products (RAGE), a signaling molecule central to the induction and perpetuation of inflammatory responses, is a weak constitutive oligomer. The RAGE domain interaction surfaces that mediate homo-dimerization were identified by combining segmental isotopic labeling of extracellular soluble RAGE (sRAGE) and nuclear magnetic resonance spectroscopy with chemical cross-linking and mass spectrometry. Molecular modeling suggests that two sRAGE monomers orient head to head forming an asymmetric dimer with the C termini directed toward the cell membrane. Ligand-induced association of RAGE homo-dimers on the cell surface increases the molecular dimension of the receptor, recruiting Diaphanous 1 (DIAPH1) and activating signaling pathways.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- Cross-Linking Reagents/chemistry
- Formins
- Gene Expression
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HEK293 Cells
- Humans
- Ligands
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Maleimides/chemistry
- Mitogen-Activated Protein Kinases/chemistry
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Docking Simulation
- Nuclear Magnetic Resonance, Biomolecular
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Structure, Secondary
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction
- Thermodynamics
Collapse
Affiliation(s)
- Jing Xue
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | | | - Matteo Scalabrin
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Vivek Rai
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - Sergey Reverdatto
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - David S Burz
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Daniele Fabris
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA
| | - Ann Marie Schmidt
- New York University, Langone Medical Center, New York, NY 10016, USA
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York at Albany, Albany, NY 12222, USA.
| |
Collapse
|
44
|
Serratos IN, Castellanos P, Pastor N, Millán-Pacheco C, Colín-González AL, Rembao D, Pérez-Montfort R, Cabrera N, Sánchez-García A, Gómez I, Rangel-López E, Santamaria A. Early expression of the receptor for advanced glycation end products in a toxic model produced by 6-hydroxydopamine in the rat striatum. Chem Biol Interact 2016; 249:10-8. [PMID: 26902637 DOI: 10.1016/j.cbi.2016.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/25/2016] [Accepted: 02/16/2016] [Indexed: 01/22/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is commonly involved in different neurodegenerative and inflammatory disorders. The cellular signaling associated to RAGE activation may occur upon binding to different ligands. In this study we investigated whether the toxic model produced by 6-hydroxydopamine (6-OHDA) in rats comprises early noxious responses related to RAGE-mediated signaling cascades. In order to explore a possible interaction between 6-OHDA and RAGE, affinity parameters of RAGE with 6-OHDA were estimated by different means. The possible binding sites of 6-OHDA with the VC1 homodimer for both rat and human RAGE were also modeled. Our results show that the striatal infusion of 6-OHDA recruits RAGE upregulation, as evidenced by an early expression of the receptor. 6-OHDA was also found to bind the VC1 homodimer, although its affinity was moderate when compared to other ligands. This work contributes to the understanding of the role of RAGE activation for 6-OHDA-induced neurotoxicity.
Collapse
Affiliation(s)
- Iris N Serratos
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico; Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA, Mexico; Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | - Pilar Castellanos
- Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana-Iztapalapa, Mexico
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Mexico
| | - César Millán-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Ana Laura Colín-González
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA, Mexico
| | - Daniel Rembao
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico
| | - Ruy Pérez-Montfort
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Aurora Sánchez-García
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico
| | - Isabel Gómez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA, Mexico
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA, Mexico.
| |
Collapse
|
45
|
Wu X, Wu J, Thompson CW, Li Y. Adaptive evolution of the MHC class III-encoded receptor RAGE in primates and murine rodents. Int J Immunogenet 2015; 42:461-8. [DOI: 10.1111/iji.12230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 06/25/2015] [Accepted: 07/19/2015] [Indexed: 12/27/2022]
Affiliation(s)
- X. Wu
- Department of Nephrology; The Second Affiliated Hospital of Nanjing Medical University; Nanjing China
| | - J. Wu
- College of Animal Science and Technology; Sichuan Agricultural University; Yaan China
| | - C. W. Thompson
- Department of Ecology and Evolutionary Biology and Museum of Zoology; University of Michigan; Ann Arbor MI USA
| | - Y. Li
- College of Animal Science and Technology; Sichuan Agricultural University; Yaan China
| |
Collapse
|
46
|
Jensen JL, Indurthi VSK, Neau DB, Vetter SW, Colbert CL. Structural insights into the binding of the human receptor for advanced glycation end products (RAGE) by S100B, as revealed by an S100B-RAGE-derived peptide complex. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1176-83. [PMID: 25945582 PMCID: PMC4427201 DOI: 10.1107/s1399004715004216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/01/2015] [Indexed: 12/30/2022]
Abstract
S100B is a damage-associated molecular pattern protein that, when released into the extracellular milieu, triggers initiation of the inflammatory response through the receptor for advanced glycation end products (RAGE). Recognition of S100B is accomplished via the amino-terminal variable immunoglobulin domain (V-domain) of RAGE. To gain insights into this interaction, a complex between S100B and a 15-amino-acid peptide derived from residues 54-68 of the V-domain was crystallized. The X-ray crystal structure was solved to 2.55 Å resolution. There are two dimers of S100B and one peptide in the asymmetric unit. The binding interface of this peptide is compared with that found in the complex between S100B and the 12-amino-acid CapZ-derived peptide TRTK-12. This comparison reveals that although the peptides adopt completely different backbone structures, the residues buried at the interface interact with S100B in similar regions to form stable complexes. The binding affinities of S100B for the intact wild-type V-domain and a W61A V-domain mutant were determined to be 2.7 ± 0.5 and 1.3 ± 0.7 µM, respectively, using fluorescence titration experiments. These observations lead to a model whereby conformational flexibility in the RAGE receptor allows the adoption of a binding conformation for interaction with the stable hydrophobic groove on the surface of S100B.
Collapse
Affiliation(s)
- Jaime L. Jensen
- Department of Chemistry and Biochemistry, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050, USA
| | - Venkata S. K. Indurthi
- Department of Pharmaceutical Sciences, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050, USA
| | - David B. Neau
- NE-CAT, Bldg. 436E, Department of Chemistry and Chemical Biology, Cornell University, 9700 South Cass Avenue,, Argonne, IL 60439, USA
| | - Stefan W. Vetter
- Department of Pharmaceutical Sciences, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050, USA
| | - Christopher L. Colbert
- Department of Chemistry and Biochemistry, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050, USA
| |
Collapse
|
47
|
Modeling the interaction between quinolinate and the receptor for advanced glycation end products (RAGE): relevance for early neuropathological processes. PLoS One 2015; 10:e0120221. [PMID: 25757085 PMCID: PMC4354912 DOI: 10.1371/journal.pone.0120221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/20/2015] [Indexed: 01/13/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor involved in neurodegenerative and inflammatory disorders. RAGE induces cellular signaling upon binding to a variety of ligands. Evidence suggests that RAGE up-regulation is involved in quinolinate (QUIN)-induced toxicity. We investigated the QUIN-induced toxic events associated with early noxious responses, which might be linked to signaling cascades leading to cell death. The extent of early cellular damage caused by this receptor in the rat striatum was characterized by image processing methods. To document the direct interaction between QUIN and RAGE, we determined the binding constant (Kb) of RAGE (VC1 domain) with QUIN through a fluorescence assay. We modeled possible binding sites of QUIN to the VC1 domain for both rat and human RAGE. QUIN was found to bind at multiple sites to the VC1 dimer, each leading to particular mechanistic scenarios for the signaling evoked by QUIN binding, some of which directly alter RAGE oligomerization. This work contributes to the understanding of the phenomenon of RAGE-QUIN recognition, leading to the modulation of RAGE function.
Collapse
|
48
|
The receptor for advanced glycation end products influences the expression of its S100 protein ligands in melanoma tumors. Int J Biochem Cell Biol 2014; 57:54-62. [PMID: 25310905 DOI: 10.1016/j.biocel.2014.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/02/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
Recent studies have suggested that the receptor for advanced glycation end products (RAGE) participates in melanoma progression by promoting tumor growth. However, the mechanisms of RAGE activation in melanoma tumors are not clearly understood. To get deeper insights into these mechanisms, we transfected a melanoma cell line, which was established from a human melanoma primary tumor, with RAGE, and studied the effect of RAGE overexpression on cell proliferation and migration in vitro. We observed that overexpression of RAGE in these cells not only resulted in significantly increased migration rates compared to control cells, but also in decreased proliferation rates (Meghnani et al., 2014). In the present study, we compared the growth of xenograft tumors established from RAGE overexpressing WM115 cells, to that of control cells. We observed that when implanted in mice, RAGE overexpressing cells generated tumors faster than control cells. Analysis of protein tumor extracts showed increased levels of the RAGE ligands S100B, S100A2, S100A4, S100A6 and S100A10 in RAGE overexpressing tumors compared to control tumors. We show that the tumor growth was significantly reduced when the mice were treated with anti-RAGE antibodies, suggesting that RAGE, and probably several S100 proteins, were involved in tumor growth. We further demonstrate that the anti-RAGE antibody treatment significantly enhanced the efficacy of the alkylating drug dacarbazine in reducing the growth rate of RAGE overexpressing tumors.
Collapse
|
49
|
RAGE overexpression confers a metastatic phenotype to the WM115 human primary melanoma cell line. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1017-27. [DOI: 10.1016/j.bbadis.2014.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 02/16/2014] [Accepted: 02/26/2014] [Indexed: 12/19/2022]
|
50
|
Abstract
A recent paper by Sirois et al. in The Journal of Experimental Medicine reports that the receptor for advanced glycation end-products (RAGE) promotes uptake of DNA into endosomes and lowers the immune recognition threshold for the activation of Toll-like receptor 9. Two crystal structures suggested that the DNA phosphate-deoxyribose backbone is recognized by RAGE through well-defined interactions. However, the electron densities for the DNA molecules are weak enough that the presented modeling of DNA is questionable, and models only containing RAGE account for the observed diffraction data just as well as the RAGE–DNA complexes presented by the authors.
Collapse
Affiliation(s)
- Laure Yatime
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | | |
Collapse
|