1
|
Juneja P, Rashid N, Abul Qais F, Tanwar S, Sultan I, Ahmad F, Rehman SU. Alternative splicing generates a novel ferroportin isoform with a shorter C-terminal and an intact iron- and hepcidin-binding property. IUBMB Life 2024; 76:523-533. [PMID: 38348962 DOI: 10.1002/iub.2809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 08/15/2024]
Abstract
Ferroportin (FPN) is a transmembrane protein and is the only known iron exporter that helps in maintaining iron homeostasis in vertebrates. To maintain stable iron equilibrium in the body, ferroportin works in conjunction with a peptide called hepcidin. In this study, we have identified an alternatively spliced novel isoform of the human SLC40A1 gene, which encodes for the FPN protein and is found to be expressed in different tissues. The novel transcript has an alternate last exon and encodes 31-amino acid long peptide sequence that replaces 104 amino acids at C-terminal in the novel transcript. Molecular modelling and molecular dynamics (MD) simulation studies revealed key structural features of the novel isoform (FPN-N). FPN-N was predicted to have 12 transmembrane domains similar to the reported isoform (FPN), despite being much smaller in size. FPN-N was found to interact with hepcidin, a key regulator of ferroportin activity. Also, the iron-binding sites were retained in the novel isoform as revealed by the MD simulation of FPN-N in bilipid membrane. The novel isoform identified in this study may play important role in iron homeostasis. However, further studies are required to characterize the FPN-N isoform and decipher its role inside the cell.
Collapse
Affiliation(s)
- Pallavi Juneja
- Department of Biochemistry, School of Chemical and Life Sciences, New Delhi, India
| | - Naira Rashid
- Department of Biochemistry, School of Chemical and Life Sciences, New Delhi, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Supriya Tanwar
- Department of Biochemistry, School of Chemical and Life Sciences, New Delhi, India
| | - Insha Sultan
- Department of Biochemistry, School of Chemical and Life Sciences, New Delhi, India
| | - Faizan Ahmad
- Department of Biochemistry, School of Chemical and Life Sciences, New Delhi, India
| | - Sayeed Ur Rehman
- Department of Biochemistry, School of Chemical and Life Sciences, New Delhi, India
| |
Collapse
|
2
|
Li Y, Duan F, Yang S. SLC40A1-related hemochromatosis associated with a p.Y333H mutation in mainland China: a pedigree report and literature review. BMC Med Genomics 2024; 17:161. [PMID: 38886778 PMCID: PMC11181628 DOI: 10.1186/s12920-024-01929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Haemochromatosis is a genetic disease characterized by the excessive deposition of iron in various tissues and organs, eventually results in organ damage including cirrhosis, diabetes, cardiomyopathy, etc. SLC40A1-related haemochromatosis is associated with gain-of-function mutations in the SLC40A1 gene, which encodes ferroportin. While sporadic reports of this condition exist in mainland China, the understanding of the phenotype and genetic pattern associated with the SLC40A1 p.Y333H mutation remains incomplete. CASE PRESENTATION We report a pedigree with heterozygous p.Y333H mutation in Chinese Han population. The proband is a 64-year-old man complaining of persistent abnormality of liver enzyme levels for 1 year, with a history of knee joint pain, diabetes and skin pigmentation. He displayed markedly elevated serum ferritin level and transferrin saturation. Magnetic resonance imaging showed iron deposition in the liver, spleen, and pancreas, along with cirrhosis and splenomegaly. Whole exome sequencing identified a heterozygous allelic variant c.997T > C (p.Y333H). Genetic screening of family members identified four first-degree relatives and three second-degree relatives having the same mutation. Additional cases with this mutation from two published studies were included. Among the probands and screened relatives, all eight males aged over 30 y had ferritin level > 1000 µg/L, transferrin saturation > 90%. Four patients with organ damage in the present study received therapeutic phlebotomy, alleviating clinical symptoms and improving in transferrin saturation and serum ferritin. CONCLUSIONS This study reports the largest pedigree with heterozygous SLC40A1 p.Y333H mutation in the Chinese population to date. In Chinese families, males over 30 years old with hemochromatosis due to SLC40A1 p.Y333H mutation exhibit severe iron overload phenotypes.
Collapse
Affiliation(s)
- Yue Li
- Division 3, Department of Hepatology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Fangfang Duan
- Division 3, Department of Hepatology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Song Yang
- Division 3, Department of Hepatology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- Division 2, Department of Hepatology, The Fourth People's Hospital of Qinghai Province, Qinghai, 810000, China.
- Center of Hepatology, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Beijing, 100015, China.
| |
Collapse
|
3
|
Okazaki Y. Iron from the gut: the role of divalent metal transporter 1. J Clin Biochem Nutr 2024; 74:1-8. [PMID: 38292117 PMCID: PMC10822759 DOI: 10.3164/jcbn.23-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/10/2023] [Indexed: 02/01/2024] Open
Abstract
Mammalian cells contain thousands of metalloproteins and evolved systems to correctly incorporate metal cofactors into their designated sites. Among the transient metals in living cells, iron is the most abundant element that present as an iron sulfur cluster, mono- and dinuclear iron centers or heme for catalytic reactions. Iron homeostasis is tightly regulated by intestinal iron absorption in mammals owing to the lack of an iron excretive transport system, apart from superficial epithelial cell detachment and urinary outflow reabsorptive impairment. In mammals, the central site for iron absorption is in the duodenum, where the divalent metal transporter 1 is essential for iron uptake. The most notable manifestation of mutated divalent metal transporter 1 presents as iron deficiency anemia in humans. In contrast, the mutation of ferroportin, which exports iron, causes iron overload by either gain or loss of function. Furthermore, hepcidin secretion from the liver suppresses iron efflux by internalizing and degrading ferroportin; thus, the hepcidin/ferroportin axis is extensively investigated for its potential as a therapeutic target to treat iron overload. This review focuses on the divalent metal transporter 1-mediated intestinal iron uptake and hepcidin/ferroportin axis that regulate systemic iron homeostasis.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
4
|
Kamińska-Gibas T, Szczygieł J, Blasweiler A, Gajda Ł, Yilmaz E, Jurecka P, Kolek L, Ples M, Irnazarow I. New reports on iron related proteins: Molecular characterization of two ferroportin genes in common carp (Cyprinus carpio L.) and its expression pattern. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109087. [PMID: 37777096 DOI: 10.1016/j.fsi.2023.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/09/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Iron uptake, transport, and storage require the involvement of several proteins, including ferroportin (fpn), the sole known iron efflux transporter. Due to its critical function fpn has been studied, particularly in humans. Here, we characterized the ferroportin gene in common carp (Cyprinus carpio L.) and performed RNA-seq analysis to evaluate its constitutive transcription levels across different tissues. Our results indicate that C. carpio possesses two functional fpns with distinct expression patterns, highlighting the potential for functional divergence and expression differentiation among fpns in this species.
Collapse
Affiliation(s)
- Teresa Kamińska-Gibas
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Joanna Szczygieł
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Annemiek Blasweiler
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Łukasz Gajda
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Ebru Yilmaz
- Department of Aquaculture and Fisheries, Faculty of Agriculture, Aydın Adnan Menderes University, Aydin, Turkey
| | - Patrycja Jurecka
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Ludmiła Kolek
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland
| | - Marek Ples
- Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40 Str., 41-800, Zabrze, Poland
| | - Ilgiz Irnazarow
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, Zaborze, 43-520, Chybie, Poland.
| |
Collapse
|
5
|
Pasquadibisceglie A, Bonaccorsi di Patti MC, Musci G, Polticelli F. Membrane Transporters Involved in Iron Trafficking: Physiological and Pathological Aspects. Biomolecules 2023; 13:1172. [PMID: 37627237 PMCID: PMC10452680 DOI: 10.3390/biom13081172] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is an essential transition metal for its involvement in several crucial biological functions, the most notable being oxygen storage and transport. Due to its high reactivity and potential toxicity, intracellular and extracellular iron levels must be tightly regulated. This is achieved through transport systems that mediate cellular uptake and efflux both at the level of the plasma membrane and on the membranes of lysosomes, endosomes and mitochondria. Among these transport systems, the key players are ferroportin, the only known transporter mediating iron efflux from cells; DMT1, ZIP8 and ZIP14, which on the contrary, mediate iron influx into the cytoplasm, acting on the plasma membrane and on the membranes of lysosomes and endosomes; and mitoferrin, involved in iron transport into the mitochondria for heme synthesis and Fe-S cluster assembly. The focus of this review is to provide an updated view of the physiological role of these membrane proteins and of the pathologies that arise from defects of these transport systems.
Collapse
Affiliation(s)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, 00146 Rome, Italy;
- National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|
6
|
Amadei M, Niro A, Fullone MR, Miele R, Polticelli F, Musci G, Bonaccorsi di Patti MC. Genetic Incorporation of Dansylalanine in Human Ferroportin to Probe the Alternating Access Mechanism of Iron Transport. Int J Mol Sci 2023; 24:11919. [PMID: 37569293 PMCID: PMC10418311 DOI: 10.3390/ijms241511919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Ferroportin (Fpn), a member of the major facilitator superfamily (MFS) of transporters, is the only known iron exporter found in mammals and plays a crucial role in regulating cellular and systemic iron levels. MFSs take on different conformational states during the transport cycle: inward open, occluded, and outward open. However, the precise molecular mechanism of iron translocation by Fpn remains unclear, with conflicting data proposing different models. In this work, amber codon suppression was employed to introduce dansylalanine (DA), an environment-sensitive fluorescent amino acid, into specific positions of human Fpn (V46, Y54, V161, Y331) predicted to undergo major conformational changes during metal translocation. The results obtained indicate that different mutants exhibit distinct fluorescence spectra depending on the position of the fluorophore within the Fpn structure, suggesting that different local environments can be probed. Cobalt titration experiments revealed fluorescence quenching and blue-shifts of λmax in Y54DA, V161DA, and Y331DA, while V46DA exhibited increased fluorescence and blue-shift of λmax. These observations suggest metal-induced conformational transitions, interpreted in terms of shifts from an outward-open to an occluded conformation. Our study highlights the potential of genetically incorporating DA into Fpn, enabling the investigation of conformational changes using fluorescence spectroscopy. This approach holds great promise for the study of the alternating access mechanism of Fpn and advancing our understanding of the molecular basis of iron transport.
Collapse
Affiliation(s)
- Matteo Amadei
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (M.R.F.); (R.M.)
| | - Antonella Niro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.N.); (G.M.)
| | - Maria Rosaria Fullone
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (M.R.F.); (R.M.)
| | - Rossella Miele
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Rome, 00185 Rome, Italy; (M.A.); (M.R.F.); (R.M.)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.N.); (G.M.)
| | | |
Collapse
|
7
|
Azemin WA, Alias N, Ali AM, Shamsir MS. Structural and functional characterisation of HepTH1-5 peptide as a potential hepcidin replacement. J Biomol Struct Dyn 2023; 41:681-704. [PMID: 34870559 DOI: 10.1080/07391102.2021.2011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepcidin is a principal regulator of iron homeostasis and its dysregulation has been recognised as a causative factor in cancers and iron disorders. The strategy of manipulating the presence of hepcidin peptide has been used for cancer treatment. However, this has demonstrated poor efficiency and has been short-lived in patients. Many studies reported using minihepcidin therapy as an alternative way to treat hepcidin dysregulation, but this was only applied to non-cancer patients. Highly conserved fish hepcidin protein, HepTH1-5, was investigated to determine its potential use in developing a hepcidin replacement for human hepcidin (Hepc25) and as a therapeutic agent by targeting the tumour suppressor protein, p53, through structure-function analysis. The authors found that HepTH1-5 is stably bound to ferroportin, compared to Hepc25, by triggering the ferroportin internalisation via Lys42 and Lys270 ubiquitination, in a similar manner to the Hepc25 activity. Moreover, the residues Ile24 and Gly24, along with copper and zinc ligands, interacted with similar residues, Lys24 and Asp1 of Hepc25, respectively, showing that those molecules are crucial to the hepcidin replacement strategy. HepTH1-5 interacts with p53 and activates its function through phosphorylation. This finding shows that HepTH1-5 might be involved in the apoptosis signalling pathway upon a DNA damage response. This study will be very helpful for understanding the mechanism of the hepcidin replacement and providing insights into the HepTH1-5 peptide as a new target for hepcidin and cancer therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia.,Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nadiawati Alias
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Abdul Manaf Ali
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Johor, Malaysia
| |
Collapse
|
8
|
Kim LJ, Tsuyuki KM, Hu F, Park EY, Zhang J, Iraheta JG, Chia JC, Huang R, Tucker AE, Clyne M, Castellano C, Kim A, Chung DD, DaVeiga CT, Parsons EM, Vatamaniuk OK, Jeong J. Ferroportin 3 is a dual-targeted mitochondrial/chloroplast iron exporter necessary for iron homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:215-236. [PMID: 33884692 PMCID: PMC8316378 DOI: 10.1111/tpj.15286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 05/26/2023]
Abstract
Mitochondria and chloroplasts are organelles with high iron demand that are particularly susceptible to iron-induced oxidative stress. Despite the necessity of strict iron regulation in these organelles, much remains unknown about mitochondrial and chloroplast iron transport in plants. Here, we propose that Arabidopsis ferroportin 3 (FPN3) is an iron exporter that is dual-targeted to mitochondria and chloroplasts. FPN3 is expressed in shoots, regardless of iron conditions, but its transcripts accumulate under iron deficiency in roots. fpn3 mutants cannot grow as well as the wild type under iron-deficient conditions and their shoot iron levels are lower compared with the wild type. Analyses of iron homeostasis gene expression in fpn3 mutants and inductively coupled plasma mass spectrometry (ICP-MS) measurements show that iron levels in the mitochondria and chloroplasts are increased relative to the wild type, consistent with the proposed role of FPN3 as a mitochondrial/plastid iron exporter. In iron-deficient fpn3 mutants, abnormal mitochondrial ultrastructure was observed, whereas chloroplast ultrastructure was not affected, implying that FPN3 plays a critical role in the mitochondria. Overall, our study suggests that FPN3 is essential for optimal iron homeostasis.
Collapse
Affiliation(s)
- Leah J. Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Fengling Hu
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Emily Y. Park
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Jingwen Zhang
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Rong Huang
- Cornell High Energy Synchrotron Source, Ithaca, New York 14853
| | - Avery E. Tucker
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Madeline Clyne
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Claire Castellano
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Angie Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Daniel D. Chung
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | | | - Olena K. Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| |
Collapse
|
9
|
Insights into the Role of the Discontinuous TM7 Helix of Human Ferroportin through the Prism of the Asp325 Residue. Int J Mol Sci 2021; 22:ijms22126412. [PMID: 34203920 PMCID: PMC8232785 DOI: 10.3390/ijms22126412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
The negatively charged Asp325 residue has proved to be essential for iron export by human (HsFPN1) and primate Philippine tarsier (TsFpn) ferroportin, but its exact role during the iron transport cycle is still to be elucidated. It has been posited as being functionally equivalent to the metal ion-coordinating residue His261 in the C-lobe of the bacterial homolog BbFpn, but the two residues arise in different sequence motifs of the discontinuous TM7 transmembrane helix. Furthermore, BbFpn is not subject to extracellular regulation, contrary to its mammalian orthologues which are downregulated by hepcidin. To get further insight into the molecular mechanisms related to iron export in mammals in which Asp325 is involved, we investigated the behavior of the Asp325Ala, Asp325His, and Asp325Asn mutants in transiently transfected HEK293T cells, and performed a comparative structural analysis. Our biochemical studies clearly distinguished between the Asp325Ala and Asp325His mutants, which result in a dramatic decrease in plasma membrane expression of FPN1, and the Asp325Asn mutant, which alters iron egress without affecting protein localization. Analysis of the 3D structures of HsFPN1 and TsFpn in the outward-facing (OF) state indicated that Asp325 does not interact directly with metal ions but is involved in the modulation of Cys326 metal-binding capacity. Moreover, models of the architecture of mammalian proteins in the inward-facing (IF) state suggested that Asp325 may form an inter-lobe salt-bridge with Arg40 (TM1) when not interacting with Cys326. These findings allow to suggest that Asp325 may be important for fine-tuning iron recognition in the C-lobe, as well as for local structural changes during the IF-to-OF transition at the extracellular gate level. Inability to form a salt-bridge between TM1 and TM7b during iron translocation could lead to protein instability, as shown by the Asp325Ala and Asp325His mutants.
Collapse
|
10
|
Effect of hepcidin antagonists on anemia during inflammatory disorders. Pharmacol Ther 2021; 226:107877. [PMID: 33895185 DOI: 10.1016/j.pharmthera.2021.107877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Iron is an essential element for the mammalian body however, its homeostasis must be regulated accurately for appropriate physiological functioning. Alterations in physiological iron levels can lead to moderate to severe iron disorders like chronic and acute iron deficiency (anemia) or iron overload. Hepcidin plays an important role in regulating homeostasis between circulating iron and stored iron in the cells as well as the absorption of dietary iron in the intestine. Inflammatory disorders restrict iron absorption from food due to increased circulating levels of hepcidin. Increased production of hepcidin causes ubiquitination of ferroportin (FPN) leading to its degradation, thereby retaining iron in the spleen, duodenal enterocytes, macrophages, and hepatocytes. Hepcidin inhibitors and antagonists play a consequential role to ameliorate inflammation-associated anemia. Many natural and synthesized compounds, able to reduce hepcidin expression during inflammation have been identified in recent years. Few of which are currently at various phases of clinical trial. This article comprises a comprehensive review of therapeutic approaches for the efficient treatment of anemia associated with inflammation. Many strategies have been developed targeting the hepcidin-FPN axis to rectify iron disorders. Hepcidin modulation with siRNAs, antibodies, chemical compounds, and plant extracts provides new insights for developing advanced therapeutics for iron-related disorders. Hepcidin antagonist's treatment has a high potential to improve iron status in patients with iron disorders, but their clinical success needs further recognition along with the identification and application of new therapeutic approaches.
Collapse
|
11
|
Rishi G, Subramaniam VN. Biology of the iron efflux transporter, ferroportin. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:1-16. [PMID: 33485480 DOI: 10.1016/bs.apcsb.2020.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Iron, the most common metal in the earth, is also an essential component for almost all living organisms. While these organisms require iron for many biological processes, too much or too little iron itself poses many issues; this is most easily recognized in human beings. The control of body iron levels is thus an important metabolic process which is regulated essentially by controlling the expression, activity and levels of the iron transporter ferroportin. Ferroportin is the only known iron exporter. The function and activity of ferroportin is influenced by its interaction with the iron-regulatory peptide hepcidin, which itself is regulated by many factors. Here we review the current state of understanding of the mechanisms that regulate ferroportin and its function.
Collapse
Affiliation(s)
- Gautam Rishi
- Hepatogenomics Research Group, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - V Nathan Subramaniam
- Hepatogenomics Research Group, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
12
|
The role of cellular iron deficiency in controlling iron export. Biochim Biophys Acta Gen Subj 2020; 1865:129829. [PMID: 33340587 DOI: 10.1016/j.bbagen.2020.129829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Iron export via the transport protein ferroportin (Fpn) plays a critical role in the regulation of dietary iron absorption and iron recycling in macrophages. Fpn plasma membrane expression is controlled by the hepatic iron-regulated hormone hepcidin in response to high iron availability and inflammation. Hepcidin binds to the central cavity of the Fpn transporter to block iron export either directly or by inducing Fpn internalization and lysosomal degradation. Here, we investigated whether iron deficiency affects Fpn protein turnover. METHODS We ectopically expressed Fpn in HeLa cells and used cycloheximide chase experiments to study basal and hepcidin-induced Fpn degradation under extracellular and intracellular iron deficiency. CONCLUSIONS/GENERAL SIGNIFICANCE We show that iron deficiency does not affect basal Fpn turnover but causes a significant delay in hepcidin-induced degradation when cytosolic iron levels are low. These data have important mechanistic implications supporting the hypothesis that iron export is required for efficient targeting of Fpn by hepcidin. Additionally, we show that Fpn degradation is not involved in protecting cells from intracellular iron deficiency.
Collapse
|
13
|
Le Tertre M, Ka C, Raud L, Berlivet I, Gourlaouen I, Richard G, Uguen K, Chen JM, Férec C, Fichou Y, Le Gac G. Splicing analysis of SLC40A1 missense variations and contribution to hemochromatosis type 4 phenotypes. Blood Cells Mol Dis 2020; 87:102527. [PMID: 33341511 DOI: 10.1016/j.bcmd.2020.102527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/09/2023]
Abstract
Hemochromatosis type 4, or ferroportin disease, is considered as the second leading cause of primary iron overload after HFE-related hemochromatosis. The disease, which is predominantly associated with missense variations in the SLC40A1 gene, is characterized by wide clinical heterogeneity. We tested the possibility that some of the reported missense mutations, despite their positions within exons, cause splicing defects. Fifty-eight genetic variants were selected from the literature based on two criteria: a precise description of the nucleotide change and individual evidence of iron overload. The selected variants were investigated by different in silico prediction tools and prioritized for midigene splicing assays. Of the 15 variations tested in vitro, only two were associated with splicing changes. We confirm that the c.1402G>A transition (p.Gly468Ser) disrupts the exon 7 donor site, leading to the use of an exonic cryptic splicing site and the generation of a truncated reading frame. We observed, for the first time, that the p.Gly468Ser substitution has no effect on the ferroportin iron export function. We demonstrate alternative splicing of exon 5 in different cell lines and show that the c.430A>G (p.Asn144Asp) variant promotes exon 5 inclusion. This could be part of a gain-of-function mechanism. We conclude that splicing mutations rarely contribute to hemochromatosis type 4 phenotypes. An in-depth investigation of exon 5 auxiliary splicing sequences may help to elucidate the mechanism by which splicing regulatory proteins regulate the production of the full length SLC40A1 transcript and to clarify its physiological importance.
Collapse
Affiliation(s)
- Marlène Le Tertre
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
| | - Chandran Ka
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France
| | - Loann Raud
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; Association Gaétan Saleün, F-29200, France
| | | | - Isabelle Gourlaouen
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France
| | | | - Kévin Uguen
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France; Association Gaétan Saleün, F-29200, France
| | - Yann Fichou
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France
| | - Gérald Le Gac
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France.
| |
Collapse
|
14
|
Krzywoszyńska K, Witkowska D, Świątek-Kozłowska J, Szebesczyk A, Kozłowski H. General Aspects of Metal Ions as Signaling Agents in Health and Disease. Biomolecules 2020; 10:biom10101417. [PMID: 33036384 PMCID: PMC7600656 DOI: 10.3390/biom10101417] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the current knowledge on the involvement of metal ions in signaling processes within the cell, in both physiological and pathological conditions. The first section is devoted to the recent discoveries on magnesium and calcium-dependent signal transduction-the most recognized signaling agents among metals. The following sections then describe signaling pathways where zinc, copper, and iron play a key role. There are many systems in which changes in intra- and extra-cellular zinc and copper concentrations have been linked to important downstream events, especially in nervous signal transduction. Iron signaling is mostly related with its homeostasis. However, it is also involved in a recently discovered type of programmed cell death, ferroptosis. The important differences in metal ion signaling, and its disease-leading alterations, are also discussed.
Collapse
Affiliation(s)
- Karolina Krzywoszyńska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Correspondence: (K.K.); (D.W.); Tel.: +48-77-44-23-549 (K.K); +48-77-44-23-548 (D.W.)
| | - Jolanta Świątek-Kozłowska
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Agnieszka Szebesczyk
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
| | - Henryk Kozłowski
- Institute of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland; (J.Ś.-K.); (A.S.); (H.K.)
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50-383 Wrocław, Poland
| |
Collapse
|
15
|
Tortosa V, Bonaccorsi di Patti MC, Iacovelli F, Pasquadibisceglie A, Falconi M, Musci G, Polticelli F. Dynamical Behavior of the Human Ferroportin Homologue from Bdellovibrio bacteriovorus: Insight into the Ligand Recognition Mechanism. Int J Mol Sci 2020; 21:E6785. [PMID: 32947891 PMCID: PMC7555787 DOI: 10.3390/ijms21186785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023] Open
Abstract
Members of the major facilitator superfamily of transporters (MFS) play an essential role in many physiological processes such as development, neurotransmission, and signaling. Aberrant functions of MFS proteins are associated with several diseases, including cancer, schizophrenia, epilepsy, amyotrophic lateral sclerosis and Alzheimer's disease. MFS transporters are also involved in multidrug resistance in bacteria and fungi. The structures of most MFS members, especially those of members with significant physiological relevance, are yet to be solved. The lack of structural and functional information impedes our detailed understanding, and thus the pharmacological targeting, of these transporters. To improve our knowledge on the mechanistic principles governing the function of MSF members, molecular dynamics (MD) simulations were performed on the inward-facing and outward-facing crystal structures of the human ferroportin homologue from the Gram-negative bacterium Bdellovibrio bacteriovorus (BdFpn). Several simulations with an excess of iron ions were also performed to explore the relationship between the protein's dynamics and the ligand recognition mechanism. The results reinforce the existence of the alternating-access mechanism already described for other MFS members. In addition, the reorganization of salt bridges, some of which are conserved in several MFS members, appears to be a key molecular event facilitating the conformational change of the transporter.
Collapse
Affiliation(s)
- Valentina Tortosa
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (V.T.); (A.P.)
| | | | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.I.); (M.F.)
| | | | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.I.); (M.F.)
| | - Giovanni Musci
- Department Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; (V.T.); (A.P.)
- National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|
16
|
Billesbølle CB, Azumaya CM, Kretsch RC, Powers AS, Gonen S, Schneider S, Arvedson T, Dror RO, Cheng Y, Manglik A. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature 2020; 586:807-811. [PMID: 32814342 PMCID: PMC7906036 DOI: 10.1038/s41586-020-2668-z] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/15/2020] [Indexed: 01/01/2023]
Abstract
The serum iron level in humans is tightly controlled by the action of the hormone hepcidin on the iron efflux transporter ferroportin. Hepcidin regulates iron absorption and recycling by inducing ferroportin internalization and degradation1. Aberrant ferroportin activity can lead to diseases of iron overload, like hemochromatosis, or iron limitation anemias2. Here, we determined cryogenic electron microscopy (cryo-EM) structures of ferroportin in lipid nanodiscs, both in the apo state and in complex with cobalt, an iron mimetic, and hepcidin. These structures and accompanying molecular dynamics simulations identify two metal binding sites within the N- and C-domains of ferroportin. Hepcidin binds ferroportin in an outward-open conformation and completely occludes the iron efflux pathway to inhibit transport. The carboxy-terminus of hepcidin directly contacts the divalent metal in the ferroportin C-domain. We further show that hepcidin binding to ferroportin is coupled to iron binding, with an 80-fold increase in hepcidin affinity in the presence of iron. These results suggest a model for hepcidin regulation of ferroportin, where only iron loaded ferroportin molecules are targeted for degradation. More broadly, our structural and functional insights are likely to enable more targeted manipulation of the hepcidin-ferroportin axis in disorders of iron homeostasis.
Collapse
Affiliation(s)
- Christian B Billesbølle
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Caleigh M Azumaya
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Rachael C Kretsch
- Department of Computer Science, Stanford University, Stanford, CA, USA.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.,Biophysics Program, Stanford University, Stanford, CA, USA
| | - Alexander S Powers
- Department of Computer Science, Stanford University, Stanford, CA, USA.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Shane Gonen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Biological Sciences III, Irvine, CA, USA
| | - Simon Schneider
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt am Main, Germany
| | - Tara Arvedson
- Department of Oncology Research, Amgen Inc., South San Francisco, CA, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.,Biophysics Program, Stanford University, Stanford, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA. .,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA. .,Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Helgudottir SS, Routhe LJ, Burkhart A, Jønsson K, Pedersen IS, Lichota J, Moos T. Epigenetic Regulation of Ferroportin in Primary Cultures of the Rat Blood-Brain Barrier. Mol Neurobiol 2020; 57:3526-3539. [PMID: 32542592 DOI: 10.1007/s12035-020-01953-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
Ferroportin plays an essential role for iron transport through the blood-brain barrier (BBB), which is formed by brain capillary endothelial cells (BCECs). To maintain the integrity of the BBB, the BCECs gain support from pericytes and astrocytes, which together with neurons form the neurovascular unit (NVU). The objectives of the present study were to investigate ferroportin expression in primary cells of the NVU and to determine if ferroportin mRNA (Fpn) expression is epigenetically regulated. Primary rat BCECs, pericytes, astrocytes, and neurons all expressed ferroportin mRNA at varying levels, with BCECs exhibiting the highest expression of Fpn, peaking when co-cultured but examined separately from astrocytes. Conversely, Fpn expression was lowest in isolated astrocytes, which correlated with high DNA methylation in their Slc40a1 promoter. To provide further evidence for epigenetic regulation, mono-cultured BCECs, pericytes, and astrocytes were treated with the histone deacetylase inhibitors valproic acid (VPA) and sodium butyrate (SB), which significantly increased Fpn and ferroportin protein in BCECs and pericytes. Furthermore, 59Fe export from BCECs was elevated after treatment with VPA. In conclusion, we present first time evidence stating that Fpn expression is epigenetically regulated in BCECs, which may have implications for pharmacological induction of iron transport through the BBB.
Collapse
Affiliation(s)
- Steinunn Sara Helgudottir
- Neurobiology Research and Drug Delivery (NRD) Department of Health Science and Technology, Aalborg University, Fr. Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Lisa J Routhe
- Neurobiology Research and Drug Delivery (NRD) Department of Health Science and Technology, Aalborg University, Fr. Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Annette Burkhart
- Neurobiology Research and Drug Delivery (NRD) Department of Health Science and Technology, Aalborg University, Fr. Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Katrine Jønsson
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Copenhagen, Denmark
| | - Inge S Pedersen
- Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark.,Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Jacek Lichota
- Laboratory of Molecular Pharmacology, Department of Health Science and Technology, Aalborg University, Fr. Bajers Vej 7E, 9220, Aalborg, Denmark.
| | - Torben Moos
- Neurobiology Research and Drug Delivery (NRD) Department of Health Science and Technology, Aalborg University, Fr. Bajers Vej 3B, 9220, Aalborg, Denmark.
| |
Collapse
|
18
|
Manolova V, Nyffenegger N, Flace A, Altermatt P, Varol A, Doucerain C, Sundstrom H, Dürrenberger F. Oral ferroportin inhibitor ameliorates ineffective erythropoiesis in a model of β-thalassemia. J Clin Invest 2019; 130:491-506. [PMID: 31638596 PMCID: PMC6934209 DOI: 10.1172/jci129382] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023] Open
Abstract
β-Thalassemia is a genetic anemia caused by partial or complete loss of β-globin synthesis, leading to ineffective erythropoiesis and RBCs with a short life span. Currently, there is no efficacious oral medication modifying anemia for patients with β-thalassemia. The inappropriately low levels of the iron regulatory hormone hepcidin enable excessive iron absorption by ferroportin, the unique cellular iron exporter in mammals, leading to organ iron overload and associated morbidities. Correction of unbalanced iron absorption and recycling by induction of hepcidin synthesis or treatment with hepcidin mimetics ameliorates β-thalassemia. However, hepcidin modulation or replacement strategies currently in clinical development all require parenteral drug administration. We identified oral ferroportin inhibitors by screening a library of small molecular weight compounds for modulators of ferroportin internalization. Restricting iron availability by VIT-2763, the first clinical stage oral ferroportin inhibitor, ameliorated anemia and the dysregulated iron homeostasis in the Hbbth3/+ mouse model of β-thalassemia intermedia. VIT-2763 not only improved erythropoiesis but also corrected the proportions of myeloid precursors in spleens of Hbbth3/+ mice. VIT-2763 is currently being developed as an oral drug targeting ferroportin for the treatment of β-thalassemia.
Collapse
|
19
|
Guellec J, Elbahnsi A, Le Tertre M, Uguen K, Gourlaouen I, Férec C, Ka C, Callebaut I, Le Gac G. Molecular model of the ferroportin intracellular gate and implications for the human iron transport cycle and hemochromatosis type 4A. FASEB J 2019; 33:14625-14635. [PMID: 31690120 DOI: 10.1096/fj.201901857r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ferroportin 1 (FPN1) is a major facilitator superfamily transporter that is essential for proper maintenance of human iron homeostasis at the systemic and cellular level. FPN1 dysfunction leads to the progressive accumulation of iron in reticuloendothelial cells, causing hemochromatosis type 4A (or ferroportin disease), an autosomal dominant disorder that displays large phenotypic heterogeneity. Although crystal structures have unveiled the outward- and inward-facing conformations of the bacterial homolog Bdellovibrio bacteriovorus Fpn (or Bd2019) and calcium has recently been identified as an essential cofactor, our molecular understanding of the iron transport mechanism remains incomplete. Here, we used a combination of molecular modeling, molecular dynamics simulations, and Ala site-directed mutagenesis, followed by complementary in vitro functional analyses, to explore the structural architecture of the human FPN1 intracellular gate. We reveal an interdomain network that involves 5 key amino acids and is likely very important for stability of the iron exporter facing the extracellular milieu. We also identify inter- and intradomain interactions that rely on the 2 Asp84 and Asn174 critical residues and do not exist in the bacterial homolog. These interactions are thought to play an important role in the modulation of conformational changes during the transport cycle. We interpret these results in the context of hemochromatosis type 4A, reinforcing the idea that different categories of loss-of-function mutations exist. Our findings provide an unprecedented view of the human FPN1 outward-facing structure and the particular function of the so-called "gating residues" in the mechanism of iron export.-Guellec, J., Elbahnsi, A., Le Tertre, M., Uguen, K., Gourlaouen, I., Férec, C., Ka, C., Callebaut, I., Le Gac, G. Molecular model of the ferroportin intracellular gate and implications for the human iron transport cycle and hemochromatosis type 4A.
Collapse
Affiliation(s)
- Julie Guellec
- INSERM Unité Mixte de Recherche (UMR) 1078, Etablissement Français du Sang-Bretagne, Institut Brestois Santé-Agro-Matière, Université Bretagne Loire-Université de Brest, Brest, France.,Association Gaetan Saleun, Brest, France
| | - Ahmad Elbahnsi
- Muséum National d'Histoire Naturelle, UMR Centre National de la Recherche Scientifique (CNRS) 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Paris, France
| | - Marlène Le Tertre
- INSERM Unité Mixte de Recherche (UMR) 1078, Etablissement Français du Sang-Bretagne, Institut Brestois Santé-Agro-Matière, Université Bretagne Loire-Université de Brest, Brest, France.,Service de Génétique Médicale, Centre Hospitalier Régional et Universitaire (CHRU) de Brest, Hôpital Morvan, Brest, France; and
| | - Kévin Uguen
- INSERM Unité Mixte de Recherche (UMR) 1078, Etablissement Français du Sang-Bretagne, Institut Brestois Santé-Agro-Matière, Université Bretagne Loire-Université de Brest, Brest, France.,Service de Génétique Médicale, Centre Hospitalier Régional et Universitaire (CHRU) de Brest, Hôpital Morvan, Brest, France; and
| | - Isabelle Gourlaouen
- INSERM Unité Mixte de Recherche (UMR) 1078, Etablissement Français du Sang-Bretagne, Institut Brestois Santé-Agro-Matière, Université Bretagne Loire-Université de Brest, Brest, France
| | - Claude Férec
- INSERM Unité Mixte de Recherche (UMR) 1078, Etablissement Français du Sang-Bretagne, Institut Brestois Santé-Agro-Matière, Université Bretagne Loire-Université de Brest, Brest, France.,Association Gaetan Saleun, Brest, France.,Service de Génétique Médicale, Centre Hospitalier Régional et Universitaire (CHRU) de Brest, Hôpital Morvan, Brest, France; and
| | - Chandran Ka
- INSERM Unité Mixte de Recherche (UMR) 1078, Etablissement Français du Sang-Bretagne, Institut Brestois Santé-Agro-Matière, Université Bretagne Loire-Université de Brest, Brest, France.,Service de Génétique Médicale, Centre Hospitalier Régional et Universitaire (CHRU) de Brest, Hôpital Morvan, Brest, France; and.,Laboratory of Excellence Laboratory of Excellence (GR-Ex), Paris, France
| | - Isabelle Callebaut
- Muséum National d'Histoire Naturelle, UMR Centre National de la Recherche Scientifique (CNRS) 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Paris, France
| | - Gérald Le Gac
- INSERM Unité Mixte de Recherche (UMR) 1078, Etablissement Français du Sang-Bretagne, Institut Brestois Santé-Agro-Matière, Université Bretagne Loire-Université de Brest, Brest, France.,Service de Génétique Médicale, Centre Hospitalier Régional et Universitaire (CHRU) de Brest, Hôpital Morvan, Brest, France; and.,Laboratory of Excellence Laboratory of Excellence (GR-Ex), Paris, France
| |
Collapse
|
20
|
Vlasveld LT, Swinkels DW. Loss-of-function ferroportin disease: novel mechanistic insights and unanswered questions. Haematologica 2019; 103:1753-1755. [PMID: 30381414 DOI: 10.3324/haematol.2018.203315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- L Tom Vlasveld
- Department of Internal Medicine, Haaglanden Medical Center, Location Bronovo, The Hague
| | - Dorine W Swinkels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
21
|
Vlasveld LT, Janssen R, Bardou-Jacquet E, Venselaar H, Hamdi-Roze H, Drakesmith H, Swinkels DW. Twenty Years of Ferroportin Disease: A Review or An Update of Published Clinical, Biochemical, Molecular, and Functional Features. Pharmaceuticals (Basel) 2019; 12:ph12030132. [PMID: 31505869 PMCID: PMC6789780 DOI: 10.3390/ph12030132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022] Open
Abstract
Iron overloading disorders linked to mutations in ferroportin have diverse phenotypes in vivo, and the effects of mutations on ferroportin in vitro range from loss of function (LOF) to gain of function (GOF) with hepcidin resistance. We reviewed 359 patients with 60 ferroportin variants. Overall, macrophage iron overload and low/normal transferrin saturation (TSAT) segregated with mutations that caused LOF, while GOF mutations were linked to high TSAT and parenchymal iron accumulation. However, the pathogenicity of individual variants is difficult to establish due to the lack of sufficiently reported data, large inter-assay variability of functional studies, and the uncertainty associated with the performance of available in silico prediction models. Since the phenotypes of hepcidin-resistant GOF variants are indistinguishable from the other types of hereditary hemochromatosis (HH), these variants may be categorized as ferroportin-associated HH, while the entity ferroportin disease may be confined to patients with LOF variants. To further improve the management of ferroportin disease, we advocate for a global registry, with standardized clinical analysis and validation of the functional tests preferably performed in human-derived enterocytic and macrophagic cell lines. Moreover, studies are warranted to unravel the definite structure of ferroportin and the indispensable residues that are essential for functionality.
Collapse
Affiliation(s)
- L Tom Vlasveld
- Department of Internal Medicine, Haaglanden MC-Bronovo, 2597AX The Hague, The Netherlands
| | - Roel Janssen
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Edouard Bardou-Jacquet
- Liver Diseases Department, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital Pontchaillou, 35033 Rennes, France
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud, University Medical Center, P.O. Box 9191, 6500 HB Nijmegen, The Netherlands
| | - Houda Hamdi-Roze
- Molecular Genetics Department, French Reference Centre for Rare Iron Overload Diseases of Genetic Origin, University Hospital Pontchaillou, 35033 Rennes, France
| | - Hal Drakesmith
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, UK
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Helgudottir SS, Lichota J, Burkhart A, Moos T. Hepcidin Mediates Transcriptional Changes in Ferroportin mRNA in Differentiated Neuronal-Like PC12 Cells Subjected to Iron Challenge. Mol Neurobiol 2018; 56:2362-2374. [DOI: 10.1007/s12035-018-1241-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/11/2018] [Indexed: 01/01/2023]
|
23
|
Ka C, Guellec J, Pepermans X, Kannengiesser C, Ged C, Wuyts W, Cassiman D, de Ledinghen V, Varet B, de Kerguenec C, Oudin C, Gourlaouen I, Lefebvre T, Férec C, Callebaut I, Le Gac G. The SLC40A1 R178Q mutation is a recurrent cause of hemochromatosis and is associated with a novel pathogenic mechanism. Haematologica 2018; 103:1796-1805. [PMID: 30002125 PMCID: PMC6278975 DOI: 10.3324/haematol.2018.189845] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/06/2018] [Indexed: 12/29/2022] Open
Abstract
Hemochromatosis type 4 is one of the most common causes of primary iron overload, after HFE-related hemochromatosis. It is an autosomal dominant disorder, primarily due to missense mutations in SLC40A1. This gene encodes ferroportin 1 (FPN1), which is the sole iron export protein reported in mammals. Not all heterozygous missense mutations in SLC40A1 are disease-causing. Due to phenocopies and an increased demand for genetic testing, rare SLC40A1 variations are fortuitously observed in patients with a secondary cause of hyperferritinemia. Structure/function analysis is the most effective way of establishing causality when clinical and segregation data are lacking. It can also provide important insights into the mechanism of iron egress and FPN1 regulation by hepcidin. The present study aimed to determine the pathogenicity of the previously reported p.Arg178Gln variant. We present the biological, clinical, histological and radiological findings of 22 patients from six independent families of French, Belgian or Iraqi decent. Despite phenotypic variability, all patients with p.Arg178Gln had elevated serum ferritin concentrations and normal to low transferrin saturation levels. In vitro experiments demonstrated that the p.Arg178Gln mutant reduces the ability of FPN1 to export iron without causing protein mislocalization. Based on a comparative model of the 3D structure of human FPN1 in an outward facing conformation, we argue that p.Arg178 is part of an interaction network modulating the conformational changes required for iron transport. We conclude that p.Arg178Gln represents a new category of loss-of-function mutations and that the study of “gating residues” is necessary in order to fully understand the action mechanism of FPN1.
Collapse
Affiliation(s)
- Chandran Ka
- UMR1078, INSERM, Université Bretagne Loire - Université de Bretagne Occidentale, Etablissement Français du Sang - Bretagne, Institut Brestois Santé-Agro-Matière, Brest, France.,Laboratoire de Génétique Moléculaire et Histocompatibilité, CHRU de Brest, Hôpital Morvan, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Julie Guellec
- UMR1078, INSERM, Université Bretagne Loire - Université de Bretagne Occidentale, Etablissement Français du Sang - Bretagne, Institut Brestois Santé-Agro-Matière, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France.,Association Gaetan Saleun, Brest, France
| | - Xavier Pepermans
- Center for Human Genetics, University Hospital of St-Luc, Brussels, Belgium
| | - Caroline Kannengiesser
- Laboratory of Excellence GR-Ex, Paris, France.,UMR1149, INSERM, Centre de Recherche sur l'Inflammation, Université Paris Diderot, AP-HP, Hôpital Bichat, Département de Génétique, France.,On behalf of the French National Network for the Molecular Diagnosis of Inherited Iron Overload Disorders (J. Rochette, E. Cadet, C. Kannengiesser, H. Puy, C. Ged, H. de Verneuil, G. Le Gac, C. Férec, S. Pissard, V. Gérolami), Brest, France
| | - Cécile Ged
- On behalf of the French National Network for the Molecular Diagnosis of Inherited Iron Overload Disorders (J. Rochette, E. Cadet, C. Kannengiesser, H. Puy, C. Ged, H. de Verneuil, G. Le Gac, C. Férec, S. Pissard, V. Gérolami), Brest, France.,INSERM U1035, BMGIC, CHU de Bordeaux, Laboratoire de Biochimie et Biologie Moléculaire, France
| | - Wim Wuyts
- Department of Medical Genetics, University and University Hospital of Antwerp, Edegem, Belgium
| | - David Cassiman
- Department of Gastroenterology-Hepatology and Metabolic Center, University Hospital of Leuven, Belgium
| | - Victor de Ledinghen
- Department of Gastroenterology and Digestive Oncology, University Hospital of Bordeaux, France
| | - Bruno Varet
- Université Paris Descartes et AP-HP, Hôpital Necker, Service d'Hématologie, France
| | | | - Claire Oudin
- UMR1149, INSERM, Centre de Recherche sur l'Inflammation, Université Paris Diderot, AP-HP, Hôpital Bichat, Département de Génétique, France
| | - Isabelle Gourlaouen
- UMR1078, INSERM, Université Bretagne Loire - Université de Bretagne Occidentale, Etablissement Français du Sang - Bretagne, Institut Brestois Santé-Agro-Matière, Brest, France.,Laboratory of Excellence GR-Ex, Paris, France
| | - Thibaud Lefebvre
- UMR1149, INSERM, Centre de Recherche sur l'Inflammation, Université Paris Diderot, AP-HP, Hôpital Bichat, Département de Génétique, France
| | - Claude Férec
- UMR1078, INSERM, Université Bretagne Loire - Université de Bretagne Occidentale, Etablissement Français du Sang - Bretagne, Institut Brestois Santé-Agro-Matière, Brest, France.,Laboratoire de Génétique Moléculaire et Histocompatibilité, CHRU de Brest, Hôpital Morvan, France.,On behalf of the French National Network for the Molecular Diagnosis of Inherited Iron Overload Disorders (J. Rochette, E. Cadet, C. Kannengiesser, H. Puy, C. Ged, H. de Verneuil, G. Le Gac, C. Férec, S. Pissard, V. Gérolami), Brest, France
| | - Isabelle Callebaut
- UMR7590, CNRS, Sorbonne Universités, Université Pierre et Marie Curie-Paris, France
| | - Gérald Le Gac
- UMR1078, INSERM, Université Bretagne Loire - Université de Bretagne Occidentale, Etablissement Français du Sang - Bretagne, Institut Brestois Santé-Agro-Matière, Brest, France .,Laboratoire de Génétique Moléculaire et Histocompatibilité, CHRU de Brest, Hôpital Morvan, France.,Laboratory of Excellence GR-Ex, Paris, France.,On behalf of the French National Network for the Molecular Diagnosis of Inherited Iron Overload Disorders (J. Rochette, E. Cadet, C. Kannengiesser, H. Puy, C. Ged, H. de Verneuil, G. Le Gac, C. Férec, S. Pissard, V. Gérolami), Brest, France
| |
Collapse
|
24
|
Bonaccorsi di Patti MC, Cutone A, Polticelli F, Rosa L, Lepanto MS, Valenti P, Musci G. The ferroportin-ceruloplasmin system and the mammalian iron homeostasis machine: regulatory pathways and the role of lactoferrin. Biometals 2018; 31:399-414. [PMID: 29453656 DOI: 10.1007/s10534-018-0087-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
Abstract
In the last 20 years, several new genes and proteins involved in iron metabolism in eukaryotes, particularly related to pathological states both in animal models and in humans have been identified, and we are now starting to unveil at the molecular level the mechanisms of iron absorption, the regulation of iron transport and the homeostatic balancing processes. In this review, we will briefly outline the general scheme of iron metabolism in humans and then focus our attention on the cellular iron export system formed by the permease ferroportin and the ferroxidase ceruloplasmin. We will finally summarize data on the role of the iron binding protein lactoferrin on the regulation of the ferroportin/ceruloplasmin couple and of other proteins involved in iron homeostasis in inflamed human macrophages.
Collapse
Affiliation(s)
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, 86090, Pesche, IS, Italy
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, Rome, Italy.,National Institute of Nuclear Physics, Roma Tre Section, Rome, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, 86090, Pesche, IS, Italy.
| |
Collapse
|
25
|
Characterization of three novel pathogenic SLC40A1 mutations and genotype/phenotype correlations in 7 Italian families with type 4 hereditary hemochromatosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:464-470. [DOI: 10.1016/j.bbadis.2017.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/23/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022]
|
26
|
Tortosa V, Bonaccorsi di Patti MC, Brandi V, Musci G, Polticelli F. An improved structural model of the human iron exporter ferroportin. Insight into the role of pathogenic mutations in hereditary hemochromatosis type 4. BIO-ALGORITHMS AND MED-SYSTEMS 2017. [DOI: 10.1515/bams-2017-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractFerroportin (Fpn) is a membrane protein representing the major cellular iron exporter, essential for metal translocation from cells into plasma. Despite its pivotal role in human iron homeostasis, many questions on Fpn structure and biology remain unanswered. In this work, we present two novel and more reliable structural models of human Fpn (hFpn; inward-facing and outward-facing conformations) obtained using as templates the recently solved crystal structures of a bacterial homologue of hFpn,
Collapse
|
27
|
Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin. Blood 2017; 131:899-910. [PMID: 29237594 DOI: 10.1182/blood-2017-05-786590] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
Nonclassical ferroportin disease (FD) is a form of hereditary hemochromatosis caused by mutations in the iron transporter ferroportin (Fpn), resulting in parenchymal iron overload. Fpn is regulated by the hormone hepcidin, which induces Fpn endocytosis and cellular iron retention. We characterized 11 clinically relevant and 5 nonclinical Fpn mutations using stably transfected, inducible isogenic cell lines. All clinical mutants were functionally resistant to hepcidin as a consequence of either impaired hepcidin binding or impaired hepcidin-dependent ubiquitination despite intact hepcidin binding. Mapping the residues onto 2 computational models of the human Fpn structure indicated that (1) mutations that caused ubiquitination-resistance were positioned at helix-helix interfaces, likely preventing the hepcidin-induced conformational change, (2) hepcidin binding occurred within the central cavity of Fpn, (3) hepcidin interacted with up to 4 helices, and (4) hepcidin binding should occlude Fpn and interfere with iron export independently of endocytosis. We experimentally confirmed hepcidin-mediated occlusion of Fpn in the absence of endocytosis in multiple cellular systems: HEK293 cells expressing an endocytosis-defective Fpn mutant (K8R), Xenopus oocytes expressing wild-type or K8R Fpn, and mature human red blood cells. We conclude that nonclassical FD is caused by Fpn mutations that decrease hepcidin binding or hinder conformational changes required for ubiquitination and endocytosis of Fpn. The newly documented ability of hepcidin and its agonists to occlude iron transport may facilitate the development of broadly effective treatments for hereditary iron overload disorders.
Collapse
|
28
|
Pietrangelo A. Ferroportin disease: pathogenesis, diagnosis and treatment. Haematologica 2017; 102:1972-1984. [PMID: 29101207 PMCID: PMC5709096 DOI: 10.3324/haematol.2017.170720] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Ferroportin Disease (FD) is an autosomal dominant hereditary iron loading disorder associated with heterozygote mutations of the ferroportin-1 (FPN) gene. It represents one of the commonest causes of genetic hyperferritinemia, regardless of ethnicity. FPN1 transfers iron from the intestine, macrophages and placenta into the bloodstream. In FD, loss-of-function mutations of FPN1 limit but do not impair iron export in enterocytes, but they do severely affect iron transfer in macrophages. This leads to progressive and preferential iron trapping in tissue macrophages, reduced iron release to serum transferrin (i.e. inappropriately low transferrin saturation) and a tendency towards anemia at menarche or after intense bloodletting. The hallmark of FD is marked iron accumulation in hepatic Kupffer cells. Numerous FD-associated mutations have been reported worldwide, with a few occurring in different populations and some more commonly reported (e.g. Val192del, A77D, and G80S). FPN1 polymorphisms also represent the gene variants most commonly responsible for hyperferritinemia in Africans. Differential diagnosis includes mainly hereditary hemochromatosis, the syndrome commonly due to either HFE or TfR2, HJV, HAMP, and, in rare instances, FPN1 itself. Here, unlike FD, hyperferritinemia associates with high transferrin saturation, iron-spared macrophages, and progressive parenchymal cell iron load. Abdominal magnetic resonance imaging (MRI), the key non-invasive diagnostic tool for the diagnosis of FD, shows the characteristic iron loading SSL triad (spleen, spine and liver). A non-aggressive phlebotomy regimen is recommended, with careful monitoring of transferrin saturation and hemoglobin due to the risk of anemia. Family screening is mandatory since siblings and offspring have a 50% chance of carrying the pathogenic mutation.
Collapse
Affiliation(s)
- Antonello Pietrangelo
- Center for Hemochromatosis, Department of Internal Medicine II, University of Modena and Reggio Emilia Policlinico, Modena, Italy
| |
Collapse
|
29
|
Le Tertre M, Ka C, Guellec J, Gourlaouen I, Férec C, Callebaut I, Le Gac G. Deciphering the molecular basis of ferroportin resistance to hepcidin: Structure/function analysis of rare SLC40A1 missense mutations found in suspected hemochromatosis type 4 patients. Transfus Clin Biol 2017; 24:462-467. [PMID: 28826751 DOI: 10.1016/j.tracli.2017.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 01/25/2023]
Abstract
Genetic medicine applied to the study of hemochromatosis has identified the systemic loop controlling iron homeostasis, centered on hepcidin-ferroportin interaction. Current challenges are to dissect the molecular pathways underlying liver hepcidin synthesis in response to circulatory iron, HFE, TFR2, HJV, TMPRSS6 and BMP6 functions, and to define the major structural elements of hepcidin-ferroportin interaction. We built a first 3D model of human ferroportin structure, using the crystal structure of EmrD, a bacterial drug efflux transporter of the Major Facilitator Superfamily, as template. The model enabled study of disease-associated mutations, and guided mutagenesis experiments to determine the role of conserved residues in protein stability and iron transport. Results revealed novel amino acids that are critical for the iron export function and the hepcidin-mediated inhibition mechanism: for example, tryptophan 42, localized in the extracellular end of the ferroportin pore and involved in both biological functions. Here, we propose a strategy that is not limited to structure analysis, but integrates information from different sources, including human disease-associated mutations and functional in vitro assays. The first major hypothesis of this PhD thesis is that ferroportin resistance to hepcidin relies on different molecular mechanisms that are critical for ferroportin endocytosis, and include at least three fundamental steps: (i) hepcidin binding to ferroportin, (ii) structural reorganization of the N- and C-ter ferroportin lobes, and (iii) ferroportin ubiquitination.
Collapse
Affiliation(s)
- M Le Tertre
- Inserm UMR1078, faculté de médecine et des sciences de la santé, université Bretagne Loire-université de Bretagne Occidentale, IBSAM, IBRBS, 22, rue Camille-Desmoulins, 29200 Brest, France; Laboratory of Excellence GR-Ex, institut Imagine, 24, boulevard du Montparnasse, 75015, Paris, France; Laboratoire de génétique moléculaire et histocompatibilité, hôpital Morvan, CHRU de Brest, 2, avenue Foch, 29200 Brest, France.
| | - C Ka
- Inserm UMR1078, faculté de médecine et des sciences de la santé, université Bretagne Loire-université de Bretagne Occidentale, IBSAM, IBRBS, 22, rue Camille-Desmoulins, 29200 Brest, France; Laboratory of Excellence GR-Ex, institut Imagine, 24, boulevard du Montparnasse, 75015, Paris, France; Laboratoire de génétique moléculaire et histocompatibilité, hôpital Morvan, CHRU de Brest, 2, avenue Foch, 29200 Brest, France
| | - J Guellec
- Inserm UMR1078, faculté de médecine et des sciences de la santé, université Bretagne Loire-université de Bretagne Occidentale, IBSAM, IBRBS, 22, rue Camille-Desmoulins, 29200 Brest, France; Laboratory of Excellence GR-Ex, institut Imagine, 24, boulevard du Montparnasse, 75015, Paris, France; Association Gaetan-Saleun, 29, rue Félix-Le-Dantec, 29200 Brest, France
| | - I Gourlaouen
- Inserm UMR1078, faculté de médecine et des sciences de la santé, université Bretagne Loire-université de Bretagne Occidentale, IBSAM, IBRBS, 22, rue Camille-Desmoulins, 29200 Brest, France; Laboratory of Excellence GR-Ex, institut Imagine, 24, boulevard du Montparnasse, 75015, Paris, France; Établissement français du sang, Bretagne, site de Brest, 46 rue Félix-Le-Dantec, 29200 Brest, France
| | - C Férec
- Inserm UMR1078, faculté de médecine et des sciences de la santé, université Bretagne Loire-université de Bretagne Occidentale, IBSAM, IBRBS, 22, rue Camille-Desmoulins, 29200 Brest, France; Laboratoire de génétique moléculaire et histocompatibilité, hôpital Morvan, CHRU de Brest, 2, avenue Foch, 29200 Brest, France; Établissement français du sang, Bretagne, site de Brest, 46 rue Félix-Le-Dantec, 29200 Brest, France
| | - I Callebaut
- Muséum d'histoire naturelle, IRD UMR 206, case 115, IMPMC, Sorbonne universités-UMR CNRS 7590, UPMC université Paris 06, 4, place Jussieu, 75252 Paris cedex 05, France
| | - G Le Gac
- Inserm UMR1078, faculté de médecine et des sciences de la santé, université Bretagne Loire-université de Bretagne Occidentale, IBSAM, IBRBS, 22, rue Camille-Desmoulins, 29200 Brest, France; Laboratory of Excellence GR-Ex, institut Imagine, 24, boulevard du Montparnasse, 75015, Paris, France; Laboratoire de génétique moléculaire et histocompatibilité, hôpital Morvan, CHRU de Brest, 2, avenue Foch, 29200 Brest, France; Établissement français du sang, Bretagne, site de Brest, 46 rue Félix-Le-Dantec, 29200 Brest, France
| |
Collapse
|
30
|
Sabelli M, Montosi G, Garuti C, Caleffi A, Oliveto S, Biffo S, Pietrangelo A. Human macrophage ferroportin biology and the basis for the ferroportin disease. Hepatology 2017; 65:1512-1525. [PMID: 28027576 PMCID: PMC5413859 DOI: 10.1002/hep.29007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 12/15/2016] [Indexed: 01/01/2023]
Abstract
Ferroportin (FPN1) is the sole iron exporter in mammals, but its cell-specific function and regulation are still elusive. This study examined FPN1 expression in human macrophages, the cells that are primarily responsible on a daily basis for plasma iron turnover and are central in the pathogenesis of ferroportin disease (FD), the disease attributed to lack-of-function FPN1 mutations. We characterized FPN1 protein expression and traffic by confocal microscopy, western blotting, gel filtration, and immunoprecipitation studies in macrophages from control blood donors (donor) and patients with either FPN1 p.A77D, p.G80S, and p.Val162del lack-of-function or p.A69T gain-of-function mutations. We found that in normal macrophages, FPN1 cycles in the early endocytic compartment does not multimerize and is promptly degraded by hepcidin (Hepc), its physiological inhibitor, within 3-6 hours. In FD macrophages, endogenous FPN1 showed a similar localization, except for greater accumulation in lysosomes. However, in contrast with previous studies using overexpressed mutant protein in cell lines, FPN1 could still reach the cell surface and be normally internalized and degraded upon exposure to Hepc. However, when FD macrophages were exposed to large amounts of heme iron, in contrast to donor and p.A69T macrophages, FPN1 could no longer reach the cell surface, leading to intracellular iron retention. CONCLUSION FPN1 cycles as a monomer within the endocytic/plasma membrane compartment and responds to its physiological inhibitor, Hepc, in both control and FD cells. However, in FD, FPN1 fails to reach the cell surface when cells undergo high iron turnover. Our findings provide a basis for the FD characterized by a preserved iron transfer in the enterocytes (i.e., cells with low iron turnover) and iron retention in cells exposed to high iron flux, such as liver and spleen macrophages. (Hepatology 2017;65:1512-1525).
Collapse
Affiliation(s)
- Manuela Sabelli
- Division of Internal Medicine 2 and Center for HemochromatosisUniversity Hospital of ModenaModenaItaly
| | - Giuliana Montosi
- Division of Internal Medicine 2 and Center for HemochromatosisUniversity Hospital of ModenaModenaItaly
| | - Cinzia Garuti
- Division of Internal Medicine 2 and Center for HemochromatosisUniversity Hospital of ModenaModenaItaly
| | - Angela Caleffi
- Division of Internal Medicine 2 and Center for HemochromatosisUniversity Hospital of ModenaModenaItaly
| | | | - Stefano Biffo
- INGM, ‘Romeo ed Enrica Invernizzi’MilanoItaly
- Department of BiosciencesUniversity of MilanMilanItaly
| | - Antonello Pietrangelo
- Division of Internal Medicine 2 and Center for HemochromatosisUniversity Hospital of ModenaModenaItaly
| |
Collapse
|
31
|
Bonaccorsi di Patti MC, Polticelli F, Tortosa V, Furbetta PA, Musci G. A bacterial homologue of the human iron exporter ferroportin. FEBS Lett 2015; 589:3829-35. [PMID: 26608034 DOI: 10.1016/j.febslet.2015.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
Abstract
A bacterial homologue of the human iron exporter ferroportin found in the predatory Gram-negative bacterium Bdellovibrio bacteriovorus has been investigated. Molecular modelling, expression in recombinant form and iron binding and transport assays demonstrate that B. bacteriovorus ferroportin (bdFpn) is indeed an orthologue of human ferroportin. Key residues corresponding to those essential for iron binding and transport in human ferroportin are conserved in the bacterial homologue and are predicted to be correctly clustered in the central cavity of the protein. Mutation of these residues grossly affects the iron binding and transport ability of bdFpn.
Collapse
Affiliation(s)
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, Rome, Italy; National Institute of Nuclear Physics, Roma Tre Section, Rome, Italy.
| | | | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, Pesche, Italy.
| |
Collapse
|
32
|
Taniguchi R, Kato HE, Font J, Deshpande CN, Wada M, Ito K, Ishitani R, Jormakka M, Nureki O. Outward- and inward-facing structures of a putative bacterial transition-metal transporter with homology to ferroportin. Nat Commun 2015; 6:8545. [PMID: 26461048 PMCID: PMC4633820 DOI: 10.1038/ncomms9545] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/03/2015] [Indexed: 12/21/2022] Open
Abstract
In vertebrates, the iron exporter ferroportin releases Fe2+ from cells into plasma, thereby maintaining iron homeostasis. The transport activity of ferroportin is suppressed by the peptide hormone hepcidin, which exhibits upregulated expression in chronic inflammation, causing iron-restrictive anaemia. However, due to the lack of structural information about ferroportin, the mechanisms of its iron transport and hepcidin-mediated regulation remain largely elusive. Here we report the crystal structures of a putative bacterial homologue of ferroportin, BbFPN, in both the outward- and inward-facing states. Despite undetectable sequence similarity, BbFPN adopts the major facilitator superfamily fold. A comparison of the two structures reveals that BbFPN undergoes an intra-domain conformational rearrangement during the transport cycle. We identify a substrate metal-binding site, based on structural and mutational analyses. Furthermore, the BbFPN structures suggest that a predicted hepcidin-binding site of ferroportin is located within its central cavity. Thus, BbFPN may be a valuable structural model for iron homeostasis regulation by ferroportin. Iron export from vertebrate cells is mediated by ferroportin, which is suppressed by the peptide hormone hepcidin. Taniguchi et al. present crystal structures of a putative bacterial ferroportin homologue in both outward- and inward-facing states, providing insight into its transport mechanism.
Collapse
Affiliation(s)
- Reiya Taniguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hideaki E Kato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Josep Font
- Structural Biology Program, Centenary Institute, Locked Bag 6, Sydney, New South Wales 2042, Australia.,Faculty of Medicine, Central Clinical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chandrika N Deshpande
- Structural Biology Program, Centenary Institute, Locked Bag 6, Sydney, New South Wales 2042, Australia.,Faculty of Medicine, Central Clinical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Miki Wada
- Technical office, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Koichi Ito
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Ryuichiro Ishitani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Mika Jormakka
- Structural Biology Program, Centenary Institute, Locked Bag 6, Sydney, New South Wales 2042, Australia.,Faculty of Medicine, Central Clinical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|