1
|
Nguyen TNH, Goux D, Follet-Gueye ML, Bernard S, Padel L, Vicré M, Prud'homme MP, Morvan-Bertrand A. Generation and characterization of two new monoclonal antibodies produced by immunizing mice with plant fructans: New tools for immunolocalization of β-(2 → 1) and β-(2 → 6) fructans. Carbohydr Polym 2024; 327:121682. [PMID: 38171691 DOI: 10.1016/j.carbpol.2023.121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Fructans are water-soluble polymers of fructose in which fructose units are linked by β-(2 → 1) and/or β-(2 → 6) linkages. In plants, they are synthesized in the vacuole but have also been reported in the apoplastic sap under abiotic stress suggesting that they are involved in plasmalemma protection and in plant-microbial interactions. However, the lack of fructan-specific antibodies currently prevents further study of their role and the associated mechanisms of action, which could be elucidated thanks to their immunolocalization. We report the production of two monoclonal antibodies (named BTM9H2 and BTM15A6) using mice immunization with antigenic compounds prepared from a mixture of plant inulins and levans conjugated to serum albumin. Their specificity towards fructans with β-(2 → 1) and/or β-(2 → 6) linkage has been demonstrated by immuno-dot blot tests on a wide range of carbohydrates. The two mAbs were used for immunocytolocalization of fructans by epifluorescence microscopy in various plant species. Fructan epitopes were specifically detected in fructan-accumulating plants, inside cells as well as on the surface of root tips, confirming both extracellular and intracellular localizations. The two mAbs provide new tools to identify the mechanism of extracellular fructan secretion and explore the roles of fructans in stress resistance and plant-microorganism interactions.
Collapse
Affiliation(s)
- Thi Ngoc Hanh Nguyen
- Normandie Univ, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Fédération de Recherche "Normandie Végétal" - FED 4277, 14032 Caen, France; Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Didier Goux
- Normandie Univ, UNICAEN, US EMerode, CMAbio(3), 14032 Caen, France.
| | - Marie-Laure Follet-Gueye
- Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France; Normandie Univ, HeRacLeS-PRIMACEN, INSERM US51, CNRS UAR2026, ComUE Normandie Université, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France.
| | - Sophie Bernard
- Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France; Normandie Univ, HeRacLeS-PRIMACEN, INSERM US51, CNRS UAR2026, ComUE Normandie Université, UFR des Sciences et Techniques, F-76821 Mont-Saint-Aignan, France.
| | | | - Maïté Vicré
- Université de Rouen Normandie, Laboratoire Glyco-MEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France.
| | - Marie-Pascale Prud'homme
- Normandie Univ, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Fédération de Recherche "Normandie Végétal" - FED 4277, 14032 Caen, France.
| | - Annette Morvan-Bertrand
- Normandie Univ, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Fédération de Recherche "Normandie Végétal" - FED 4277, 14032 Caen, France.
| |
Collapse
|
2
|
Willems T, Hectors W, Rombaut J, De Rop AS, Goegebeur S, Delmulle T, De Mol ML, De Maeseneire SL, Soetaert WK. An exploratory in silico comparison of open-source codon harmonization tools. Microb Cell Fact 2023; 22:227. [PMID: 37932726 PMCID: PMC10626681 DOI: 10.1186/s12934-023-02230-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/14/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Not changing the native constitution of genes prior to their expression by a heterologous host can affect the amount of proteins synthesized as well as their folding, hampering their activity and even cell viability. Over the past decades, several strategies have been developed to optimize the translation of heterologous genes by accommodating the difference in codon usage between species. While there have been a handful of studies assessing various codon optimization strategies, to the best of our knowledge, no research has been performed towards the evaluation and comparison of codon harmonization algorithms. To highlight their importance and encourage meaningful discussion, we compared different open-source codon harmonization tools pertaining to their in silico performance, and we investigated the influence of different gene-specific factors. RESULTS In total, 27 genes were harmonized with four tools toward two different heterologous hosts. The difference in %MinMax values between the harmonized and the original sequences was calculated (ΔMinMax), and statistical analysis of the obtained results was carried out. It became clear that not all tools perform similarly, and the choice of tool should depend on the intended application. Almost all biological factors under investigation (GC content, RNA secondary structures and choice of heterologous host) had a significant influence on the harmonization results and thus must be taken into account. These findings were substantiated using a validation dataset consisting of 8 strategically chosen genes. CONCLUSIONS Due to the size of the dataset, no complex models could be developed. However, this initial study showcases significant differences between the results of various codon harmonization tools. Although more elaborate investigation is needed, it is clear that biological factors such as GC content, RNA secondary structures and heterologous hosts must be taken into account when selecting the codon harmonization tool.
Collapse
Affiliation(s)
- Thomas Willems
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Wim Hectors
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Jeltien Rombaut
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Anne-Sofie De Rop
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Stijn Goegebeur
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Tom Delmulle
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Maarten L De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Sofie L De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium.
| | - Wim K Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| |
Collapse
|
3
|
Härer L, Ernst L, Bechtner J, Wefers D, Ehrmann MA. Glycoside hydrolase family 32 enzymes from Bombella spp. catalyze the formation of high-molecular weight fructans from sucrose. J Appl Microbiol 2023; 134:lxad268. [PMID: 37974045 DOI: 10.1093/jambio/lxad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
AIMS Acetic acid bacteria of the genus Bombella have not been reported to produce exopolysaccharides (EPS). In this study, the formation of fructans by B. apis TMW 2.1884 and B. mellum TMW 2.1889 was investigated. METHODS AND RESULTS Out of eight strains from four different Bombella species, only B. apis TMW 2.1884 and B. mellum TMW 2.1889 showed EPS formation with 50 g l-1 sucrose as substrate. Both EPS were identified as high-molecular weight (HMW) polymers (106-107 Da) by asymmetric flow field-flow fractionation coupled to multi angle laser light scattering and UV detecors (AF4-MALLS/UV) and high performance size exclusion chromatography coupled to MALLS and refractive index detectors (HPSEC-MALLS/RI) analyses. Monosaccharide analysis via trifluoroacetic acid hydrolysis showed that both EPS are fructans. Determination of glycosidic linkages by methylation analysis revealed mainly 2,6-linked fructofuranose (Fruf) units with additional 2,1-linked Fruf units (10%) and 2,1,6-Fruf branched units (7%). No glycoside hydrolase (GH) 68 family genes that are typically associated with the formation of HMW fructans in bacteria could be identified in the genomes. Through heterologous expression in Escherichia coli Top10, an enzyme of the GH32 family could be assigned to the catalysis of fructan formation. The identified fructosyltransferases could be clearly differentiated phylogenetically and structurally from other previously described bacterial fructosyltransferases. CONCLUSIONS The formation of HMW fructans by individual strains of the genus Bombella is catalyzed by enzymes of the GH32 family. Analysis of the fructans revealed an atypical structure consisting of 2,6-linked Fruf units as well as 2,1-linked Fruf units and 2,1,6-Fruf units.
Collapse
Affiliation(s)
- Luca Härer
- Chair of Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Luise Ernst
- Institute of Chemistry, Division of Food Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Saale), Germany
| | - Julia Bechtner
- Department of Food Science-Food Technology, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Daniel Wefers
- Institute of Chemistry, Division of Food Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Saale), Germany
| | - Matthias A Ehrmann
- Chair of Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| |
Collapse
|
4
|
Zhang X, Xu W, Ni D, Zhang W, Guang C, Mu W. Successful Manipulation of the Product Spectrum of the Erwinia amylovora Levansucrase by Modifying the Residues around loop1, Loop 3, and Loop 4. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:680-689. [PMID: 36538710 DOI: 10.1021/acs.jafc.2c07891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Levansucrase (LS, EC 2.4.1.10) catalyzes the synthesis of levan by successively transferring the fructosyl moiety from sucrose to an elongated fructan chain. Although the product distribution of LS from Erwinia amylovora (Ea-LS) was studied under different sucrose concentrations, the effect of residues on the product formation is yet unknown. The first levanhexaose-complexed structure of LS from Bacillus subtilis (Bs-SacB) provided information on the oligosaccharide binding sites (OB sites), from +1 to +4 subsites. Since Ea-LS would efficiently produce fructooligosaccharides, a substitution mutation of OB sites in Bs-SacB and the corresponding residues of Ea-LS were conducted to investigate how these mutants would influence the product distribution. As a result, a series of mutants with different product spectrum were obtained. Notably, the mutants of G98E, V151F, and N200T around loop 1, loop 3, and loop 4 all showed a significant increase in both the molecular mass and the yield of high-molecular-mass levan, suggesting that the product profile of Ea-LS was significantly modified.
Collapse
Affiliation(s)
- Xiaoqi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Lara-Cruz GA, Jaramillo-Botero A. Molecular Level Sucrose Quantification: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:9511. [PMID: 36502213 PMCID: PMC9740140 DOI: 10.3390/s22239511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Sucrose is a primary metabolite in plants, a source of energy, a source of carbon atoms for growth and development, and a regulator of biochemical processes. Most of the traditional analytical chemistry methods for sucrose quantification in plants require sample treatment (with consequent tissue destruction) and complex facilities, that do not allow real-time sucrose quantification at ultra-low concentrations (nM to pM range) under in vivo conditions, limiting our understanding of sucrose roles in plant physiology across different plant tissues and cellular compartments. Some of the above-mentioned problems may be circumvented with the use of bio-compatible ligands for molecular recognition of sucrose. Nevertheless, problems such as the signal-noise ratio, stability, and selectivity are some of the main challenges limiting the use of molecular recognition methods for the in vivo quantification of sucrose. In this review, we provide a critical analysis of the existing analytical chemistry tools, biosensors, and synthetic ligands, for sucrose quantification and discuss the most promising paths to improve upon its limits of detection. Our goal is to highlight the criteria design need for real-time, in vivo, highly sensitive and selective sucrose sensing capabilities to enable further our understanding of living organisms, the development of new plant breeding strategies for increased crop productivity and sustainability, and ultimately to contribute to the overarching need for food security.
Collapse
Affiliation(s)
| | - Andres Jaramillo-Botero
- Omicas Alliance, Pontificia Universidad Javeriana, Cali 760031, Colombia
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
6
|
Insights into the Structure of the Highly Glycosylated Ffase from Rhodotorula dairenensis Enhance Its Biotechnological Potential. Int J Mol Sci 2022; 23:ijms232314981. [PMID: 36499311 PMCID: PMC9741242 DOI: 10.3390/ijms232314981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Rhodotorula dairenensis β-fructofuranosidase is a highly glycosylated enzyme with broad substrate specificity that catalyzes the synthesis of 6-kestose and a mixture of the three series of fructooligosaccharides (FOS), fructosylating a variety of carbohydrates and other molecules as alditols. We report here its three-dimensional structure, showing the expected bimodular arrangement and also a unique long elongation at its N-terminus containing extensive O-glycosylation sites that form a peculiar arrangement with a protruding loop within the dimer. This region is not required for activity but could provide a molecular tool to target the dimeric protein to its receptor cellular compartment in the yeast. A truncated inactivated form was used to obtain complexes with fructose, sucrose and raffinose, and a Bis-Tris molecule was trapped, mimicking a putative acceptor substrate. The crystal structure of the complexes reveals the major traits of the active site, with Asn387 controlling the substrate binding mode. Relevant residues were selected for mutagenesis, the variants being biochemically characterized through their hydrolytic and transfructosylating activity. All changes decrease the hydrolytic efficiency against sucrose, proving their key role in the activity. Moreover, some of the generated variants exhibit redesigned transfructosylating specificity, which may be used for biotechnological purposes to produce novel fructosyl-derivatives.
Collapse
|
7
|
De novo genome assembly and analysis of Zalaria sp. Him3, a novel fructooligosaccharides producing yeast. BMC Genom Data 2022; 23:78. [PMID: 36357835 PMCID: PMC9647967 DOI: 10.1186/s12863-022-01094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background Zalaria sp. Him3 was reported as a novel fructooligosaccharides (FOS) producing yeast. However, Zalaria spp. have not been widely known and have been erroneously classified as a different black yeast, Aureobasidium pullulans. In this study, de novo genome assembly and analysis of Zalaria sp. Him3 was demonstrated to confirm the existence of a potential enzyme that facilitates FOS production and to compare with the genome of A. pullulans. Results The genome of Zalaria sp. Him3 was analyzed; the total read bases and total number of reads were 6.38 Gbp and 42,452,134 reads, respectively. The assembled genome sequence was calculated to be 22.38 Mbp, with 207 contigs, N50 of 885,387, L50 of 10, GC content of 53.8%, and 7,496 genes. g2419, g3120, and g3700 among the predicted genes were annotated as cellulase, xylanase, and β-fructofuranosidase (FFase), respectively. When the read sequences were mapped to A. pullulans EXF-150 genome as a reference, a small amount of reads (3.89%) corresponded to the reference genome. Phylogenetic tree analysis, which was based on the conserved sequence set consisting of 2,362 orthologs in the genome, indicated genetic differences between Zalaria sp. Him3 and Aureobasidium spp. Conclusion The differences between Zalaria and Aureobasidium spp. were evident at the genome level. g3700 identified in the Zalaria sp. Him3 likely does not encode a highly transfructosyl FFase because the motif sequences were unlike those in other FFases involved in FOS production. Therefore, strain Him3 may produce another FFase. Furthermore, several genes with promising functions were identified and might elicit further interest in Zalaria yeast. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01094-2.
Collapse
|
8
|
Hu TG, Wu H, Yu YS, Xu YJ, Li EN, Liao ST, Wen P, Zou YX. Preparation, structural characterization and prebiotic potential of mulberry leaf oligosaccharides. Food Funct 2022; 13:5287-5298. [PMID: 35441628 DOI: 10.1039/d1fo04048k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The present study shows the purification of a main oligosaccharide fraction (MLO 1-2) from the enzymatic hydrolysate of mulberry leaf polysaccharides by DEAE-52 cellulose and gel column chromatography. The physicochemical properties of MLO 1-2 were characterized. The structure of MLO 1-2 was obtained as follows: α-(2-OAc)-Manp-1 → 2-β-Glcp-1 → 4-β-Glcp-1 → 4-α-Glcp-1 → 2-α-Glcp-1 → 2-α-Galp-1 → 2-β-Galp-1 → 2-β-Galp-1, which was elucidated by methylation and NMR analysis. The molecular weight of MLO 1-2 showed no significant change after simulated saliva, gastric and intestinal digestion. This indicated that MLO 1-2 could pass through the digestive system without being degraded to safely reach the colon to regulate the gut microbiota. Additionally, MLO 1-2, more than glucose or galactooligosaccharides, promoted the proliferation of Bifidobacterium bifidum, B. adolescentis, Lacticaseibacillus rhamnosus and Lactobacillus acidophilus. Furthermore, the acetic and lactic acid concentrations of bacterial cultures inoculated with MLO 1-2 were higher than those inoculated with glucose and galactooligosaccharide (GOS). These results suggest that MLO 1-2 could be an excellent prebiotic for intestinal flora regulation and the promotion of gut health.
Collapse
Affiliation(s)
- Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, China
| | - Yuan-Shan Yu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Yu-Juan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Er-Na Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Sen-Tai Liao
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Peng Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, China.
| | - Yu-Xiao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| |
Collapse
|
9
|
Tanno H, Fujii T, Hirano K, Maeno S, Tonozuka T, Sakamoto M, Ohkuma M, Tochio T, Endo A. Characterization of fructooligosaccharide metabolism and fructooligosaccharide-degrading enzymes in human commensal butyrate producers. Gut Microbes 2022; 13:1-20. [PMID: 33439065 PMCID: PMC7833758 DOI: 10.1080/19490976.2020.1869503] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Butyrate produced by gut microbiota has multiple beneficial effects on host health, and oligosaccharides derived from host diets and glycans originating from host mucus are major sources of its production. A significant reduction of butyrate-producing bacteria has been reported in patients with inflammatory bowel diseases and colorectal cancers. Although gut butyrate levels are important for host health, oligosaccharide metabolic properties in butyrate producers are poorly characterized. We studied the metabolic properties of fructooligosaccharides (FOSs) and other prebiotic oligosaccharides (i.e. raffinose and xylooligosaccharides; XOSs) in gut butyrate producers. 1-Kestose (kestose) and nystose, FOSs with degrees of polymerization of 3 and 4, respectively, were also included. Fourteen species of butyrate producers were divided into four groups based on their oligosaccharide metabolic properties, which are group A (two species) metabolizing all oligosaccharides tested, group F (four species) metabolizing FOSs but not raffinose and XOSs, group XR (four species) metabolizing XOSs and/or raffinose but not FOSs, and group N (four species) metabolizing none of the oligosaccharides tested. Species assigned to groups A and XR are rich glycoside hydrolase (GH) holders, whereas those in groups F and N are the opposite. In total, 17 enzymes assigned to GH32 were observed in nine of the 14 butyrate producers tested, and species that metabolized FOSs had at least one active GH32 enzyme. The GH32 enzymes were divided into four clusters by phylogenetic analysis. Heterologous gene expression analysis revealed that the GH32 enzymes in each cluster had similar FOS degradation properties within clusters, which may be linked to the conservation/substitution of amino acids to bind with substrates in GH32 enzymes. This study provides important knowledge to understand the impact of FOS supplementation on the activation of gut butyrate producers. Abbreviations: SCFA, short chain fatty acid; FOS, fructooligosaccharide; XOS, xylooligosaccharide; CAZy, Carbohydrate Active Enzymes; CBM, carbohydrate-binding module; PUL, polysaccharide utilization locus; S6PH sucrose-6-phosphate hydrolase.
Collapse
Affiliation(s)
- Hiroki Tanno
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | | | | | - Shintaro Maeno
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mitsuo Sakamoto
- PRIME, Japan Agency for Medical Research and Development (AMED), Ibaraki, Japan,Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| | | | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan,CONTACT Akihito Endo Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido099-2493, Japan
| |
Collapse
|
10
|
Oligosaccharide Metabolism and Lipoteichoic Acid Production in Lactobacillus gasseri and Lactobacillus paragasseri. Microorganisms 2021; 9:microorganisms9081590. [PMID: 34442669 PMCID: PMC8401598 DOI: 10.3390/microorganisms9081590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus gasseri and Lactobacillus paragasseri are human commensal lactobacilli that are candidates for probiotic application. Knowledge of their oligosaccharide metabolic properties is valuable for synbiotic application. The present study characterized oligosaccharide metabolic systems and their impact on lipoteichoic acid (LTA) production in the two organisms, i.e., L. gasseri JCM 1131T and L. paragasseri JCM 11657. The two strains grew well in medium with glucose but poorly in medium with raffinose, and growth rates in medium with kestose differed between the strains. Oligosaccharide metabolism markedly influenced their LTA production, and apparent molecular size of LTA in electrophoresis recovered from cells cultured with glucose and kestose differed from that from cells cultured with raffinose in the strains. On the other hand, more than 15-fold more LTA was observed in the L. gasseri cells cultured with raffinose when compared with glucose or kestose after incubation for 15 h. Transcriptome analysis identified glycoside hydrolase family 32 enzyme as a potential kestose hydrolysis enzyme in the two strains. Transcriptomic levels of multiple genes in the dlt operon, involved in D-alanine substitution of LTA, were lower in cells cultured with raffinose than in those cultured with kestose or glucose. This suggested that the different sizes of LTA observed among the carbohydrates tested were partly due to different levels of alanylation of LTA. The present study indicates that available oligosaccharide has the impact on the LTA production of the industrially important lactobacilli, which might influence their probiotic properties.
Collapse
|
11
|
Han S, Pan L, Zeng W, Yang L, Yang D, Chen G, Liang Z. Improved production of fructooligosaccharides (FOS) using a mutant strain of Aspergillus oryzae S719 overexpressing β-fructofuranosidase (FTase) genes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Doan CT, Tran TN, Nguyen TT, Tran TPH, Nguyen VB, Tran TD, Nguyen AD, Wang SL. Production of Sucrolytic Enzyme by Bacillus licheniformis by the Bioconversion of Pomelo Albedo as a Carbon Source. Polymers (Basel) 2021; 13:polym13121959. [PMID: 34199171 PMCID: PMC8231626 DOI: 10.3390/polym13121959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022] Open
Abstract
Recently, there has been increasing use of agro-byproducts in microbial fermentation to produce a variety of value-added products. In this study, among various kinds of agro-byproducts, pomelo albedo powder (PAP) was found to be the most effective carbon source for the production of sucrose hydrolyzing enzyme by Bacillus licheniformis TKU004. The optimal medium for sucrolytic enzyme production contained 2% PAP, 0.75% NH4NO3, 0.05% MgSO4, and 0.05% NaH2PO4 and the optimal culture conditions were pH 6.7, 35 °C, 150 rpm, and 24 h. Accordingly, the highest sucrolytic activity was 1.87 U/mL, 4.79-fold higher than that from standard conditions using sucrose as the carbon source. The purified sucrolytic enzyme (sleTKU004) is a 53 kDa monomeric protein and belongs to the glycoside hydrolase family 68. The optimum temperature and pH of sleTKU004 were 50 °C, and pH = 6, respectively. SleTKU004 could hydrolyze sucrose, raffinose, and stachyose by attacking the glycoside linkage between glucose and fructose molecules of the sucrose unit. The Km and Vmax of sleTKU004 were 1.16 M and 5.99 µmol/min, respectively. Finally, sleTKU004 showed strong sucrose tolerance and presented the highest hydrolytic activity at the sucrose concentration of 1.2 M–1.5 M.
Collapse
Affiliation(s)
- Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Thi Thanh Nguyen
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Thi Phuong Hanh Tran
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (V.B.N.); (A.D.N.)
| | - Trung Dung Tran
- Faculty of Natural Sciences and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (T.T.N.); (T.P.H.T.); (T.D.T.)
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam; (V.B.N.); (A.D.N.)
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
- Correspondence: ; Tel.: +886-2-2621-5656; Fax: +886-2-2620-9924
| |
Collapse
|
13
|
Choukade R, Kango N. Production, properties, and applications of fructosyltransferase: a current appraisal. Crit Rev Biotechnol 2021; 41:1178-1193. [PMID: 34015988 DOI: 10.1080/07388551.2021.1922352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Fructosyltransferases (FTases) are drawing increasing attention due to their application in prebiotic fructooligosaccharide (FOS) generation. FTases have been reported to occur in a variety of microorganisms but are predominantly found in filamentous fungi. These are employed at the industrial scale for generating FOS which make the key ingredient in functional food supplements and nutraceuticals due to their bifidogenic and various other health-promoting properties. SCOPE AND APPROACH This review is aimed to discuss recent developments made in the area of FTase production, characterization, and application in order to present a comprehensive account of their present status to the reader. Structural features, catalytic mechanisms, and FTase improvement strategies have also been discussed in order to provide insight into these aspects. KEY FINDINGS AND CONCLUSIONS Although FTases occur in several plants and microorganisms, fungal FTases are being exploited commercially for industrial-scale FOS generation. Several fungal FTases have been characterized and heterologously expressed. However, considerable scope exists for improved production and application of FTases for cost-effective production of prebiotic FOS.HIGHLIGHTSFructosyltrasferase (FTase) is a key enzyme in fructo-oligosaccharide (FOS) generationDevelopments in the production, properties, and functional aspects of FTasesMolecular modification and immobilization strategies for improved FOS generationFructosyltransferases are innovation hotspots in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Ritumbhara Choukade
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
14
|
Wang Y, Shang X, Cao F, Yang H. Research Progress and Prospects for Fructosyltransferases. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yitian Wang
- Yangzhou University Clinical Medical College 225009 Yangzhou China
- Northern Jiangsu People's Hospital 225001 Yangzhou China
- Jiangnan University School of Biotechnology 214122 Wuxi China
| | - Xiujie Shang
- Yangzhou University Clinical Medical College 225009 Yangzhou China
- Qingdao Dengta Flavoring and Food Co. Ltd 266399 Qingdao China
| | - Fan Cao
- Vanderbilt University Department of Biochemistry 37235 Nashville TN USA
| | - Haiquan Yang
- Jiangnan University School of Biotechnology 214122 Wuxi China
- Jiangnan University The Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education 214122 Wuxi China
| |
Collapse
|
15
|
The β-Fructofuranosidase from Rhodotorula dairenensis: Molecular Cloning, Heterologous Expression, and Evaluation of Its Transferase Activity. Catalysts 2021. [DOI: 10.3390/catal11040476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The β-fructofuranosidase from the yeast Rhodotorula dairenensis (RdINV) produces a mixture of potential prebiotic fructooligosaccharides (FOS) of the levan-, inulin- and neo-FOS series by transfructosylation of sucrose. In this work, the gene responsible for this activity was characterized and its functionality proved in Pichia pastoris. The amino acid sequence of the new protein contained most of the characteristic elements of β-fructofuranosidases included in the family 32 of the glycosyl hydrolases (GH32). The heterologous yeast produced a protein of about 170 kDa, where N-linked and O-linked carbohydrates constituted about 15% and 38% of the total protein mass, respectively. Biochemical and kinetic properties of the heterologous protein were similar to the native enzyme, including its ability to produce prebiotic sugars. The maximum concentration of FOS obtained was 82.2 g/L, of which 6-kestose represented about 59% (w/w) of the total products synthesized. The potential of RdINV to fructosylate 19 hydroxylated compounds was also explored, of which eight sugars and four alditols were modified. The flexibility to recognize diverse fructosyl acceptors makes this protein valuable to produce novel glycosyl-compounds with potential applications in food and pharmaceutical industries.
Collapse
|
16
|
Kido Y, Maeno S, Tanno H, Kichise Y, Shiwa Y, Endo A. Niche-specific adaptation of Lactobacillus helveticus strains isolated from malt whisky and dairy fermentations. Microb Genom 2021; 7:000560. [PMID: 33900907 PMCID: PMC8208680 DOI: 10.1099/mgen.0.000560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Lactobacillus helveticus is a well characterized lactobacillus for dairy fermentations that is also found in malt whisky fermentations. The two environments contain considerable differences related to microbial growth, including the presence of different growth inhibitors and nutrients. The present study characterized L. helveticus strains originating from dairy fermentations (called milk strains hereafter) and malt whisky fermentations (called whisky strains hereafter) by in vitro phenotypic tests and comparative genomics. The whisky strains can tolerate ethanol more than the milk strains, whereas the milk strains can tolerate lysozyme and lactoferrin more than the whisky strains. Several plant-origin carbohydrates, including cellobiose, maltose, sucrose, fructooligosaccharide and salicin, were generally metabolized only by the whisky strains, whereas milk-derived carbohydrates, i.e. lactose and galactose, were metabolized only by the milk strains. Milk fermentation properties also distinguished the two groups. The general genomic characteristics, including genomic size, number of coding sequences and average nucleotide identity values, differentiated the two groups. The observed differences in carbohydrate metabolic properties between the two groups correlated with the presence of intact specific enzymes in glycoside hydrolase (GH) families GH1, GH4, GH13, GH32 and GH65. Several GHs in the milk strains were inactive due to the presence of stop codon(s) in genes encoding the GHs, and the inactivation patterns of the genes encoding specific enzymes assigned to GH1 in the milk strains suggested a possible diversification manner of L. helveticus strains. The present study has demonstrated how L. helveticus strains have adapted to their habitats.
Collapse
Affiliation(s)
- Yoshihiko Kido
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| | - Shintaro Maeno
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| | - Hiroki Tanno
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| | - Yuko Kichise
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yuh Shiwa
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| |
Collapse
|
17
|
Tarkowski ŁP, Tsirkone VG, Osipov EM, Beelen S, Lammens W, Vergauwen R, Van den Ende W, Strelkov SV. Crystal structure of Arabidopsis thaliana neutral invertase 2. Acta Crystallogr F Struct Biol Commun 2020; 76:152-157. [PMID: 32134001 PMCID: PMC7057345 DOI: 10.1107/s2053230x2000179x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/07/2020] [Indexed: 11/11/2022] Open
Abstract
The metabolism of sucrose is of crucial importance for life on Earth. In plants, enzymes called invertases split sucrose into glucose and fructose, contributing to the regulation of metabolic fluxes. Invertases differ in their localization and pH optimum. Acidic invertases present in plant cell walls and vacuoles belong to glycoside hydrolase family 32 (GH32) and have an all-β structure. In contrast, neutral invertases are located in the cytosol and organelles such as chloroplasts and mitochondria. These poorly understood enzymes are classified into a separate GH100 family. Recent crystal structures of the closely related neutral invertases InvA and InvB from the cyanobacterium Anabaena revealed a predominantly α-helical fold with unique features compared with other sucrose-metabolizing enzymes. Here, a neutral invertase (AtNIN2) from the model plant Arabidopsis thaliana was heterologously expressed, purified and crystallized. As a result, the first neutral invertase structure from a higher plant has been obtained at 3.4 Å resolution. The hexameric AtNIN2 structure is highly similar to that of InvA, pointing to high evolutionary conservation of neutral invertases.
Collapse
Affiliation(s)
- Łukasz P. Tarkowski
- Molecular Plant Biology Laboratory, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium
| | - Vicky G. Tsirkone
- Molecular Plant Biology Laboratory, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium
| | - Evgenii M. Osipov
- Molecular Plant Biology Laboratory, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium
| | - Steven Beelen
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, O&N II, bus 822, 3000 Leuven, Belgium
| | - Willem Lammens
- Molecular Plant Biology Laboratory, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium
| | - Rudy Vergauwen
- Molecular Plant Biology Laboratory, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium
| | - Wim Van den Ende
- Molecular Plant Biology Laboratory, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3000 Leuven, Belgium
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, O&N II, bus 822, 3000 Leuven, Belgium
| |
Collapse
|
18
|
Cheng X, Garcés-Carrera S, Whitworth RJ, Fellers JP, Park Y, Chen MS. A Horizontal Gene Transfer Led to the Acquisition of a Fructan Metabolic Pathway in a Gall Midge. ACTA ACUST UNITED AC 2020; 4:e1900275. [PMID: 32293157 DOI: 10.1002/adbi.201900275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/30/2020] [Indexed: 01/19/2023]
Abstract
Animals are thought to use only glucose polymers (glycogen) as energy reserve, whereas both glucose (starch) and fructose polymers (fructans) are used by microbes and plants. Here, it is reported that the gall midge Mayetiola destructor, and likely other herbivorous animal species, gained the ability to utilize dietary fructans directly as storage polysaccharides by a single horizontal gene transfer (HGT) of bacterial levanase/inulinase gene followed by gene expansion and differentiation. Multiple genes encoding levanases/inulinases have their origin in a single HGT event from a bacterium and they show high expression levels and enzymatic activities in different tissues of the gall midge, including nondigestive fat bodies and eggs, both of which contained significant amounts of fructans. This study provides evidence that animals can also use fructans as energy reserve by incorporating bacterial genes in their genomes.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS, 66506, USA
| | | | - Robert Jeff Whitworth
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS, 66506, USA
| | - John P Fellers
- Hard Winter Wheat Genetics Research Unit, Center for Grain and Animal Health Research Center, USDA-ARS, 4008 Throckmorton, Manhattan, KS, 66506, USA
| | - Yoonseong Park
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS, 66506, USA
| | - Ming-Shun Chen
- Department of Entomology, Kansas State University, 123 Waters Hall, Manhattan, KS, 66506, USA
- Hard Winter Wheat Genetics Research Unit, Center for Grain and Animal Health Research Center, USDA-ARS, 4008 Throckmorton, Manhattan, KS, 66506, USA
| |
Collapse
|
19
|
Coetzee G, van Rensburg E, Görgens JF. Evaluation of the performance of an engineered β-fructofuranosidase from Aspergillus fijiensis to produce short-chain fructooligosaccharides from industrial sugar streams. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Han S, Ye T, Leng S, Pan L, Zeng W, Chen G, Liang Z. Purification and biochemical characteristics of a novel fructosyltransferase with a high FOS transfructosylation activity from Aspergillus oryzae S719. Protein Expr Purif 2019; 167:105549. [PMID: 31805395 DOI: 10.1016/j.pep.2019.105549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022]
Abstract
Fructooligosaccharides (FOS) have widely used for the manufacture of low-calorie and functional foods, because they can inhibit intestinal pathogenic microorganism growth and increase the absorption of Ca2+ and Mg2+. In this study, the novel fructosyltransferase (FTase) from Aspergillus oryzae strain S719 was successfully purified and characterized. The specific activity of the final purified material was 4200 mg-1 with purification ratio of 66 times and yield of 26%. The molecular weight of FTase of A. oryzae S719 was around 95 kDa by SDS-PAGE, which was identified as a type of FTase by Mass Spectrometry (MS). The purified FTase had optimum temperature and pH of 55 °C and 6.0, respectively. The FTase showed to be stable with more than 80% of its original activity at room temperature after 12 h and maintaining activity above 90% at pH 4.0-11.0. The Km and kcat values of the FTase were 310 mmol L-1 and 2.0 × 103 min-1, respectively. The FTase was activated by 5 mmol L-1 Mg2+ and 10 mmol L-1 Na+ (relative activity of 116 and 114%, respectively), indicating that the enzyme was Mg2+ and Na+ dependent. About 64% of FOS was obtained by the purified FTase under 500 g L-1 sucrose within 4 h of reaction time, which was the shortest reaction time to be reported regarding the purified enzyme production of FOS. Together, these results indicated that the FTase of A. oryzae S719 is an excellent candidate for the industrial production of FOS.
Collapse
Affiliation(s)
- Susu Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, China; College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Tong Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, China; College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Shuo Leng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, China; College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Biomass, Engineering Technology Research Center, Guangxi Academy of Sciences, 98 Daling Road, Nanning, 530007, China
| | - Wei Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, China; College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Guiguang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, China; College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, China; College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
21
|
A close look at the structural features and reaction conditions that modulate the synthesis of low and high molecular weight fructans by levansucrases. Carbohydr Polym 2019; 219:130-142. [DOI: 10.1016/j.carbpol.2019.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/13/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
|
22
|
Aung T, Jiang H, Liu GL, Chi Z, Hu Z, Chi ZM. Overproduction of a β-fructofuranosidase1 with a high FOS synthesis activity for efficient biosynthesis of fructooligosaccharides. Int J Biol Macromol 2019; 130:988-996. [DOI: 10.1016/j.ijbiomac.2019.03.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/14/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
|
23
|
Relationship between β-d-fructofuranosidase activity, fructooligosaccharides and pullulan biosynthesis in Aureobasidium melanogenum P16. Int J Biol Macromol 2019; 125:1103-1111. [DOI: 10.1016/j.ijbiomac.2018.12.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 12/25/2022]
|
24
|
Kerry RG, Patra JK, Gouda S, Park Y, Shin HS, Das G. Benefaction of probiotics for human health: A review. J Food Drug Anal 2018; 26:927-939. [PMID: 29976412 PMCID: PMC9303019 DOI: 10.1016/j.jfda.2018.01.002] [Citation(s) in RCA: 452] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/26/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023] Open
Abstract
Humans are a unique reservoir of heterogeneous and vivacious group of microbes, which together forms the human-microbiome superorganism. Human gut serves as a home to over 100-1000 microbial species, which primarily modulate the host internal environment and thereby, play a major role in host health. This spectacular symbiotic relationship has attracted extensive research in this field. More specifically, these organisms play key roles in defense function, eupepsia along with catabolism and anabolism, and impact brain-gut responses. The emergence of microbiota with resistance and tolerance to existing conventional drugs and antibiotics has decreased the drug efficacies. Furthermore, the modern biotechnology mediated nano-encapsulated multiplex supplements appear to be high cost and inconvenient. Henceforth, a simple, low-cost, receptive and intrinsic approach to achieve health benefits is vital in the present era. Supplementation with probiotics, prebiotics, and synbiotics has shown promising results against various enteric pathogens due to their unique ability to compete with pathogenic microbiota for adhesion sites, to alienate pathogens or to stimulate, modulate and regulate the host's immune response by initiating the activation of specific genes in and outside the host intestinal tract. Probiotics have also been shown to regulate fat storage and stimulate intestinal angiogenesis. Hence, this study aims to underline the possible beneficial impact of probiotics for human health and medical sectors and for better lifestyle.
Collapse
Affiliation(s)
- Rout George Kerry
- P.G. Department of Biotechnology, Academy of Management & Information Technology, Khurda, 752057, Odisha,
India
| | - Jayanta Kumar Patra
- P.G. Department of Biotechnology, Academy of Management & Information Technology, Khurda, 752057, Odisha,
India
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
| | - Sushanto Gouda
- Amity Institute of Wildlife Science, Noida, 201303, Uttar Pradesh,
India
| | - Yooheon Park
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
| | - Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
- Corresponding author. E-mail address: (G. Das)
| |
Collapse
|
25
|
Versluys M, Kirtel O, Toksoy Öner E, Van den Ende W. The fructan syndrome: Evolutionary aspects and common themes among plants and microbes. PLANT, CELL & ENVIRONMENT 2018; 41:16-38. [PMID: 28925070 DOI: 10.1111/pce.13070] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/30/2017] [Accepted: 09/09/2017] [Indexed: 05/13/2023]
Abstract
Fructans are multifunctional fructose-based water soluble carbohydrates found in all biological kingdoms but not in animals. Most research has focused on plant and microbial fructans and has received a growing interest because of their practical applications. Nevertheless, the origin of fructan production, the so-called "fructan syndrome," is still unknown. Why fructans only occur in a limited number of plant and microbial species remains unclear. In this review, we provide an overview of plant and microbial fructan research with a focus on fructans as an adaptation to the environment and their role in (a)biotic stress tolerance. The taxonomical and biogeographical distribution of fructans in both kingdoms is discussed and linked (where possible) to environmental factors. Overall, the fructan syndrome may be related to water scarcity and differences in physicochemical properties, for instance, water retaining characteristics, at least partially explain why different fructan types with different branching levels are found in different species. Although a close correlation between environmental stresses and fructan production is quite clear in plants, this link seems to be missing in microbes. We hypothesize that this can be at least partially explained by differential evolutionary timeframes for plants and microbes, combined with potential redundancy effects.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| | - Onur Kirtel
- Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul, 34722, Turkey
| | - Ebru Toksoy Öner
- Industrial Biotechnology and Systems Biology Research Group, Bioengineering Department, Marmara University, Istanbul, 34722, Turkey
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Nagaya M, Kimura M, Gozu Y, Sato S, Hirano K, Tochio T, Nishikawa A, Tonozuka T. Crystal structure of a β-fructofuranosidase with high transfructosylation activity from Aspergillus kawachii. Biosci Biotechnol Biochem 2017; 81:1786-1795. [DOI: 10.1080/09168451.2017.1353405] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
β-Fructofuranosidases belonging to glycoside hydrolase family (GH) 32 are enzymes that hydrolyze sucrose. Some GH32 enzymes also catalyze transfructosylation to produce fructooligosaccharides. We found that Aspergillus kawachii IFO 4308 β-fructofuranosidase (AkFFase) produces fructooligosaccharides, mainly 1-kestose, from sucrose. We determined the crystal structure of AkFFase. AkFFase is composed of an N-terminal small component, a β-propeller catalytic domain, an α-helical linker, and a C-terminal β-sandwich, similar to other GH32 enzymes. AkFFase forms a dimer, and the dimerization pattern is different from those of other oligomeric GH32 enzymes. The complex structure of AkFFase with fructose unexpectedly showed that fructose binds both subsites −1 and +1, despite the fact that the catalytic residues were not mutated. Fructose at subsite +1 interacts with Ile146 and Glu296 of AkFFase via direct hydrogen bonds.
Collapse
Affiliation(s)
- Mika Nagaya
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Miyoko Kimura
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Yoshifumi Gozu
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Shona Sato
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Katsuaki Hirano
- Research & Development Center, B Food Science Co., Ltd., Chita, Japan
| | - Takumi Tochio
- Research & Development Center, B Food Science Co., Ltd., Chita, Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
27
|
Moreno FJ, Corzo N, Montilla A, Villamiel M, Olano A. Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Cimini S, Di Paola L, Giuliani A, Ridolfi A, De Gara L. GH32 family activity: a topological approach through protein contact networks. PLANT MOLECULAR BIOLOGY 2016; 92:401-410. [PMID: 27503472 DOI: 10.1007/s11103-016-0515-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 07/14/2016] [Indexed: 05/24/2023]
Abstract
The application of Protein Contact Networks methodology allowed to highlight a novel response of border region between the two domains to substrate binding. Glycoside hydrolases (GH) are enzymes that mainly hydrolyze the glycosidic bond between two carbohydrates or a carbohydrate and a non-carbohydrate moiety. These enzymes are involved in many fundamental and diverse biological processes in plants. We have focused on the GH32 family, including enzymes very similar in both sequence and structure, each having however clear specificities of substrate preferences and kinetic properties. Structural and topological differences among proteins of the GH32 family have been here identified by means of an emerging approach (Protein Contact network, PCN) based on the formalization of 3D structures as contact networks among amino-acid residues. The PCN approach proved successful in both reconstructing the already known functional domains and in identifying the structural counterpart of the properties of GH32 enzymes, which remain uncertain, like their allosteric character. The main outcome of the study was the discovery of the activation upon binding of the border (cleft) region between the two domains. This reveals the allosteric nature of the enzymatic activity for all the analyzed forms in the GH32 family, a character yet to be highlighted in biochemical studies. Furthermore, we have been able to recognize a topological signature (graph energy) of the different affinity of the enzymes towards small and large substrates.
Collapse
Affiliation(s)
- Sara Cimini
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Luisa Di Paola
- Unit of Chemical-physics Fundamentals in Chemical Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128, Rome, Italy.
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandra Ridolfi
- Unit of Chemical-physics Fundamentals in Chemical Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Laura De Gara
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128, Rome, Italy
| |
Collapse
|
29
|
Ramírez-Escudero M, Gimeno-Pérez M, González B, Linde D, Merdzo Z, Fernández-Lobato M, Sanz-Aparicio J. Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity. J Biol Chem 2016; 291:6843-57. [PMID: 26823463 DOI: 10.1074/jbc.m115.708495] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 11/06/2022] Open
Abstract
Xanthophyllomyces dendrorhousβ-fructofuranosidase (XdINV)is a highly glycosylated dimeric enzyme that hydrolyzes sucrose and releases fructose from various fructooligosaccharides (FOS) and fructans. It also catalyzes the synthesis of FOS, prebiotics that stimulate the growth of beneficial bacteria in human gut. In contrast to most fructosylating enzymes, XdINV produces neo-FOS, which makes it an interesting biotechnology target. We present here its three-dimensional structure, which shows the expected bimodular arrangement and also a long extension of its C terminus that together with anN-linked glycan mediate the formation of an unusual dimer. The two active sites of the dimer are connected by a long crevice, which might indicate its potential ability to accommodate branched fructans. This arrangement could be representative of a group of GH32 yeast enzymes having the traits observed in XdINV. The inactive D80A mutant was used to obtain complexes with relevant substrates and products, with their crystals structures showing at least four binding subsites at each active site. Moreover, two different positions are observed from subsite +2 depending on the substrate, and thus, a flexible loop (Glu-334-His-343) is essential in binding sucrose and β(2-1)-linked oligosaccharides. Conversely, β(2-6) and neo-type substrates are accommodated mainly by stacking to Trp-105, explaining the production of neokestose and the efficient fructosylating activity of XdINV on α-glucosides. The role of relevant residues has been investigated by mutagenesis and kinetics measurements, and a model for the transfructosylating reaction has been proposed. The plasticity of its active site makes XdINV a valuable and flexible biocatalyst to produce novel bioconjugates.
Collapse
Affiliation(s)
- Mercedes Ramírez-Escudero
- From the Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid and
| | - María Gimeno-Pérez
- the Center of Molecular Biology "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Beatriz González
- From the Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid and
| | - Dolores Linde
- the Center of Molecular Biology "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Zoran Merdzo
- the Center of Molecular Biology "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - María Fernández-Lobato
- the Center of Molecular Biology "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Julia Sanz-Aparicio
- From the Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid and
| |
Collapse
|