1
|
Lapshin NK, Trofimova MS. The role of interplay between the plant plasma membrane H +-ATPase and its lipid environment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 352:112343. [PMID: 39638092 DOI: 10.1016/j.plantsci.2024.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The mechanisms behind the regulation of plasma membrane (PM) P-type H+-ATPase in plant cells mediated by lipid-protein interactions and lateral heterogeneity of the plasma membrane are discussed. This review will focus on 1) the structural organization and mechanisms of the catalytic cycle of the enzyme, 2) phosphorylation as the primary mechanism of pump regulation; 3) the possible role of lateral heterogeneity of the plasma membrane in this process, as well as 4) the role of lipids in the H+-ATPase biosynthesis and its delivery to the plasma membrane. In addition, 5) the potential role of membrane lipids in the H+-ATPase co-localisation with secondary active transporters is speculated.
Collapse
Affiliation(s)
- Nikita K Lapshin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 35 Botanicheskaya St., Moscow 127276, Russia.
| | - Marina S Trofimova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 35 Botanicheskaya St., Moscow 127276, Russia
| |
Collapse
|
2
|
Watts A. Biophysical Reviews' "Meet the Editors Series"-a profile of Anthony Watts. Biophys Rev 2024; 16:387-396. [PMID: 39309129 PMCID: PMC11415332 DOI: 10.1007/s12551-024-01214-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
Soon after Biophysical Reviews was established as a Journal with Springer Verlag in 2009, I was asked to join the editorial board. I have juggled various editorial board responsibilities for several Journals over more than three decades, viewing this as a service to the ever-growing biophysics community. How I got to be involved with biophysics is a long story, but here are a few relevant explanations, with much omitted. Anthony Watts.
Collapse
Affiliation(s)
- Anthony Watts
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
3
|
Fameli N, van Breemen C, Groschner K. Nanojunctions: Specificity of Ca 2+ signaling requires nano-scale architecture of intracellular membrane contact sites. Cell Calcium 2024; 117:102837. [PMID: 38011822 DOI: 10.1016/j.ceca.2023.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Spatio-temporal definition of Ca2+ signals involves the assembly of signaling complexes within the nano-architecture of contact sites between the sarco/endoplasmic reticulum (SR/ER) and the plasma membrane (PM). While the requirement of precise spatial assembly and positioning of the junctional signaling elements is well documented, the role of the nano-scale membrane architecture itself, as an ion-reflecting confinement of the signalling unit, remains as yet elusive. Utilizing the Na+/Ca2+ Exchanger-1 / SR/ER Ca2+ ATPase-2-mediated ER Ca2+ refilling process as a junctional signalling paradigm, we provide here the first evidence for an indispensable cellular function of the junctional membrane architecture. Our stochastic modeling approach demonstrates that junctional ER Ca2+ refilling operates exclusively at nano-scale membrane spacing, with a strong inverse relationship between junctional width and signaling efficiency. Our model predicts a breakdown of junctional Ca2+ signaling with loss of reflecting membrane confinement. In addition we consider interactions between Ca2+ and the phospholipid membrane surface, which may support interfacial Ca2+ transport and promote receptor targeting. Alterations in the molecular and nano-scale membrane organization at organelle-PM contacts are suggested as a new concept in pathophysiology.
Collapse
Affiliation(s)
| | - Cornelis van Breemen
- Department of Anesthesiology, Pharmacology, and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Klaus Groschner
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria.
| |
Collapse
|
4
|
Clarke RJ. Electrostatic switch mechanisms of membrane protein trafficking and regulation. Biophys Rev 2023; 15:1967-1985. [PMID: 38192346 PMCID: PMC10771482 DOI: 10.1007/s12551-023-01166-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024] Open
Abstract
Lipid-protein interactions are normally classified as either specific or general. Specific interactions refer to lipid binding to specific binding sites within a membrane protein, thereby modulating the protein's thermal stability or kinetics. General interactions refer to indirect effects whereby lipids affect membrane proteins by modulating the membrane's physical properties, e.g., its fluidity, thickness, or dipole potential. It is not widely recognized that there is a third distinct type of lipid-protein interaction. Intrinsically disordered N- or C-termini of membrane proteins can interact directly but nonspecifically with the surrounding membrane. Many peripheral membrane proteins are held to the cytoplasmic surface of the plasma membrane via a cooperative combination of two forces: hydrophobic anchoring and electrostatic attraction. An acyl chain, e.g., myristoyl, added post-translationally to one of the protein's termini inserts itself into the lipid matrix and helps hold peripheral membrane proteins onto the membrane. Electrostatic attraction occurs between positively charged basic amino acid residues (lysine and arginine) on one of the protein's terminal tails and negatively charged phospholipid head groups, such as phosphatidylserine. Phosphorylation of either serine or tyrosine residues on the terminal tails via regulatory protein kinases allows for an electrostatic switch mechanism to control trafficking of the protein. Kinase action reduces the positive charge on the protein's tail, weakening the electrostatic attraction and releasing the protein from the membrane. A similar mechanism regulates many integral membrane proteins, but here only electrostatic interactions are involved, and the electrostatic switch modulates protein activity by altering the stabilities of different protein conformational states.
Collapse
Affiliation(s)
- Ronald J. Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006 Australia
- The University of Sydney Nano Institute, Sydney, NSW 2006 Australia
| |
Collapse
|
5
|
Mahato DR, Andersson M. Dynamic lipid interactions in the plasma membrane Na +,K +-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119545. [PMID: 37481079 DOI: 10.1016/j.bbamcr.2023.119545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
The function of ion-transporting Na+,K+-ATPases depends on the surrounding lipid environment in biological membranes. Two established lipid-interaction sites A and B within the transmembrane domain have been observed to induce protein activation and stabilization, respectively. In addition, lipid-mediated inhibition has been assigned to a site C, but with the exact location not experimentally confirmed. Also, possible effects on lipid interactions by disease mutants dwelling in the membrane-protein interface remain relatively uncharacterized. We simulated human Na+,K+-ATPase α1β1FXYD homology models in E1 and E2 states in an asymmetric, multicomponent plasma membrane to determine both wild-type and disease mutant lipid-protein interactions. The simulated wild-type lipid interactions at the established sites A and B were in agreement with experimental results thereby confirming the membrane-protein model system. The less well-characterized, proposed inhibitory site C was dominated by lipids lacking inhibitory properties. Instead, two sites hosting inhibitory lipids were identified at the extracellular side and also a cytoplasmic CHL-binding site that provide putative alternative locations of Na+,K+-ATPase inhibition. Three disease mutations, Leu302Arg, Glu840Arg and Met859Arg resided in the lipid-protein interface and caused drastic changes in the lipid interactions. The simulation results show that lipid interactions to the human Na+,K+-ATPase α1β1FXYD protein in the plasma membrane are highly state-dependent and can be disturbed by disease mutations located in the lipid interface, which can open up for new venues to understand genetic disorders.
Collapse
Affiliation(s)
- Dhani Ram Mahato
- Department of Chemistry, Umeå University, Umeå, Sweden; Institut de Química Computacional i Catàlisi, Universitat de Girona, Girona, 17003, Spain
| | | |
Collapse
|
6
|
Paweletz LC, Holtbrügge SL, Löb M, De Vecchis D, Schäfer LV, Günther Pomorski T, Justesen BH. Anionic Phospholipids Stimulate the Proton Pumping Activity of the Plant Plasma Membrane P-Type H +-ATPase. Int J Mol Sci 2023; 24:13106. [PMID: 37685912 PMCID: PMC10488199 DOI: 10.3390/ijms241713106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The activity of membrane proteins depends strongly on the surrounding lipid environment. Here, we characterize the lipid stimulation of the plant plasma membrane H+-ATPase Arabidopsis thaliana H+-ATPase isoform 2 (AHA2) upon purification and reconstitution into liposomes of defined lipid compositions. We show that the proton pumping activity of AHA2 is stimulated by anionic phospholipids, especially by phosphatidylserine. This activation was independent of the cytoplasmic C-terminal regulatory domain of the pump. Molecular dynamics simulations revealed several preferential contact sites for anionic phospholipids in the transmembrane domain of AHA2. These contact sites are partially conserved in functionally different P-type ATPases from different organisms, suggesting a general regulation mechanism by the membrane lipid environment. Our findings highlight the fact that anionic lipids play an important role in the control of H+-ATPase activity.
Collapse
Affiliation(s)
- Laura C. Paweletz
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
| | - Simon L. Holtbrügge
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (S.L.H.); (D.D.V.)
| | - Malina Löb
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
| | - Dario De Vecchis
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (S.L.H.); (D.D.V.)
| | - Lars V. Schäfer
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (S.L.H.); (D.D.V.)
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Bo Højen Justesen
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany; (L.C.P.); (M.L.); (T.G.P.)
| |
Collapse
|
7
|
van Breemen C, Fameli N, Groschner K. Two-Dimensional Interfacial Exchange Diffusion Has the Potential to Augment Spatiotemporal Precision of Ca 2+ Signaling. Int J Mol Sci 2022; 23:ijms23020850. [PMID: 35055032 PMCID: PMC8775956 DOI: 10.3390/ijms23020850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
Nano-junctions between the endoplasmic reticulum and cytoplasmic surfaces of the plasma membrane and other organelles shape the spatiotemporal features of biological Ca2+ signals. Herein, we propose that 2D Ca2+ exchange diffusion on the negatively charged phospholipid surface lining nano-junctions participates in guiding Ca2+ from its source (channel or carrier) to its target (transport protein or enzyme). Evidence provided by in vitro Ca2+ flux experiments using an artificial phospholipid membrane is presented in support of the above proposed concept, and results from stochastic simulations of Ca2+ trajectories within nano-junctions are discussed in order to substantiate its possible requirements. Finally, we analyze recent literature on Ca2+ lipid interactions, which suggests that 2D interfacial Ca2+ diffusion may represent an important mechanism of signal transduction in biological systems characterized by high phospholipid surface to aqueous volume ratios.
Collapse
Affiliation(s)
- Cornelis van Breemen
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence: (C.v.B.); (K.G.)
| | - Nicola Fameli
- Independent Researcher, Vancouver, BC V5Z 1R1, Canada;
| | - Klaus Groschner
- Gottfried Schatz Research Center—Division of Biophysics, Medical University of Graz, 8036 Graz, Austria
- Correspondence: (C.v.B.); (K.G.)
| |
Collapse
|
8
|
Wang S, Gopinath T, Larsen EK, Weber DK, Walker C, Uddigiri VR, Mote KR, Sahoo SK, Periasamy M, Veglia G. Structural basis for sarcolipin's regulation of muscle thermogenesis by the sarcoplasmic reticulum Ca 2+-ATPase. SCIENCE ADVANCES 2021; 7:eabi7154. [PMID: 34826239 PMCID: PMC8626070 DOI: 10.1126/sciadv.abi7154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/06/2021] [Indexed: 06/10/2023]
Abstract
The sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA) plays a central role in muscle contractility and nonshivering thermogenesis. SERCA is regulated by sarcolipin (SLN), a single-pass membrane protein that uncouples Ca2+ transport from ATP hydrolysis, promoting futile enzymatic cycles and heat generation. The molecular determinants for regulating heat release by the SERCA/SLN complex are unclear. Using thermocalorimetry, chemical cross-linking, and solid-state NMR spectroscopy in oriented phospholipid bicelles, we show that SERCA’s functional uncoupling and heat release rate are dictated by specific SERCA/SLN intramembrane interactions, with the carboxyl-terminal residues anchoring SLN to the SR membrane in an inhibitory topology. Systematic deletion of the carboxyl terminus does not prevent the SERCA/SLN complex formation but reduces uncoupling in a graded manner. These studies emphasize the critical role of lipids in defining the active topology of SLN and modulating the heat release rate by the SERCA/SLN complex, with implications in fat metabolism and basal metabolic rate.
Collapse
Affiliation(s)
- Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erik K. Larsen
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel K. Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateswara Reddy Uddigiri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kaustubh R. Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad, Telangana 500046, India
| | - Sanjaya K. Sahoo
- Department of Physiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Muthu Periasamy
- Department of Physiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Trampari S, Neumann C, Hjorth-Jensen SJ, Shahsavar A, Quistgaard EM, Nissen P. Insights into the mechanism of high lipid–detergent crystallization of membrane proteins. J Appl Crystallogr 2021. [DOI: 10.1107/s1600576721010669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Obtaining well diffracting crystals of membrane proteins is often challenging, but chances can be improved by crystallizing them in lipidic conditions that mimic their natural membrane environments. One approach is the high lipid–detergent (HiLiDe) method, which works by mixing the target protein with high concentrations of lipid and detergent prior to crystallization. Although this approach is convenient and flexible, understanding the effects of systematically varying lipid/detergent ratios and a characterization of the lipid phases that form during crystallization would be useful. Here, a HiLiDe phase diagram is reported for the model membrane protein MhsT, which tracks the precipitation and crystallization zones as a function of lipid and detergent concentrations, and is augmented with data on crystal sizes and diffraction properties. Additionally, the crystallization of SERCA1a solubilized directly with native lipids is characterized as a function of detergent concentration. Finally, HiLiDe crystallization drops are analysed with transmission electron microscopy, which among other features reveals liposomes, stacked lamellae that may represent crystal precursors, and mature crystals with clearly discernible packing arrangements. The results emphasize the significance of optimizing lipid/detergent ratios over broad ranges and provide insights into the mechanism of HiLiDe crystallization.
Collapse
|
10
|
Montigny C, Huang DL, Beswick V, Barbot T, Jaxel C, le Maire M, Zheng JS, Jamin N. Sarcolipin alters SERCA1a interdomain communication by impairing binding of both calcium and ATP. Sci Rep 2021; 11:1641. [PMID: 33452371 PMCID: PMC7810697 DOI: 10.1038/s41598-021-81061-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/31/2020] [Indexed: 01/08/2023] Open
Abstract
Sarcolipin (SLN), a single-spanning membrane protein, is a regulator of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA1a). Chemically synthesized SLN, palmitoylated or not (pSLN or SLN), and recombinant wild-type rabbit SERCA1a expressed in S. cerevisiae design experimental conditions that provide a deeper understanding of the functional role of SLN on the regulation of SERCA1a. Our data show that chemically synthesized SLN interacts with recombinant SERCA1a, with calcium-deprived E2 state as well as with calcium-bound E1 state. This interaction hampers the binding of calcium in agreement with published data. Unexpectedly, SLN has also an allosteric effect on SERCA1a transport activity by impairing the binding of ATP. Our results reveal that SLN significantly slows down the E2 to Ca2.E1 transition of SERCA1a while it affects neither phosphorylation nor dephosphorylation. Comparison with chemically synthesized SLN deprived of acylation demonstrates that palmitoylation is not necessary for either inhibition or association with SERCA1a. However, it has a small but statistically significant effect on SERCA1a phosphorylation when various ratios of SLN-SERCA1a or pSLN-SERCA1a are tested.
Collapse
Affiliation(s)
- Cédric Montigny
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Dong Liang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Veronica Beswick
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Department of Physics, Evry-Val-d'Essonne University, 91025, Evry, France
| | - Thomas Barbot
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Christine Jaxel
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Marc le Maire
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Ji-Shen Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Nadège Jamin
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Orädd F, Andersson M. Tracking Membrane Protein Dynamics in Real Time. J Membr Biol 2021; 254:51-64. [PMID: 33409541 PMCID: PMC7936944 DOI: 10.1007/s00232-020-00165-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
Abstract Membrane proteins govern critical cellular processes and are central to human health and associated disease. Understanding of membrane protein function is obscured by the vast ranges of structural dynamics—both in the spatial and time regime—displayed in the protein and surrounding membrane. The membrane lipids have emerged as allosteric modulators of membrane protein function, which further adds to the complexity. In this review, we discuss several examples of membrane dependency. A particular focus is on how molecular dynamics (MD) simulation have aided to map membrane protein dynamics and how enhanced sampling methods can enable observing the otherwise inaccessible biological time scale. Also, time-resolved X-ray scattering in solution is highlighted as a powerful tool to track membrane protein dynamics, in particular when combined with MD simulation to identify transient intermediate states. Finally, we discuss future directions of how to further develop this promising approach to determine structural dynamics of both the protein and the surrounding lipids. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
12
|
Dyla M, Kjærgaard M, Poulsen H, Nissen P. Structure and Mechanism of P-Type ATPase Ion Pumps. Annu Rev Biochem 2020; 89:583-603. [PMID: 31874046 DOI: 10.1146/annurev-biochem-010611-112801] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
P-type ATPases are found in all kingdoms of life and constitute a wide range of cation transporters, primarily for H+, Na+, K+, Ca2+, and transition metal ions such as Cu(I), Zn(II), and Cd(II). They have been studied through a wide range of techniques, and research has gained very significant insight on their transport mechanism and regulation. Here, we review the structure, function, and dynamics of P2-ATPases including Ca2+-ATPases and Na,K-ATPase. We highlight mechanisms of functional transitions that are associated with ion exchange on either side of the membrane and how the functional cycle is regulated by interaction partners, autoregulatory domains, and off-cycle states. Finally, we discuss future perspectives based on emerging techniques and insights.
Collapse
Affiliation(s)
- Mateusz Dyla
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Magnus Kjærgaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| |
Collapse
|
13
|
Chorev DS, Robinson CV. The importance of the membrane for biophysical measurements. Nat Chem Biol 2020; 16:1285-1292. [PMID: 33199903 PMCID: PMC7116504 DOI: 10.1038/s41589-020-0574-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/22/2020] [Indexed: 11/09/2022]
Abstract
Within cell membranes numerous protein assemblies reside. Among their many functions, these assemblies regulate the movement of molecules between membranes, facilitate signaling into and out of cells, allow movement of cells by cell-matrix attachment, and regulate the electric potential of the membrane. With such critical roles, membrane protein complexes are of considerable interest for human health, yet they pose an enduring challenge for structural biologists because it is difficult to study these protein structures at atomic resolution in in situ environments. To advance structural and functional insights for these protein assemblies, membrane mimetics are typically employed to recapitulate some of the physical and chemical properties of the lipid bilayer membrane. However, extraction from native membranes can sometimes change the structure and lipid-binding properties of these complexes, leading to conflicting results and fueling a drive to study complexes directly from native membranes. Here we consider the co-development of membrane mimetics with technological breakthroughs in both cryo-electron microscopy (cryo-EM) and native mass spectrometry (nMS). Together, these developments are leading to a plethora of high-resolution protein structures, as well as new knowledge of their lipid interactions, from different membrane-like environments.
Collapse
Affiliation(s)
- Dror S Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Aguayo-Ortiz R, Fernández-de Gortari E, Espinoza-Fonseca LM. Conserved Luminal C-Terminal Domain Dynamically Controls Interdomain Communication in Sarcolipin. J Chem Inf Model 2020; 60:3985-3991. [PMID: 32668157 DOI: 10.1021/acs.jcim.0c00418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sarcolipin (SLN) mediates Ca2+ transport and metabolism in muscle by regulating the activity of the Ca2+ pump SERCA. SLN has a conserved luminal C-terminal domain that contributes to its functional divergence among homologous SERCA regulators, but the precise mechanistic role of this domain remains poorly understood. We used all-atom molecular dynamics (MD) simulations of SLN totaling 77.5 μs to show that the N- (NT) and C-terminal (CT) domains function in concert. Analysis of the MD simulations showed that serial deletions of the SLN C-terminus do not affect the stability of the peptide nor induce dissociation of SLN from the membrane but promote a gradual decrease in both the tilt angle of the transmembrane helix and the local thickness of the lipid bilayer. Mutual information analysis showed that the NT and CT domains communicate with each other in SLN and that interdomain communication is partially or completely abolished upon deletion of the conserved segment Tyr29-Tyr31 as well as by serial deletions beyond this domain. Phosphorylation of SLN at residue Thr5 also induces changes in the communication between the CT and NT domains, which thus provides additional evidence for interdomain communication within SLN. We found that interdomain communication is independent of the force field used and lipid composition, which thus demonstrates that communication between the NT and CT domains is an intrinsic functional feature of SLN. We propose the novel hypothesis that the conserved C-terminus is an essential element required for dynamic control of SLN regulatory function.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eli Fernández-de Gortari
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Marchesini M, Gherli A, Montanaro A, Patrizi L, Sorrentino C, Pagliaro L, Rompietti C, Kitara S, Heit S, Olesen CE, Møller JV, Savi M, Bocchi L, Vilella R, Rizzi F, Baglione M, Rastelli G, Loiacono C, La Starza R, Mecucci C, Stegmaier K, Aversa F, Stilli D, Lund Winther AM, Sportoletti P, Bublitz M, Dalby-Brown W, Roti G. Blockade of Oncogenic NOTCH1 with the SERCA Inhibitor CAD204520 in T Cell Acute Lymphoblastic Leukemia. Cell Chem Biol 2020; 27:678-697.e13. [PMID: 32386594 PMCID: PMC7305996 DOI: 10.1016/j.chembiol.2020.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
The identification of SERCA (sarco/endoplasmic reticulum calcium ATPase) as a target for modulating gain-of-function NOTCH1 mutations in Notch-dependent cancers has spurred the development of this compound class for cancer therapeutics. Despite the innate toxicity challenge associated with SERCA inhibition, we identified CAD204520, a small molecule with better drug-like properties and reduced off-target Ca2+ toxicity compared with the SERCA inhibitor thapsigargin. In this work, we describe the properties and complex structure of CAD204520 and show that CAD204520 preferentially targets mutated over wild-type NOTCH1 proteins in T cell acute lymphoblastic leukemia (T-ALL) and mantle cell lymphoma (MCL). Uniquely among SERCA inhibitors, CAD204520 suppresses NOTCH1-mutated leukemic cells in a T-ALL xenografted model without causing cardiac toxicity. This study supports the development of SERCA inhibitors for Notch-dependent cancers and extends their application to cases with isolated mutations in the PEST degradation domain of NOTCH1, such as MCL or chronic lymphocytic leukemia (CLL).
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Enzyme Inhibitors/chemical synthesis
- Enzyme Inhibitors/chemistry
- Enzyme Inhibitors/pharmacology
- Female
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred ICR
- Mice, Inbred NOD
- Mice, SCID
- Molecular Structure
- Mutation
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Receptor, Notch1/antagonists & inhibitors
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Matteo Marchesini
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Andrea Gherli
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Anna Montanaro
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Laura Patrizi
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Claudia Sorrentino
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Luca Pagliaro
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Chiara Rompietti
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Samuel Kitara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Sabine Heit
- University of Oxford, Department of Biochemistry, Oxford OX1 3QU, UK
| | - Claus E Olesen
- Aarhus University, Department of Biomedicine, 8000 Aarhus C, Denmark
| | - Jesper V Møller
- Aarhus University, Department of Biomedicine, 8000 Aarhus C, Denmark
| | - Monia Savi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | - Leonardo Bocchi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | - Rocchina Vilella
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | - Federica Rizzi
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy; INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
| | - Marilena Baglione
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Giorgia Rastelli
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Caterina Loiacono
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Roberta La Starza
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Cristina Mecucci
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute, Cambridge, MA 02142, USA
| | - Franco Aversa
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy
| | - Donatella Stilli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma 43124, Italy
| | | | - Paolo Sportoletti
- University of Perugia, Department of Medicine, Hematology and Clinical Immunology, Perugia 06123, Italy
| | - Maike Bublitz
- University of Oxford, Department of Biochemistry, Oxford OX1 3QU, UK
| | | | - Giovanni Roti
- University of Parma, Department of Medicine and Surgery, Parma 43126, Italy.
| |
Collapse
|
16
|
Aguayo-Ortiz R, Espinoza-Fonseca LM. Linking Biochemical and Structural States of SERCA: Achievements, Challenges, and New Opportunities. Int J Mol Sci 2020; 21:ijms21114146. [PMID: 32532023 PMCID: PMC7313052 DOI: 10.3390/ijms21114146] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Sarcoendoplasmic reticulum calcium ATPase (SERCA), a member of the P-type ATPase family of ion and lipid pumps, is responsible for the active transport of Ca2+ from the cytoplasm into the sarcoplasmic reticulum lumen of muscle cells, into the endoplasmic reticulum (ER) of non-muscle cells. X-ray crystallography has proven to be an invaluable tool in understanding the structural changes of SERCA, and more than 70 SERCA crystal structures representing major biochemical states (defined by bound ligand) have been deposited in the Protein Data Bank. Consequently, SERCA is one of the best characterized components of the calcium transport machinery in the cell. Emerging approaches in the field, including spectroscopy and molecular simulation, now help integrate and interpret this rich structural information to understand the conformational transitions of SERCA that occur during activation, inhibition, and regulation. In this review, we provide an overview of the crystal structures of SERCA, focusing on identifying metrics that facilitate structure-based categorization of major steps along the catalytic cycle. We examine the integration of crystallographic data with different biophysical approaches and computational methods to link biochemical and structural states of SERCA that are populated in the cell. Finally, we discuss the challenges and new opportunities in the field, including structural elucidation of functionally important and novel regulatory complexes of SERCA, understanding the structural basis of functional divergence among homologous SERCA regulators, and bridging the gap between basic and translational research directed toward therapeutic modulation of SERCA.
Collapse
|
17
|
Corey RA, Stansfeld PJ, Sansom MS. The energetics of protein-lipid interactions as viewed by molecular simulations. Biochem Soc Trans 2020; 48:25-37. [PMID: 31872229 PMCID: PMC7054751 DOI: 10.1042/bst20190149] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Membranes are formed from a bilayer containing diverse lipid species with which membrane proteins interact. Integral, membrane proteins are embedded in this bilayer, where they interact with lipids from their surroundings, whilst peripheral membrane proteins bind to lipids at the surface of membranes. Lipid interactions can influence the function of membrane proteins, either directly or allosterically. Both experimental (structural) and computational approaches can reveal lipid binding sites on membrane proteins. It is, therefore, important to understand the free energies of these interactions. This affords a more complete view of the engagement of a particular protein with the biological membrane surrounding it. Here, we describe many computational approaches currently in use for this purpose, including recent advances using both free energy and unbiased simulation methods. In particular, we focus on interactions of integral membrane proteins with cholesterol, and with anionic lipids such as phosphatidylinositol 4,5-bis-phosphate and cardiolipin. Peripheral membrane proteins are exemplified via interactions of PH domains with phosphoinositide-containing membranes. We summarise the current state of the field and provide an outlook on likely future directions of investigation.
Collapse
Affiliation(s)
- Robin A. Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Mark S.P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
18
|
Conrard L, Tyteca D. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules 2019; 9:E513. [PMID: 31547139 PMCID: PMC6843150 DOI: 10.3390/biom9100513] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Calcium ions (Ca2+) are major messengers in cell signaling, impacting nearly every aspect of cellular life. Those signals are generated within a wide spatial and temporal range through a large variety of Ca2+ channels, pumps, and exchangers. More and more evidences suggest that Ca2+ exchanges are regulated by their surrounding lipid environment. In this review, we point out the technical challenges that are currently being overcome and those that still need to be defeated to analyze the Ca2+ transport protein-lipid interactions. We then provide evidences for the modulation of Ca2+ transport proteins by lipids, including cholesterol, acidic phospholipids, sphingolipids, and their metabolites. We also integrate documented mechanisms involved in the regulation of Ca2+ transport proteins by the lipid environment. Those include: (i) Direct interaction inside the protein with non-annular lipids; (ii) close interaction with the first shell of annular lipids; (iii) regulation of membrane biophysical properties (e.g., membrane lipid packing, thickness, and curvature) directly around the protein through annular lipids; and (iv) gathering and downstream signaling of several proteins inside lipid domains. We finally discuss recent reports supporting the related alteration of Ca2+ and lipids in different pathophysiological events and the possibility to target lipids in Ca2+-related diseases.
Collapse
Affiliation(s)
- Louise Conrard
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute and Université catholique de Louvain, UCL B1.75.05, avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
19
|
General and specific interactions of the phospholipid bilayer with P-type ATPases. Biophys Rev 2019; 11:353-364. [PMID: 31073955 DOI: 10.1007/s12551-019-00533-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Protein structure and function are modulated via interactions with their environment, representing both the surrounding aqueous media and lipid membranes that have an active role in shaping the structural topology of membrane proteins. Compared to a decade ago, there is now an abundance of crystal structural data on membrane proteins, which together with their functional studies have enhanced our understanding of the salient features of lipid-protein interactions. It is now important to recognize that membrane proteins are regulated by both (1) general lipid-protein interactions, where the general physicochemical properties of the lipid environment affect the conformational flexibility of a membrane protein, and (2) by specific lipid-protein interactions, where lipid molecules directly interact via chemical interactions with specific lipid-binding sites located on the protein. However, due to local differences in membrane composition, thickness, and lipid packing, local membrane physical properties and hence the associated lipid-protein interactions also differ due to membrane location, even for the same protein. Such a phenomenon has been shown to be true for one family of integral membrane ion pumps, the P2-type adenosine triphosphatases (ATPases). Despite being highly homologous, individual members of this family have distinct structural and functional activity and are an excellent candidate to highlight how the local membrane physical properties and specific lipid-protein interactions play a vital role in facilitating the structural rearrangements of these proteins necessary for their activity. Hence in this review, we focus on both the general and specific lipid-protein interactions and will mostly discuss the structure-function relationships of the following P2-type ATPases, Na+,K+-ATPase (NKA), gastric H+,K+-ATPase (HKA), and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), in concurrence with their lipid environment.
Collapse
|
20
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
21
|
Abstract
Membranes surrounding the biological cell and its internal compartments host proteins that catalyze chemical reactions essential for the functioning of the cell. Rather than being a passive structural matrix that holds membrane-embedded proteins in place, the membrane can largely shape the conformational energy landscape of membrane proteins and impact the energetics of their chemical reaction. Here, we highlight the challenges in understanding how lipids impact the conformational energy landscape of macromolecular membrane complexes whose functioning involves chemical reactions including proton transfer. We review here advances in our understanding of how chemical reactions occur at membrane interfaces gleaned with both theoretical and experimental advances using simple protein systems as guides. Our perspective is that of bridging experiments with theory to understand general physicochemical principles of membrane reactions, with a long term goal of furthering our understanding of the role of the lipids on the functioning of complex macromolecular assemblies at the membrane interface.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - M Joanne Lemieux
- University of Alberta , Department of Biochemistry, Membrane Protein Disease Research Group , Edmonton , Alberta T6G 2H7 , Canada
| |
Collapse
|
22
|
Espinoza-Fonseca LM. Probing the effects of nonannular lipid binding on the stability of the calcium pump SERCA. Sci Rep 2019; 9:3349. [PMID: 30833659 PMCID: PMC6399444 DOI: 10.1038/s41598-019-40004-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/07/2019] [Indexed: 01/14/2023] Open
Abstract
The calcium pump SERCA is a transmembrane protein that is critical for calcium transport in cells. SERCA resides in an environment made up largely by the lipid bilayer, so lipids play a central role on its stability and function. Studies have provided insights into the effects of annular and bulk lipids on SERCA activation, but the role of a nonannular lipid site in the E2 intermediate state remains elusive. Here, we have performed microsecond molecular dynamics simulations to probe the effects of nonannular lipid binding on the stability and structural dynamics of the E2 state of SERCA. We found that the structural integrity and stability of the E2 state is independent of nonannular lipid binding, and that occupancy of a lipid molecule at this site does not modulate destabilization of the E2 state, a step required to initiate the transition toward the competent E1 state. We also found that binding of the nonannular lipid does not induce direct allosteric control of the intrinsic functional dynamics the E2 state. We conclude that nonannular lipid binding is not necessary for the stability of the E2 state, but we speculate that it becomes functionally significant during the E2-to-E1 transition of the pump.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Mechanism of the E2 to E1 transition in Ca 2+ pump revealed by crystal structures of gating residue mutants. Proc Natl Acad Sci U S A 2018; 115:12722-12727. [PMID: 30482857 DOI: 10.1073/pnas.1815472115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ca2+-ATPase of sarcoplasmic reticulum (SERCA1a) pumps two Ca2+ per ATP hydrolyzed from the cytoplasm and two or three protons in the opposite direction. In the E2 state, after transferring Ca2+ into the lumen of sarcoplasmic reticulum, all of the acidic residues that coordinate Ca2+ are thought to be protonated, including the gating residue Glu309. Therefore a Glu309Gln substitution is not expected to significantly perturb the structure. Here we report crystal structures of the Glu309Gln and Glu309Ala mutants of SERCA1a under E2 conditions. The Glu309Gln mutant exhibits, unexpectedly, large structural rearrangements in both the cytoplasmic and transmembrane domains, apparently uncoupling them. However, the structure definitely represents E2 and, together with the help of quantum chemical calculations, allows us to postulate a mechanism for the E2 → E1 transition triggered by deprotonation of Glu309.
Collapse
|
24
|
Santander VS, Campetelli AN, Monesterolo NE, Rivelli JF, Nigra AD, Arce CA, Casale CH. Tubulin-Na + , K + -ATPase interaction: Involvement in enzymatic regulation and cellular function. J Cell Physiol 2018; 234:7752-7763. [PMID: 30378111 DOI: 10.1002/jcp.27610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
A new function for tubulin was described by our laboratory: acetylated tubulin forms a complex with Na+ ,K + -ATPase (NKA) and inhibits its activity. This process was shown to be a regulatory factor of physiological importance in cultured cells, human erythrocytes, and several rat tissues. Formation of the acetylated tubulin-NKA complex is reversible. We demonstrated that in cultured cells, high concentrations of glucose induce translocation of acetylated tubulin from cytoplasm to plasma membrane with a consequent inhibition of NKA activity. This effect is reversed by adding glutamate, which is coctransported to the cell with Na + . Another posttranslational modification of tubulin, detyrosinated tubulin, is also involved in the regulation of NKA activity: it enhances the NKA inhibition induced by acetylated tubulin. Manipulation of the content of these modifications of tubulin could work as a new strategy to maintain homeostasis of Na + and K + , and to regulate a variety of functions in which NKA is involved, such as osmotic fragility and deformability of human erythrocytes. The results summarized in this review show that the interaction between tubulin and NKA plays an important role in cellular physiology, both in the regulation of Na + /K + homeostasis and in the rheological properties of the cells, which is mechanically different from other roles reported up to now.
Collapse
Affiliation(s)
- Veronica S Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Alexis N Campetelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Noelia E Monesterolo
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Juan F Rivelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Ayelen D Nigra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Carlos A Arce
- entro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - César H Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
25
|
Ishikawa T, Mizuta S, Kaneko O, Yahata K. Fragment Molecular Orbital Study of the Interaction between Sarco/Endoplasmic Reticulum Ca 2+-ATPase and its Inhibitor Thapsigargin toward Anti-Malarial Development. J Phys Chem B 2018; 122:7970-7977. [PMID: 30067362 DOI: 10.1021/acs.jpcb.8b04509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plasmodium falciparum, the causative agent of malignant malaria, is insensitive to thapsigargin (TG), a well-known inhibitor of the human sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). To understand the key factor causing the difference of the sensitivity, the molecular interaction of TG and each SERCA was analyzed by the fragment molecular orbital (FMO) method. While the major component of the interaction energy was the nonpolar interaction, the major difference in the molecular interaction arose from the polar interaction, namely, the hydrogen bonding interaction with a hydroxyl group of TG. Additionally, we successfully confirmed these FMO calculation results by measuring the inhibitory activity of a synthesized TG derivative. Our calculations and experiments indicated that, by replacing the hydroxyl group of TG with another functional group, the sensitivities of TG to human and P. falciparum SERCAs can be reversed. This study provides important information to develop antimalarial compounds targeting P. falciparum SERCA.
Collapse
Affiliation(s)
- Takeshi Ishikawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences , Nagasaki University , 1-12-4 Sakamoto , Nagasaki 852-8523 , Japan.,Leading Program, Graduate School of Biomedical Sciences , Nagasaki University , 1-12-4 Sakamoto , Nagasaki 852-8523 , Japan
| | - Satoshi Mizuta
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences , Nagasaki University , 1-12-4 Sakamoto , Nagasaki 852-8523 , Japan
| | - Osamu Kaneko
- Leading Program, Graduate School of Biomedical Sciences , Nagasaki University , 1-12-4 Sakamoto , Nagasaki 852-8523 , Japan.,Department of Protozoology, Institute of Tropical Medicine (NEKKEN) , Nagasaki University , 1-12-4 Sakamoto , Nagasaki 852-8523 , Japan
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN) , Nagasaki University , 1-12-4 Sakamoto , Nagasaki 852-8523 , Japan
| |
Collapse
|
26
|
Lenoir G, Dieudonné T, Lamy A, Lejeune M, Vazquez-Ibar JL, Montigny C. Screening of Detergents for Stabilization of Functional Membrane Proteins. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2018; 93:e59. [PMID: 30021058 DOI: 10.1002/cpps.59] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane protein studies usually require use of detergents to extract and isolate proteins from membranes and manipulate them in a soluble context for their functional or structural characterization. However, solubilization with detergent may interfere with MP stability and may directly affect MP function or structure. Moreover, detergent properties can be affected such as critical micellar concentration (CMC) can be affected by the experimental conditions. Consequently, the experimenter must pay attention to both the protein and the behavior of the detergent. This article provides a convenient protocol for estimating the CMC of detergents in given experimental conditions. Then, it presents two protocols aimed at monitoring the function of a membrane protein in the presence of detergent. Such experiments may help to test various detergents for their inactivating or stabilizing effects on long incubation times, ranging from few hours to some days. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Guillaume Lenoir
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Thibaud Dieudonné
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Anaïs Lamy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Maylis Lejeune
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - José-Luis Vazquez-Ibar
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette CEDEX, France
| |
Collapse
|
27
|
Autzen HE, Koldsø H, Stansfeld PJ, Gourdon P, Sansom MSP, Nissen P. Interactions of a Bacterial Cu(I)-ATPase with a Complex Lipid Environment. Biochemistry 2018; 57:4063-4073. [DOI: 10.1021/acs.biochem.8b00326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Henriette E. Autzen
- Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, 8000 Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, 8000 Aarhus C, Denmark
| | - Heidi Koldsø
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation, 8000 Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds vej 10C, 8000 Aarhus C, Denmark
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
28
|
Gianfrancesco MA, Paquot N, Piette J, Legrand-Poels S. Lipid bilayer stress in obesity-linked inflammatory and metabolic disorders. Biochem Pharmacol 2018; 153:168-183. [PMID: 29462590 DOI: 10.1016/j.bcp.2018.02.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
The maintenance of the characteristic lipid compositions and physicochemical properties of biological membranes is essential for their proper function. Mechanisms allowing to sense and restore membrane homeostasis have been identified in prokaryotes for a long time and more recently in eukaryotes. A membrane remodeling can result from aberrant metabolism as seen in obesity. In this review, we describe how such lipid bilayer stress can account for the modulation of membrane proteins involved in the pathogenesis of obesity-linked inflammatory and metabolic disorders. We address the case of the Toll-like receptor 4 that is implicated in the obesity-related low grade inflammation and insulin resistance. The lipid raft-mediated TLR4 activation is promoted by an enrichment of the plasma membrane with saturated lipids or cholesterol increasing the lipid phase order. We discuss of the plasma membrane Na, K-ATPase that illustrates a new concept according to which direct interactions between specific residues and particular lipids determine both stability and activity of the pump in parallel with indirect effects of the lipid bilayer. The closely related sarco(endo)-plasmic Ca-ATPase embedded in the more fluid ER membrane seems to be more sensitive to a lipid bilayer stress as demonstrated by its inactivation in cholesterol-loaded macrophages or its inhibition mediated by an increased PtdCho/PtdEtn ratio in obese mice hepatocytes. Finally, we describe the model recently proposed for the activation of the conserved IRE-1 protein through alterations in the ER membrane lipid packing and thickness. Such IRE-1 activation could occur in response to abnormal lipid synthesis and membrane remodeling as observed in hepatocytes exposed to excess nutrients. Since the IRE-1/XBP1 branch also stimulates the lipid synthesis, this pathway could create a vicious cycle "lipogenesis-ER lipid bilayer stress-lipogenesis" amplifying hepatic ER pathology and the obesity-linked systemic metabolic defects.
Collapse
Affiliation(s)
- Marco A Gianfrancesco
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University Hospital of Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Sylvie Legrand-Poels
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium; Laboratory of Virology and Immunology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium.
| |
Collapse
|
29
|
Brunetti E, Moerkerke S, Wouters J, Bartik K, Jabin I. A selective calix[6]arene-based fluorescent chemosensor for phosphatidylcholine type lipids. Org Biomol Chem 2018; 14:10201-10207. [PMID: 27731470 DOI: 10.1039/c6ob01880g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of chemosensors that can selectively detect phosphatidylcholines (PCs) in biological samples is of medical relevance considering the importance of these phospholipids in cell growth and survival. Their selective sensing over phosphatidylethanolamines (PEs) is however a challenging task. We report here on the chemosensing capacities of calix[6]tris-pyrenylurea 1, which is able to selectively interact with phosphatidylcholine-type lipids in organic media. Host 1 also binds them in a biphasic chloroform/water solution, opening the way to the design of selective chemosensors for these lipids in biological media. The results obtained by NMR, fluorescence spectroscopy and modelling studies show that the selectivity is the result of the high degree of complementarity between the lipids' zwitterionic phosphatidylcholine headgroup and the receptor's H-bonding donor site and hydrophobic pocket. The mode of recognition is reminiscent of natural systems, such as human phosphatidylcholine transfer proteins (PC-TPs), validating the biomimetic approach adopted in our work.
Collapse
Affiliation(s)
- Emilio Brunetti
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium. and Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.
| | - Steven Moerkerke
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium.
| | - Johan Wouters
- Département de Chimie, Université de Namur (UNamur), Rue de Bruxelles 61, B5-5000 Namur, Belgium
| | - Kristin Bartik
- Engineering of Molecular NanoSystems, Ecole polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium.
| |
Collapse
|
30
|
Hsu PC, Samsudin F, Shearer J, Khalid S. It Is Complicated: Curvature, Diffusion, and Lipid Sorting within the Two Membranes of Escherichia coli. J Phys Chem Lett 2017; 8:5513-5518. [PMID: 29053278 DOI: 10.1021/acs.jpclett.7b02432] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The cell envelope of Gram-negative bacteria is composed of two membranes separated by a soluble region. Here, we report microsecond time scale coarse-grained molecular dynamics simulations of models of the Escherichia coli cell envelope that incorporate both membranes and various native membrane proteins. Our results predict that both the inner and outer membranes curve in a manner dependent on the size of the embedded proteins. The tightly cross-linked lipopolysaccharide molecules (LPS) of the outer membrane cause a strong coupling between the movement of proteins and lipids. While the flow of phospholipids is more random, their diffusion is nevertheless influenced by nearby proteins. Our results reveal protein-induced lipid sorting, whereby cardiolipin is significantly enriched within the vicinity of the water channel AqpZ and the multidrug efflux pump AcrBZ. In summary, our results provide unprecedented details of the intricate relationship between both membranes of E. coli and the proteins embedded within them.
Collapse
Affiliation(s)
- Pin-Chia Hsu
- School of Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| | - Firdaus Samsudin
- School of Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| | - Jonathan Shearer
- School of Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| | - Syma Khalid
- School of Chemistry, University of Southampton , Southampton SO17 1BJ, U.K
| |
Collapse
|
31
|
Yamasaki K, Daiho T, Danko S, Yasuda S, Suzuki H. Nanodisc-based kinetic assays reveal distinct effects of phospholipid headgroups on the phosphoenzyme transition of sarcoplasmic reticulum Ca 2+-ATPase. J Biol Chem 2017; 292:20218-20227. [PMID: 29032359 DOI: 10.1074/jbc.m117.816702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Sarco(endo)plasmic reticulum Ca2+-ATPase catalyzes ATP-driven Ca2+ transport from the cytoplasm to the lumen and is critical for a range of cell functions, including muscle relaxation. Here, we investigated the effects of the headgroups of the 1-palmitoyl-2-oleoyl glycerophospholipids phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylglycerol (PG) on sarcoplasmic reticulum (SR) Ca2+-ATPase embedded into a nanodisc, a lipid-bilayer construct harboring the specific lipid. We found that Ca2+-ATPase activity in a PC bilayer is comparable with that of SR vesicles and is suppressed in the other phospholipids, especially in PS. Ca2+ affinity at the high-affinity transport sites in PC was similar to that of SR vesicles, but 2-3-fold reduced in PE and PS. Ca2+ on- and off-rates in the non-phosphorylated ATPase were markedly reduced in PS. Rate-limiting phosphoenzyme (EP) conformational transition in 0.1 m KCl was as rapid in PC as in SR vesicles, but slowed in other phospholipids, especially in PS. Using kinetic plots of the logarithm of rate versus the square of mean activity coefficient of solutes in 0.1-1 m KCl, we noted that PC is optimal for the EP transition, but PG and especially PS had markedly unfavorable electrostatic effects, and PE exhibited a strong non-electrostatic restriction. Thus, the major SR membrane lipid PC is optimal for all steps and, unlike the other headgroups, contributes favorable electrostatics and non-electrostatic elements during the EP transition. Our analyses further revealed that the surface charge of the lipid bilayer directly modulates the transition rate.
Collapse
Affiliation(s)
- Kazuo Yamasaki
- Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan.
| | - Takashi Daiho
- Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Stefania Danko
- Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Satoshi Yasuda
- Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Hiroshi Suzuki
- Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| |
Collapse
|
32
|
Protein–phospholipid interplay revealed with crystals of a calcium pump. Nature 2017; 545:193-198. [DOI: 10.1038/nature22357] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/12/2017] [Indexed: 11/08/2022]
|
33
|
|
34
|
Bondžić AM, Čolović MB, Janjić GV, Zarić B, Petrović S, Krstić DZ, Marzo T, Messori L, Vasić VM. The influence of oxo-bridged binuclear gold(III) complexes on Na/K-ATPase activity: a joint experimental and theoretical approach. J Biol Inorg Chem 2017; 22:819-832. [PMID: 28432453 DOI: 10.1007/s00775-017-1460-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/09/2017] [Indexed: 11/29/2022]
Abstract
The in vitro effects of oxo-bridged binuclear gold(III) complexes, i.e., [(bipy2Me)2Au2(μ-O)2][PF6]2 (Auoxo6), Au2[(bipydmb-H)2(μ-O)][PF6] (Au2bipyC) and [Au2(phen2Me)2(μ-O)2](PF6)2 (Au2phen) on Na/K-ATPase, purified from the porcine cerebral cortex, were investigated. All three studied gold complexes inhibited the enzyme activity in a concentration-dependent manner achieving IC50 values in the low micromolar range. Kinetic analysis suggested an uncompetitive mode of inhibition for Auoxo6 and Au2bipyC, and a mixed type one for Au2phen. Docking studies indicated that the inhibitory actions of all tested complexes are related to E2-P enzyme conformation binding to ion channel and intracellular part between N and P sub-domain. In addition, Au2phen was able to inhibit the enzyme by interacting with its extracellular part as well. Toxic effects of the gold(III) complexes were evaluated in vitro by following lactate dehydrogenase activity in rat brain synaptosomes and incidence of micronuclei and cytokinesis-block proliferation index in cultivated human lymphocytes. All investigated complexes turned out to induce cytogenetic damage consisting of a significant decrease in cell proliferation and an increase in micronuclei in a dose-dependent manner. On the other hand, lactate dehydrogenase activity, an indicator of membrane integrity/viability, was not affected by Auoxo6 and Au2bipyC, while Au2phen slightly modified its activity.
Collapse
Affiliation(s)
- Aleksandra M Bondžić
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11 001, Belgrade, Serbia
| | - Mirjana B Čolović
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11 001, Belgrade, Serbia
| | - Goran V Janjić
- Institute of Chemistry, Metallurgy and Technology, University of Belgrade, Belgrade, Serbia
| | - Božidarka Zarić
- Institute of Chemistry, Metallurgy and Technology, University of Belgrade, Belgrade, Serbia
| | - Sandra Petrović
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11 001, Belgrade, Serbia
| | - Danijela Z Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, Višegradska 26, 11000, Belgrade, Serbia
| | - Tiziano Marzo
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.,Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Luigi Messori
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Vesna M Vasić
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11 001, Belgrade, Serbia.
| |
Collapse
|
35
|
Tejral G, Sopko B, Necas A, Schoner W, Amler E. Computer modelling reveals new conformers of the ATP binding loop of Na +/K +-ATPase involved in the transphosphorylation process of the sodium pump. PeerJ 2017; 5:e3087. [PMID: 28316890 PMCID: PMC5354106 DOI: 10.7717/peerj.3087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/14/2017] [Indexed: 01/02/2023] Open
Abstract
Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP’s terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ-phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4–M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the “open conformation” may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between “open conformation” <==> “semi-open conformation <==> “closed conformation” in the absence of 2Mg2+•ATP. The cytoplasmic loop’s conformational change to the “semi-open conformation”—characterized by a hydrogen bond between Arg543 and Asp611—triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the “closed conformation” the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis.
Collapse
Affiliation(s)
- Gracian Tejral
- Department of Biophysics, 2nd Faculty of Medicine, Charles University Prague, Prague, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bruno Sopko
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University Prague , Prague , Czech Republic
| | - Alois Necas
- Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Science , Brno , Czech Republic
| | - Wilhelm Schoner
- Institute of Biochemistry and Endocrinology, University of Giessen , Giessen , Germany
| | - Evzen Amler
- Department of Biophysics, 2nd Faculty of Medicine, Charles University Prague, Prague, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
36
|
Abstract
Membrane protein function can be affected by the physical state of the lipid bilayer and specific lipid-protein interactions. For Na,K-ATPase, bilayer properties can modulate pump activity, and, as observed in crystal structures, several lipids are bound within the transmembrane domain. Furthermore, Na,K-ATPase activity depends on phosphatidylserine (PS) and cholesterol, which stabilize the protein, and polyunsaturated phosphatidylcholine (PC) or phosphatidylethanolamine (PE), known to stimulate Na,K-ATPase activity. Based on lipid structural specificity and kinetic mechanisms, specific interactions of both PS and PC/PE have been inferred. Nevertheless, specific binding sites have not been identified definitively. We address this question with native mass spectrometry (MS) and site-directed mutagenesis. Native MS shows directly that one molecule each of 18:0/18:1 PS and 18:0/20:4 PC can bind specifically to purified human Na,K-ATPase (α1β1). By replacing lysine residues at proposed phospholipid-binding sites with glutamines, the two sites have been identified. Mutations in the cytoplasmic αL8-9 loop destabilize the protein but do not affect Na,K-ATPase activity, whereas mutations in transmembrane helices (TM), αTM2 and αTM4, abolish the stimulation of activity by 18:0/20:4 PC but do not affect stability. When these data are linked to crystal structures, the underlying mechanism of PS and PC/PE effects emerges. PS (and cholesterol) bind between αTM 8, 9, 10, near the FXYD subunit, and maintain topological integrity of the labile C terminus of the α subunit (site A). PC/PE binds between αTM2, 4, 6, and 9 and accelerates the rate-limiting E1P-E2P conformational transition (site B). We discuss the potential physiological implications.
Collapse
|
37
|
Montigny C, Dieudonné T, Orlowski S, Vázquez-Ibar JL, Gauron C, Georgin D, Lund S, le Maire M, Møller JV, Champeil P, Lenoir G. Slow Phospholipid Exchange between a Detergent-Solubilized Membrane Protein and Lipid-Detergent Mixed Micelles: Brominated Phospholipids as Tools to Follow Its Kinetics. PLoS One 2017; 12:e0170481. [PMID: 28118404 PMCID: PMC5261732 DOI: 10.1371/journal.pone.0170481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/05/2017] [Indexed: 12/02/2022] Open
Abstract
Membrane proteins are largely dependent for their function on the phospholipids present in their immediate environment, and when they are solubilized by detergent for further study, residual phospholipids are critical, too. Here, brominated phosphatidylcholine, a phospholipid which behaves as an unsaturated phosphatidylcholine, was used to reveal the kinetics of phospholipid exchange or transfer from detergent mixed micelles to the environment of a detergent-solubilized membrane protein, the paradigmatic P-type ATPase SERCA1a, in which Trp residues can experience fluorescence quenching by bromine atoms present on phospholipid alkyl chains in their immediate environment. Using dodecylmaltoside as the detergent, exchange of (brominated) phospholipid was found to be much slower than exchange of detergent under the same conditions, and also much slower than membrane solubilization, the latter being evidenced by light scattering changes. The kinetics of this exchange was strongly dependent on temperature. It was also dependent on the total concentration of the mixed micelles, revealing the major role for such exchange of the collision of detergent micelles with the detergent-solubilized protein. Back-transfer of the brominated phospholipid from the solubilized protein to the detergent micelle was much faster if lipid-free DDM micelles instead of mixed micelles were added for triggering dissociation of brominated phosphatidylcholine from the solubilized protein, or in the additional presence of C12E8 detergent during exchange, also emphasizing the role of the chemical nature of the micelle/protein interface. This protocol using brominated lipids appears to be valuable for revealing the possibly slow kinetics of phospholipid transfer to or from detergent-solubilized membrane proteins. Independently, continuous recording of the activity of the protein can also be used in some cases to correlate changes in activity with the exchange of a specific phospholipid, as shown here by using the Drs2p/Cdc50p complex, a lipid flippase with specific binding sites for lipids.
Collapse
Affiliation(s)
- Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail: (CM); (GL)
| | - Thibaud Dieudonné
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - José Luis Vázquez-Ibar
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Carole Gauron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Dominique Georgin
- CEA, iBiTec-S, Service de Chimie Bioorganique et de Marquage, Gif-sur-Yvette, France
| | - Sten Lund
- Medical Research Laboratory, Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Marc le Maire
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jesper V. Møller
- Centre for Membrane Pumps in Cells and Disease—PUMPKIN, Danish National Research Foundation, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Philippe Champeil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Guillaume Lenoir
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail: (CM); (GL)
| |
Collapse
|
38
|
Structure-Function Relationship of the SERCA Pump and Its Regulation by Phospholamban and Sarcolipin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:77-119. [DOI: 10.1007/978-3-319-55858-5_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Drachmann ND, Olesen C. Lipid Exchange by Ultracentrifugation. Methods Mol Biol 2016; 1377:397-402. [PMID: 26695050 DOI: 10.1007/978-1-4939-3179-8_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lipids play an important role in maintaining P-type ATPase structure and function, and often they are crucial for ATPase activity. When the P-type ATPases are in the membrane, they are surrounded by a mix of different lipid species with varying aliphatic chain lengths and saturation, and the complex interplay between the lipids and the P-type ATPases are still not well understood. We here describe a robust method to exchange the majority of the lipids surrounding the ATPase after solubilisation and/or purification with a target lipid of interest. The method is based on an ultracentrifugation step, where the protein sample is spun through a dense buffer containing large excess of the target lipid, which results in an approximately 80-85 % lipid exchange. The method is a very gently technique that maintains protein folding during the process, hence allowing further characterization of the protein in the presence of a target lipid of interest.
Collapse
Affiliation(s)
- Nikolaj Düring Drachmann
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Danish National Research Foundation, Aarhus, Denmark. .,Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom.
| | - Claus Olesen
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Danish National Research Foundation, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
40
|
Inhibitory action of linoleamide and oleamide toward sarco/endoplasmic reticulum Ca 2+-ATPase. Biochim Biophys Acta Gen Subj 2016; 1861:3399-3405. [PMID: 27595606 DOI: 10.1016/j.bbagen.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/30/2016] [Accepted: 09/01/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND SERCA maintains intracellular Ca2+ homeostasis by sequestering cytosolic Ca2+ into SR/ER stores. Two primary fatty acid amides (PFAAs), oleamide (18:19-cis) and linoleamide (18:29,12-cis), induce an increase in intracellular Ca2+ levels, which might be caused by their inhibition of SERCA. METHODS Three major SERCA isoforms, rSERCA1a, hSERCA2b, and hSERCA3a, were individually overexpressed in COS-1 cells, and the inhibitory action of PFAAs on Ca2+-ATPase activity of SERCA was examined. RESULTS The Ca2+-ATPase activity of each SERCA was inhibited in a concentration-dependent manner strongly by linoleamide (IC50 15-53μM) and partially by oleamide (IC50 8.3-34μM). Inhibition by other PFAAs, such as stearamide (18:0) and elaidamide (18:19-trans), was hardly or slightly observed. With increasing dose, linoleamide decreased the apparent affinity for Ca2+ and the apparent maximum velocity of Ca2+-ATPase activity of all SERCAs tested. Oleamide also lowered these values for hSERCA3a. Meanwhile, oleamide uniquely reduced the apparent Ca2+ affinity of rSERCA1a and hSERCA2b: the reduction was considerably attenuated above certain concentrations of oleamide. The dissociation constants for SERCA interaction varied from 6 to 45μM in linoleamide and from 1.6 to 55μM in oleamide depending on the isoform. CONCLUSIONS Linoleamide and oleamide inhibit SERCA activity in the micromolar concentration range, and in a different manner. Both amides mainly suppress SERCA activity by lowering the Ca2+ affinity of the enzyme. GENERAL SIGNIFICANCE Our findings imply a novel role of these PFAAs as modulators of intracellular Ca2+ homeostasis via regulation of SERCA activity.
Collapse
|
41
|
Mehmood S, Corradi V, Choudhury HG, Hussain R, Becker P, Axford D, Zirah S, Rebuffat S, Tieleman DP, Robinson CV, Beis K. Structural and Functional Basis for Lipid Synergy on the Activity of the Antibacterial Peptide ABC Transporter McjD. J Biol Chem 2016; 291:21656-21668. [PMID: 27555327 DOI: 10.1074/jbc.m116.732107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/08/2016] [Indexed: 11/06/2022] Open
Abstract
The lipid bilayer is a dynamic environment that consists of a mixture of lipids with different properties that regulate the function of membrane proteins; these lipids are either annular, masking the protein hydrophobic surface, or specific lipids, essential for protein function. In this study, using tandem mass spectrometry, we have identified specific lipids associated with the Escherichia coli ABC transporter McjD, which translocates the antibacterial peptide MccJ25. Using non-denaturing mass spectrometry, we show that McjD in complex with MccJ25 survives the gas phase. Partial delipidation of McjD resulted in reduced ATPase activity and thermostability as shown by circular dichroism, both of which could be restored upon addition of defined E. coli lipids. We have resolved a phosphatidylglycerol lipid associated with McjD at 3.4 Å resolution, whereas molecular dynamic simulations carried out in different lipid environments assessed the binding of specific lipids to McjD. Combined, our data show a synergistic effect of zwitterionic and negatively charged lipids on the activity of McjD; the zwitterionic lipids provide structural stability to McjD, whereas the negatively charged lipids are essential for its function.
Collapse
Affiliation(s)
- Shahid Mehmood
- From the Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Valentina Corradi
- the Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hassanul G Choudhury
- the Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom.,the Membrane Protein Lab.,the Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire OX11 0DE, United Kingdom, and
| | - Rohanah Hussain
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, United Kingdom
| | - Patrick Becker
- the Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom.,the Membrane Protein Lab.,the Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire OX11 0DE, United Kingdom, and
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, United Kingdom
| | - Severine Zirah
- the Communication Molecules and Adaptation of Microorganisms Laboratory (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 Rue Cuvier, 75005 Paris, France
| | - Sylvie Rebuffat
- the Communication Molecules and Adaptation of Microorganisms Laboratory (MCAM, UMR 7245 CNRS-MNHN), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, CP 54, 57 Rue Cuvier, 75005 Paris, France
| | - D Peter Tieleman
- the Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Carol V Robinson
- From the Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom,
| | - Konstantinos Beis
- the Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom, .,the Membrane Protein Lab.,the Rutherford Appleton Laboratory, Research Complex at Harwell, Oxfordshire OX11 0DE, United Kingdom, and
| |
Collapse
|
42
|
Koldsø H, Reddy T, Fowler PW, Duncan AL, Sansom MSP. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane. J Phys Chem B 2016; 120:8873-81. [PMID: 27483109 DOI: 10.1021/acs.jpcb.6b05846] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.
Collapse
Affiliation(s)
- Heidi Koldsø
- Department of Biochemistry, University of Oxford , South Parks Road, OX1 3QU Oxford, United Kingdom
| | - Tyler Reddy
- Department of Biochemistry, University of Oxford , South Parks Road, OX1 3QU Oxford, United Kingdom
| | - Philip W Fowler
- Department of Biochemistry, University of Oxford , South Parks Road, OX1 3QU Oxford, United Kingdom
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford , South Parks Road, OX1 3QU Oxford, United Kingdom
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford , South Parks Road, OX1 3QU Oxford, United Kingdom
| |
Collapse
|
43
|
Directed evolution of a sphingomyelin flippase reveals mechanism of substrate backbone discrimination by a P4-ATPase. Proc Natl Acad Sci U S A 2016; 113:E4460-6. [PMID: 27432949 DOI: 10.1073/pnas.1525730113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipid flippases in the type IV P-type ATPase (P4-ATPases) family establish membrane asymmetry and play critical roles in vesicular transport, cell polarity, signal transduction, and neurologic development. All characterized P4-ATPases flip glycerophospholipids across the bilayer to the cytosolic leaflet of the membrane, but how these enzymes distinguish glycerophospholipids from sphingolipids is not known. We used a directed evolution approach to examine the molecular mechanisms through which P4-ATPases discriminate substrate backbone. A mutagenesis screen in the yeast Saccharomyces cerevisiae has identified several gain-of-function mutations in the P4-ATPase Dnf1 that facilitate the transport of a novel lipid substrate, sphingomyelin. We found that a highly conserved asparagine (N220) in the first transmembrane segment is a key enforcer of glycerophospholipid selection, and specific substitutions at this site allow transport of sphingomyelin.
Collapse
|
44
|
Lyons JA, Shahsavar A, Paulsen PA, Pedersen BP, Nissen P. Expression strategies for structural studies of eukaryotic membrane proteins. Curr Opin Struct Biol 2016; 38:137-44. [DOI: 10.1016/j.sbi.2016.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
|
45
|
Lipid interaction sites on channels, transporters and receptors: Recent insights from molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2390-2400. [PMID: 26946244 DOI: 10.1016/j.bbamem.2016.02.037] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 11/22/2022]
Abstract
Lipid molecules are able to selectively interact with specific sites on integral membrane proteins, and modulate their structure and function. Identification and characterization of these sites are of importance for our understanding of the molecular basis of membrane protein function and stability, and may facilitate the design of lipid-like drug molecules. Molecular dynamics simulations provide a powerful tool for the identification of these sites, complementing advances in membrane protein structural biology and biophysics. We describe recent notable biomolecular simulation studies which have identified lipid interaction sites on a range of different membrane proteins. The sites identified in these simulation studies agree well with those identified by complementary experimental techniques. This demonstrates the power of the molecular dynamics approach in the prediction and characterization of lipid interaction sites on integral membrane proteins. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
|
46
|
Karlsen JL, Bublitz M. How to Compare, Analyze, and Morph Between Crystal Structures of Different Conformations: The P-Type ATPase Example. Methods Mol Biol 2016; 1377:523-39. [PMID: 26695058 DOI: 10.1007/978-1-4939-3179-8_43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past 15 years, a large body of structural information on P-type ATPases has accumulated in the Protein Data Bank. The available crystal structures cover different enzymes in a variety of conformational states that are associated with the enzymatic activity of ATP-dependent ion translocation across membranes. This chapter provides an overview about the available structural information, along with some practical instructions on how to make meaningful comparisons of structures in different conformations, and how to generate morphs between series of structures, in order to analyze domain movements and structural flexibility.
Collapse
Affiliation(s)
- Jesper L Karlsen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| | - Maike Bublitz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
47
|
Montigny C, Lyons J, Champeil P, Nissen P, Lenoir G. On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:767-783. [PMID: 26747647 DOI: 10.1016/j.bbalip.2015.12.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/20/2015] [Accepted: 12/28/2015] [Indexed: 11/20/2022]
Abstract
Phospholipid flippases are key regulators of transbilayer lipid asymmetry in eukaryotic cell membranes, critical to many trafficking and signaling pathways. P4-ATPases, in particular, are responsible for the uphill transport of phospholipids from the exoplasmic to the cytosolic leaflet of the plasma membrane, as well as membranes of the late secretory/endocytic pathways, thereby establishing transbilayer asymmetry. Recent studies combining cell biology and biochemical approaches have improved our understanding of the path taken by lipids through P4-ATPases. Additionally, identification of several protein families catalyzing phospholipid 'scrambling', i.e. disruption of phospholipid asymmetry through energy-independent bi-directional phospholipid transport, as well as the recent report of the structure of such a scramblase, opens the way to a deeper characterization of their mechanism of action. Here, we discuss the molecular nature of the mechanism by which lipids may 'flip' across membranes, with an emphasis on active lipid transport catalyzed by P4-ATPases. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
- Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Joseph Lyons
- DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and PUMPkin, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Philippe Champeil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Poul Nissen
- DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, and PUMPkin, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Guillaume Lenoir
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
48
|
Moerkerke S, Wouters J, Jabin I. Selective Recognition of Phosphatidylcholine Lipids by a Biomimetic Calix[6]tube Receptor. J Org Chem 2015; 80:8720-6. [DOI: 10.1021/acs.joc.5b01531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Steven Moerkerke
- Laboratoire
de Chimie Organique, Université Libre de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Johan Wouters
- Département
de Chimie, Université de Namur (UNamur), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Ivan Jabin
- Laboratoire
de Chimie Organique, Université Libre de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| |
Collapse
|
49
|
Autzen HE, Siuda I, Sonntag Y, Nissen P, Møller JV, Thøgersen L. Regulation of the Ca(2+)-ATPase by cholesterol: a specific or non-specific effect? Mol Membr Biol 2015; 32:75-87. [PMID: 26260074 DOI: 10.3109/09687688.2015.1073382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Like other integral membrane proteins, the activity of the Sarco/Endoplasmic Reticulum Ca(2+)-ATPase (SERCA) is regulated by the membrane environment. Cholesterol is present in the endoplasmic reticulum membrane at low levels, and it has the potential to affect SERCA activity both through direct, specific interaction with the protein or through indirect interaction through changes of the overall membrane properties. There are experimental data arguing for both modes of action for a cholesterol-mediated regulation of SERCA. In the current study, coarse-grained molecular dynamics simulations are used to address how a mixed lipid-cholesterol membrane interacts with SERCA. Candidates for direct regulatory sites with specific cholesterol binding modes are extracted from the simulations. The binding pocket for thapsigargin, a nanomolar inhibitor of SERCA, has been suggested as a cholesterol binding site. However, the thapsigargin binding pocket displayed very little cholesterol occupation in the simulations. Neither did atomistic simulations of cholesterol in the thapsigargin binding pocket support any specific interaction. The current study points to a non-specific effect of cholesterol on SERCA activity, and offers an alternative interpretation of the experimental results used to argue for a specific effect.
Collapse
Affiliation(s)
- Henriette Elisabeth Autzen
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,b Department of Molecular Biology and Genetics , Aarhus University , Aarhus , Denmark
| | - Iwona Siuda
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,c Bioinformatics Research Centre (BiRC) , Aarhus , Denmark , and
| | - Yonathan Sonntag
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,b Department of Molecular Biology and Genetics , Aarhus University , Aarhus , Denmark
| | - Poul Nissen
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,b Department of Molecular Biology and Genetics , Aarhus University , Aarhus , Denmark
| | - Jesper Vuust Møller
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,d Department of Biomedicine , Aarhus University , Aarhus , Denmark
| | - Lea Thøgersen
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,c Bioinformatics Research Centre (BiRC) , Aarhus , Denmark , and
| |
Collapse
|
50
|
Bublitz M, Nass K, Drachmann ND, Markvardsen AJ, Gutmann MJ, Barends TRM, Mattle D, Shoeman RL, Doak RB, Boutet S, Messerschmidt M, Seibert MM, Williams GJ, Foucar L, Reinhard L, Sitsel O, Gregersen JL, Clausen JD, Boesen T, Gotfryd K, Wang KT, Olesen C, Møller JV, Nissen P, Schlichting I. Structural studies of P-type ATPase-ligand complexes using an X-ray free-electron laser. IUCRJ 2015; 2:409-20. [PMID: 26175901 PMCID: PMC4491313 DOI: 10.1107/s2052252515008969] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/08/2015] [Indexed: 05/24/2023]
Abstract
Membrane proteins are key players in biological systems, mediating signalling events and the specific transport of e.g. ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein-ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.
Collapse
Affiliation(s)
- Maike Bublitz
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10c, 8000 Aarhus C, Denmark
| | - Karol Nass
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nikolaj D. Drachmann
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10c, 8000 Aarhus C, Denmark
| | | | - Matthias J. Gutmann
- Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot OX11 0QX, England
| | - Thomas R. M. Barends
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Daniel Mattle
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10c, 8000 Aarhus C, Denmark
| | - Robert L. Shoeman
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - R. Bruce Doak
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Marc Messerschmidt
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Marvin M. Seibert
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Garth J. Williams
- Linac Coherent Light Source, LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Lutz Foucar
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Linda Reinhard
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10c, 8000 Aarhus C, Denmark
| | - Oleg Sitsel
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10c, 8000 Aarhus C, Denmark
| | - Jonas L. Gregersen
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10c, 8000 Aarhus C, Denmark
| | - Johannes D. Clausen
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10c, 8000 Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | - Thomas Boesen
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10c, 8000 Aarhus C, Denmark
| | - Kamil Gotfryd
- Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Kai-Tuo Wang
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10c, 8000 Aarhus C, Denmark
| | - Claus Olesen
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10c, 8000 Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | - Jesper V. Møller
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10c, 8000 Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Aarhus University, Gustav Wieds Vej 10c, 8000 Aarhus C, Denmark
- DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Ilme Schlichting
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|