1
|
Huang Y, Xia P. Biomolecular condensates in plant cells: Mediating and integrating environmental signals and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112178. [PMID: 38971467 DOI: 10.1016/j.plantsci.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
In response to the spatiotemporal coordination of various biochemical reactions and membrane-encapsulated organelles, plants appear to provide another effective mechanism for cellular organization by phase separation that allows the internal compartmentalization of cells to form a variety of membrane-less organelles. Most of the research on phase separation has centralized in various non-plant systems, such as yeast and animal systems. Recent studies have shown a remarkable correlation between the formation of condensates in plant systems and the formation of condensates in these systems. Moreover, the last decade has made new advances in phase separation research in the context of plant biology. Here, we provide an overview of the physicochemical forces and molecular factors that drive liquid-liquid phase separation in plant cells and the biochemical characterization of condensates. We then explore new developments in phase separation research specific to plants, discussing examples of condensates found in green plants and detailing their role in plant growth and development. We propose that phase separation may be a conserved organizational mechanism in plant evolution to help plants respond rapidly and effectively to various environmental stresses as sessile organisms.
Collapse
Affiliation(s)
- Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Singh PK, Devanna BN, Dubey H, Singh P, Joshi G, Kumar R. The potential of genome editing to create novel alleles of resistance genes in rice. Front Genome Ed 2024; 6:1415244. [PMID: 38933684 PMCID: PMC11201548 DOI: 10.3389/fgeed.2024.1415244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Rice, a staple food for a significant portion of the global population, faces persistent threats from various pathogens and pests, necessitating the development of resilient crop varieties. Deployment of resistance genes in rice is the best practice to manage diseases and reduce environmental damage by reducing the application of agro-chemicals. Genome editing technologies, such as CRISPR-Cas, have revolutionized the field of molecular biology, offering precise and efficient tools for targeted modifications within the rice genome. This study delves into the application of these tools to engineer novel alleles of resistance genes in rice, aiming to enhance the plant's innate ability to combat evolving threats. By harnessing the power of genome editing, researchers can introduce tailored genetic modifications that bolster the plant's defense mechanisms without compromising its essential characteristics. In this study, we synthesize recent advancements in genome editing methodologies applicable to rice and discuss the ethical considerations and regulatory frameworks surrounding the creation of genetically modified crops. Additionally, it explores potential challenges and future prospects for deploying edited rice varieties in agricultural landscapes. In summary, this study highlights the promise of genome editing in reshaping the genetic landscape of rice to confront emerging challenges, contributing to global food security and sustainable agriculture practices.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, India
| | | | - Himanshu Dubey
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | - Prabhakar Singh
- Botany Department, Banaras Hindu University, Varanasi, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal (A Central University), Tehri Garhwal, Uttarakhand, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
3
|
Henchiri H, Rayapuram N, Alhoraibi HM, Caïus J, Paysant-Le Roux C, Citerne S, Hirt H, Colcombet J, Sturbois B, Bigeard J. Integrated multi-omics and genetic analyses reveal molecular determinants underlying Arabidopsis snap33 mutant phenotype. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1016-1035. [PMID: 38281242 DOI: 10.1111/tpj.16647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/17/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
The secretory pathway is essential for plant immunity, delivering diverse antimicrobial molecules into the extracellular space. Arabidopsis thaliana soluble N-ethylmaleimide-sensitive-factor attachment protein receptor SNAP33 is a key actor of this process. The snap33 mutant displays dwarfism and necrotic lesions, however the molecular determinants of its macroscopic phenotypes remain elusive. Here, we isolated several new snap33 mutants that exhibited constitutive cell death and H2O2 accumulation, further defining snap33 as an autoimmune mutant. We then carried out quantitative transcriptomic and proteomic analyses showing that numerous defense transcripts and proteins were up-regulated in the snap33 mutant, among which genes/proteins involved in defense hormone, pattern-triggered immunity, and nucleotide-binding domain leucine-rich-repeat receptor signaling. qRT-PCR analyses and hormone dosages supported these results. Furthermore, genetic analyses elucidated the diverse contributions of the main defense hormones and some nucleotide-binding domain leucine-rich-repeat receptor signaling actors in the establishment of the snap33 phenotype, emphasizing the preponderant role of salicylic acid over other defense phytohormones. Moreover, the accumulation of pattern-triggered immunity and nucleotide-binding domain leucine-rich-repeat receptor signaling proteins in the snap33 mutant was confirmed by immunoblotting analyses and further shown to be salicylic acid-dependent. Collectively, this study unveiled molecular determinants underlying the Arabidopsis snap33 mutant phenotype and brought new insights into autoimmunity signaling.
Collapse
Affiliation(s)
- Houda Henchiri
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Naganand Rayapuram
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Hanna M Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21551, Jeddah, Saudi Arabia
| | - José Caïus
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Sylvie Citerne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jean Colcombet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Bénédicte Sturbois
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Jean Bigeard
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Kong F, Yang L. Pathogen-triggered changes in plant development: Virulence strategies or host defense mechanism? Front Microbiol 2023; 14:1122947. [PMID: 36876088 PMCID: PMC9975269 DOI: 10.3389/fmicb.2023.1122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Plants, as sessile organisms, are constantly exposed to pathogens in nature. Plants rely on physical barriers, constitutive chemical defenses, and sophisticated inducible immunity to fight against pathogens. The output of these defense strategies is highly associated with host development and morphology. Successful pathogens utilize various virulence strategies to colonize, retrieve nutrients, and cause disease. In addition to the overall defense-growth balance, the host-pathogen interactions often lead to changes in the development of specific tissues/organs. In this review, we focus on recent advances in understanding the molecular mechanisms of pathogen-induced changes in plants' development. We discuss that changes in host development could be a target of pathogen virulence strategies or an active defense strategy of plants. Current and ongoing research about how pathogens shape plant development to increase their virulence and causes diseases could give us novel views on plant disease control.
Collapse
Affiliation(s)
- Feng Kong
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Li Yang
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
A Single Amino Acid Substitution in MIL1 Leads to Activation of Programmed Cell Death and Defense Responses in Rice. Int J Mol Sci 2022; 23:ijms23168853. [PMID: 36012116 PMCID: PMC9408282 DOI: 10.3390/ijms23168853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022] Open
Abstract
Lesion mimic mutants are an ideal model system for elucidating the molecular mechanisms of programmed cell death and defense responses in rice. In this study, we identified a lesion mimic mutant termed miner infection like 1-1 (mil1-1). The mil1-1 exhibited lesions on the leaves during development, and the chloroplasts of mil1-1 leaves were disrupted. Reactive oxygen species were found to accumulate in mil1-1 leaves. Cell death and DNA fragmentation were observed in mil1-1 leaves, indicating that the cells in the spots of mil1-1 leaves experienced programmed cell death. Most agronomic traits decreased in mil1-1, suggesting that the growth retardation in mil1-1 caused reduced per-plant grain yield. However, the mutation of MIL1 activated the expression of pathogen response genes and enhanced resistance to bacterial blight. The MIL1 gene was cloned using the positional cloning approach. A missense mutation 751 bp downstream of ATG was found in mil1-1. The defects of mil1-1 were able to be rescued by delivering a wild-type MIL1 gene into mil1-1. MIL1 encoded hydroperoxide lyase 3 (OsHPL3), and the expression of OsHPL3 was induced via hormone and abiotic stresses. Our findings provide insights into the roles of MIL1 in regulating programmed cell death, development, yield, and defense responses in rice.
Collapse
|
6
|
Overexpression of the Arabidopsis MACPF Protein AtMACP2 Promotes Pathogen Resistance by Activating SA Signaling. Int J Mol Sci 2022; 23:ijms23158784. [PMID: 35955922 PMCID: PMC9369274 DOI: 10.3390/ijms23158784] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Immune response in plants is tightly regulated by the coordination of the cell surface and intracellular receptors. In animals, the membrane attack complex/perforin-like (MACPF) protein superfamily creates oligomeric pore structures on the cell surface during pathogen infection. However, the function and molecular mechanism of MACPF proteins in plant pathogen responses remain largely unclear. In this study, we identified an Arabidopsis MACP2 and investigated the responsiveness of this protein during both bacterial and fungal pathogens. We suggest that MACP2 induces programmed cell death, bacterial pathogen resistance, and necrotrophic fungal pathogen sensitivity by activating the biosynthesis of tryptophan-derived indole glucosinolates and the salicylic acid signaling pathway dependent on the activity of enhanced disease susceptibility 1 (EDS1). Moreover, the response of MACP2 mRNA isoforms upon pathogen attack is differentially regulated by a posttranscriptional mechanism: alternative splicing. In comparison to previously reported MACPFs in Arabidopsis, MACP2 shares a redundant but nonoverlapping role in plant immunity. Thus, our findings provide novel insights and genetic tools for the MACPF family in maintaining SA accumulation in response to pathogens in Arabidopsis.
Collapse
|
7
|
Ayatollahi Z, Kazanaviciute V, Shubchynskyy V, Kvederaviciute K, Schwanninger M, Rozhon W, Stumpe M, Mauch F, Bartels S, Ulm R, Balazadeh S, Mueller-Roeber B, Meskiene I, Schweighofer A. Dual control of MAPK activities by AP2C1 and MKP1 MAPK phosphatases regulates defence responses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2369-2384. [PMID: 35088853 PMCID: PMC9015810 DOI: 10.1093/jxb/erac018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades transmit environmental signals and induce stress and defence responses in plants. These signalling cascades are negatively controlled by specific Ser/Thr protein phosphatases of the type 2C (PP2C) and dual-specificity phosphatase (DSP) families that inactivate stress-induced MAPKs; however, the interplay between phosphatases of these different types has remained unknown. This work reveals that different Arabidopsis MAPK phosphatases, the PP2C-type AP2C1 and the DSP-type MKP1, exhibit both specific and overlapping functions in plant stress responses. Each single mutant, ap2c1 and mkp1, and the ap2c1 mkp1 double mutant displayed enhanced stress-induced activation of the MAPKs MPK3, MPK4, and MPK6, as well as induction of a set of transcription factors. Moreover, ap2c1 mkp1 double mutants showed an autoimmune-like response, associated with increased levels of the stress hormones salicylic acid and ethylene, and of the phytoalexin camalexin. This phenotype was reduced in the ap2c1 mkp1 mpk3 and ap2c1 mkp1 mpk6 triple mutants, suggesting that the autoimmune-like response is due to MAPK misregulation. We conclude that the evolutionarily distant MAPK phosphatases AP2C1 and MKP1 contribute crucially to the tight control of MAPK activities, ensuring appropriately balanced stress signalling and suppression of autoimmune-like responses during plant growth and development.
Collapse
Affiliation(s)
- Zahra Ayatollahi
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr.-Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Vaiva Kazanaviciute
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr.-Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Volodymyr Shubchynskyy
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr.-Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Kotryna Kvederaviciute
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Manfred Schwanninger
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Wilfried Rozhon
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, Strenzfelder Allee 28, D-06406 Bernburg, Germany
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Felix Mauch
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Sebastian Bartels
- Faculty of Biology, Institute of Biology II, University of Freiburg, Schänzlestraße 1, D-79104 Freiburg, Germany
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 30 Quai E. Ansermet, CH-1211 Geneva, Switzerland
| | - Salma Balazadeh
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, D-14476 Potsdam, Germany
- University of Potsdam, Karl-Liebknecht-Straße 24, D-14476 Potsdam, Germany
- Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Bernd Mueller-Roeber
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, D-14476 Potsdam, Germany
- University of Potsdam, Karl-Liebknecht-Straße 24, D-14476 Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Ruski 139 Blvd., Plovdiv 4000, Bulgaria
| | - Irute Meskiene
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr.-Bohr-Gasse 9, A-1030 Vienna, Austria
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Alois Schweighofer
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr.-Bohr-Gasse 9, A-1030 Vienna, Austria
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| |
Collapse
|
8
|
Freh M, Gao J, Petersen M, Panstruga R. Plant autoimmunity-fresh insights into an old phenomenon. PLANT PHYSIOLOGY 2022; 188:1419-1434. [PMID: 34958371 PMCID: PMC8896616 DOI: 10.1093/plphys/kiab590] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
The plant immune system is well equipped to ward off the attacks of different types of phytopathogens. It primarily relies on two types of immune sensors-plasma membrane-resident receptor-like kinases and intracellular nucleotide-binding domain leucine-rich repeat (NLRs) receptors that engage preferentially in pattern- and effector-triggered immunity, respectively. Delicate fine-tuning, in particular of the NLR-governed branch of immunity, is key to prevent inappropriate and deleterious activation of plant immune responses. Inadequate NLR allele constellations, such as in the case of hybrid incompatibility, and the mis-activation of NLRs or the absence or modification of proteins guarded by these NLRs can result in the spontaneous initiation of plant defense responses and cell death-a phenomenon referred to as plant autoimmunity. Here, we review recent insights augmenting our mechanistic comprehension of plant autoimmunity. The recent findings broaden our understanding regarding hybrid incompatibility, unravel candidates for proteins likely guarded by NLRs and underline the necessity for the fine-tuning of NLR expression at various levels to avoid autoimmunity. We further present recently emerged tools to study plant autoimmunity and draw a cross-kingdom comparison to the role of NLRs in animal autoimmune conditions.
Collapse
Affiliation(s)
- Matthias Freh
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| | - Jinlan Gao
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Morten Petersen
- Institute of Biology, Functional Genomics, Copenhagen University, Copenhagen 2200, Denmark
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Aachen 52056, Germany
| |
Collapse
|
9
|
Liu J, Zhang S, Xie P, Wang L, Xue JY, Zhang Y, Lu R, Hang Y, Wang Y, Sun X. Fitness benefits play a vital role in the retention of the Pi-ta susceptible alleles. Genetics 2022; 220:6526399. [PMID: 35143673 PMCID: PMC8982021 DOI: 10.1093/genetics/iyac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
In plants, large numbers of R genes, which segregate as loci with alternative alleles conferring different levels of disease resistance to pathogens, have been maintained over a long period of evolution. The reason why hosts harbor susceptible alleles in view of their null contribution to resistance is unclear. In rice, a single copy gene, Pi-ta, segregates for 2 expressed clades of alleles, 1 resistant and the other susceptible. We simulated loss-of-function of the Pi-ta susceptible allele using the CRISPR/Cas9 system to detect subsequent fitness changes and obtained insights into fitness effects related to the retention of the Pi-ta susceptible allele. Our creation of an artificial knockout of the Pi-ta susceptible allele suffered fitness-related trait declines of up to 49% in terms of filled grain yield upon the loss of Pi-ta function. The Pi-ta susceptible alleles might serve as an off-switch to downstream immune signaling, thus contributing to the fine-tuning of plant defense responses. The results demonstrated that the susceptible Pi-ta alleles should have evolved pleiotropic functions, facilitating their retention in populations. As Pi-ta is a single copy gene with no paralogs in the genome, its function cannot be compensated by an alternative gene; whereas most other R genes form gene clusters by tandem duplications, and the function could be compensated by paralogs with high sequence similarity. This attempt to evaluate the fitness effects of the R gene in crops indicates that not all disease resistance genes incur fitness costs, which also provides a plausible explanation for how host genomes can tolerate the possible genetic load associated with a vast repertoire of R genes.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Suobing Zhang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Pengfei Xie
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jia-Yu Xue
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China,College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ruisen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yueyu Hang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yue Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China,Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. ; Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Xiaoqin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China,Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. ; Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
10
|
Gesteiro N, Cao A, Santiago R, Malvar RA, Butrón A. Genomics of maize resistance to kernel contamination with fumonisins using a multiparental advanced generation InterCross maize population (MAGIC). BMC PLANT BIOLOGY 2021; 21:596. [PMID: 34915847 PMCID: PMC8675497 DOI: 10.1186/s12870-021-03380-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 06/01/2023]
Abstract
Maize kernel is exposed to several fungal species, most notably Fusarium verticillioides, which can contaminate maize kernels with fumonisins. In an effort to increase genetic gains and avoid the laborious tasks of conventional breeding, the use of marker-assisted selection or genomic selection programs was proposed. To this end, in the present study a Genome Wide Association Study (GWAS) was performed on 339 RILs of a Multiparental Advanced Generation InterCross (MAGIC) population that had previously been used to locate Quantitative Trait Locus (QTL) for resistance to Fusarium Ear Rot (FER). Six QTLs for fumonisin content were detected in the bins 3.08, 4.07, 4.10, 7.03-7.04, 9.04-9.05 and 10.04-10.5. Five of the six QTLs collocate in regions where QTLs for FER were also found. However, the genetic variation for fumonisin content in kernel is conditioned by many other QTLs of small effect that could show QTL x environment interaction effects. Although a genomic selection approach to directly reduce fumonisin content in the kernel could be suitable, improving resistance to fumonisin content by genomic selection for FER would be more advisable.
Collapse
Affiliation(s)
- Noemi Gesteiro
- Misión Biológica de Galicia (CSIC), Box 28, 36080, Pontevedra, Spain
| | - Ana Cao
- Misión Biológica de Galicia (CSIC), Box 28, 36080, Pontevedra, Spain
| | - Rogelio Santiago
- Departamento Biología Vegetal y Ciencias del Suelo, Facultad de Biología, Universidad de Vigo, Unidad Asociada Agrobiología Ambiental, Calidad de Suelos y Plantas, As Lagoas Marcosende, 36310 Vigo, Spain
| | - Rosa Ana Malvar
- Misión Biológica de Galicia (CSIC), Box 28, 36080, Pontevedra, Spain
| | - Ana Butrón
- Misión Biológica de Galicia (CSIC), Box 28, 36080, Pontevedra, Spain
| |
Collapse
|
11
|
Cross-Tolerance and Autoimmunity as Missing Links in Abiotic and Biotic Stress Responses in Plants: A Perspective toward Secondary Metabolic Engineering. Int J Mol Sci 2021; 22:ijms222111945. [PMID: 34769374 PMCID: PMC8584326 DOI: 10.3390/ijms222111945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 01/04/2023] Open
Abstract
Plants employ a diversified array of defense activities when they encounter stress. Continuous activation of defense pathways that were induced by mutation or altered expression of disease resistance genes and mRNA surveillance mechanisms develop abnormal phenotypes. These plants show continuous defense genes' expression, reduced growth, and also manifest tissue damage by apoptosis. These macroscopic abrasions appear even in the absence of the pathogen and can be attributed to a condition known as autoimmunity. The question is whether it is possible to develop an autoimmune mutant that does not fetch yield and growth penalty and provides enhanced protection against various biotic and abiotic stresses via secondary metabolic pathways' engineering. This review is a discussion about the common stress-fighting mechanisms, how the concept of cross-tolerance instigates propitious or protective autoimmunity, and how it can be achieved by engineering secondary metabolic pathways.
Collapse
|
12
|
Xu X, Zheng C, Lu D, Song CP, Zhang L. Phase separation in plants: New insights into cellular compartmentalization. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1835-1855. [PMID: 34314106 DOI: 10.1111/jipb.13152] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/16/2021] [Indexed: 05/16/2023]
Abstract
A fundamental challenge for cells is how to coordinate various biochemical reactions in space and time. To achieve spatiotemporal control, cells have developed organelles that are surrounded by lipid bilayer membranes. Further, membraneless compartmentalization, a process induced by dynamic physical association of biomolecules through phase transition offers another efficient mechanism for intracellular organization. While our understanding of phase separation was predominantly dependent on yeast and animal models, recent findings have provided compelling evidence for emerging roles of phase separation in plants. In this review, we first provide an overview of the current knowledge of phase separation, including its definition, biophysical principles, molecular features and regulatory mechanisms. Then we summarize plant-specific phase separation phenomena and describe their functions in plant biological processes in great detail. Moreover, we propose that phase separation is an evolutionarily conserved and efficient mechanism for cellular compartmentalization which allows for distinct metabolic processes and signaling pathways, and is especially beneficial for the sessile lifestyle of plants to quickly and efficiently respond to the changing environment.
Collapse
Affiliation(s)
- Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
13
|
Yuan P, Tanaka K, Poovaiah BW. Calmodulin-binding transcription activator AtSR1/CAMTA3 fine-tunes plant immune response by transcriptional regulation of the salicylate receptor NPR1. PLANT, CELL & ENVIRONMENT 2021; 44:3140-3154. [PMID: 34096631 DOI: 10.1111/pce.14123] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 05/27/2023]
Abstract
Calcium (Ca2+ ) signalling regulates salicylic acid (SA)-mediated immune response through calmodulin-meditated transcriptional activators, AtSRs/CAMTAs, but its mechanism is not fully understood. Here, we report an AtSR1/CAMTA3-mediated regulatory mechanism involving the expression of the SA receptor, NPR1. Results indicate that the transcriptional expression of NPR1 was regulated by AtSR1 binding to a CGCG box in the NPR1 promotor. The atsr1 mutant exhibited resistance to the virulent strain of Pseudomonas syringae pv. tomato (Pst), however, was susceptible to an avirulent Pst strain carrying avrRpt2, due to the failure of the induction of hypersensitive responses. These resistant/susceptible phenotypes in the atsr1 mutant were reversed in the npr1 mutant background, suggesting that AtSR1 regulates NPR1 as a downstream target during plant immune response. The virulent Pst strain triggered a transient elevation in intracellular Ca2+ concentration, whereas the avirulent Pst strain triggered a prolonged change. The distinct Ca2+ signatures were decoded into the regulation of NPR1 expression through AtSR1's IQ motif binding with Ca2+ -free-CaM2, while AtSR1's calmodulin-binding domain with Ca2+ -bound-CaM2. These observations reveal a role for AtSR1 as a Ca2+ -mediated transcription regulator in controlling the NPR1-mediated plant immune response.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Horticulture, Washington State University, Pullman, Washington, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - B W Poovaiah
- Department of Horticulture, Washington State University, Pullman, Washington, USA
| |
Collapse
|
14
|
Li L, Weigel D. One Hundred Years of Hybrid Necrosis: Hybrid Autoimmunity as a Window into the Mechanisms and Evolution of Plant-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:213-237. [PMID: 33945695 DOI: 10.1146/annurev-phyto-020620-114826] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Hybrid necrosis in plants refers to a genetic autoimmunity syndrome in the progeny of interspecific or intraspecific crosses. Although the phenomenon was first documented in 1920, it has been unequivocally linked to autoimmunity only recently, with the discovery of the underlying genetic and biochemical mechanisms. The most common causal loci encode immune receptors, which are known to differ within and between species. One mechanism can be explained by the guard hypothesis, in which a guard protein, often a nucleotide-binding site-leucine-rich repeat protein, is activated by interaction with a plant protein that mimics standard guardees modified by pathogen effector proteins. Another surprising mechanism is the formation of inappropriately active immune receptor complexes. In this review, we summarize our current knowledge of hybrid necrosis and discuss how its study is not only informing the understanding of immune gene evolution but also revealing new aspects of plant immune signaling.
Collapse
Affiliation(s)
- Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; ,
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; ,
| |
Collapse
|
15
|
Li LS, Ying J, Li E, Ma T, Li M, Gong LM, Wei G, Zhang Y, Li S. Arabidopsis CBP60b is a central transcriptional activator of immunity. PLANT PHYSIOLOGY 2021; 186:1645-1659. [PMID: 33848345 PMCID: PMC8260125 DOI: 10.1093/plphys/kiab164] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 05/20/2023]
Abstract
Plants use a dual defense system to cope with microbial pathogens. The first involves pathogen-associated molecular pattern-triggered immunity which is conferred by membrane receptors, and the second involves effector-triggered immunity (ETI), which is conferred by disease-resistance proteins (nucleotide-binding leucine-rich repeat-containing proteins; NLRs). Calmodulin-Binding Protein 60 (CBP60) family transcription factors are crucial for pathogen defense: CBP60g and Systemic Acquired Resistance Deficient 1 (SARD1) positively regulate immunity, whereas CBP60a negatively regulates immunity. The roles of other Arabidopsis (Arabidopsis thaliana) CBP60s remain unclear. We report that CBP60b positively regulates immunity and is redundant with-yet distinct from-CBP60g and SARD1. By combining chromatin immunoprecipitation-PCRs and luciferase reporter assays, we demonstrate that CBP60b is a transcriptional activator of immunity genes. Surprisingly, CBP60b loss-of-function results in autoimmunity, exhibiting a phenotype similar to that of CBP60b gain-of-function. Mutations at the ENHANCED DISEASE SUSCEPTIBILITY 1-PHYTOALEXIN DEFICIENT 4-dependent ETI pathway fully suppressed the defects of CBP60b loss-of-function but not those of CBP60b gain-of-function, suggesting that CBP60b is monitored by NLRs. Functional loss of SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1, an R-gene, partially rescued the phenotype of cbp60b, further supporting that CBP60b is a protein targeted by pathogen effectors, that is, a guardee. Unlike CBP60g and SARD1, CBP60b is constitutively and highly expressed in unchallenged plants. Transcriptional and genetic studies further suggest that CBP60b plays a role redundant with CBP60g and SARD1 in pathogen-induced defense, whereas CBP60b has a distinct role in basal defense, partially via direct regulation of CBP60g and SARD1.
Collapse
Affiliation(s)
- Lu-Shen Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Jun Ying
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Ting Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Min Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Li-Min Gong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Guo Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
- Author for Communication:
| |
Collapse
|
16
|
Ordon J, Martin P, Erickson JL, Ferik F, Balcke G, Bonas U, Stuttmann J. Disentangling cause and consequence: genetic dissection of the DANGEROUS MIX2 risk locus, and activation of the DM2h NLR in autoimmunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1008-1023. [PMID: 33629456 DOI: 10.1111/tpj.15215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Nucleotide-binding domain-leucine-rich repeat-type immune receptors (NLRs) protect plants against pathogenic microbes through intracellular detection of effector proteins. However, this comes at a cost, as NLRs can also induce detrimental autoimmunity in genetic interactions with foreign alleles. This may occur when independently evolved genomes are combined in inter- or intraspecific crosses, or when foreign alleles are introduced by mutagenesis or transgenesis. Most autoimmunity-inducing NLRs are encoded within highly variable NLR gene clusters with no known immune functions, which were termed autoimmune risk loci. Whether risk NLRs differ from sensor NLRs operating in natural pathogen resistance and how risk NLRs are activated in autoimmunity is unknown. Here, we analyzed the DANGEROUS MIX2 risk locus, a major autoimmunity hotspot in Arabidopsis thaliana. By gene editing and heterologous expression, we show that a single gene, DM2h, is necessary and sufficient for autoimmune induction in three independent cases of autoimmunity in accession Landsberg erecta. We focus on autoimmunity provoked by an EDS1-yellow fluorescent protein (YFP)NLS fusion protein to characterize DM2h functionally and determine features of EDS1-YFPNLS activating the immune receptor. Our data suggest that risk NLRs function in a manner reminiscent of sensor NLRs, while autoimmunity-inducing properties of EDS1-YFPNLS in this context are unrelated to the protein's functions as an immune regulator. We propose that autoimmunity, at least in some cases, may be caused by spurious, stochastic interactions of foreign alleles with coincidentally matching risk NLRs.
Collapse
Affiliation(s)
- Jana Ordon
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Patrick Martin
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Jessica Lee Erickson
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Filiz Ferik
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Gerd Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Ulla Bonas
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| | - Johannes Stuttmann
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale), 06120, Germany
| |
Collapse
|
17
|
Parker MT, Knop K, Zacharaki V, Sherwood AV, Tomé D, Yu X, Martin PGP, Beynon J, Michaels SD, Barton GJ, Simpson GG. Widespread premature transcription termination of Arabidopsis thaliana NLR genes by the spen protein FPA. eLife 2021; 10:e65537. [PMID: 33904405 PMCID: PMC8116057 DOI: 10.7554/elife.65537] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Genes involved in disease resistance are some of the fastest evolving and most diverse components of genomes. Large numbers of nucleotide-binding, leucine-rich repeat (NLR) genes are found in plant genomes and are required for disease resistance. However, NLRs can trigger autoimmunity, disrupt beneficial microbiota or reduce fitness. It is therefore crucial to understand how NLRs are controlled. Here, we show that the RNA-binding protein FPA mediates widespread premature cleavage and polyadenylation of NLR transcripts, thereby controlling their functional expression and impacting immunity. Using long-read Nanopore direct RNA sequencing, we resolved the complexity of NLR transcript processing and gene annotation. Our results uncover a co-transcriptional layer of NLR control with implications for understanding the regulatory and evolutionary dynamics of NLRs in the immune responses of plants.
Collapse
Affiliation(s)
- Matthew T Parker
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Katarzyna Knop
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | | | - Anna V Sherwood
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Daniel Tomé
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | - Xuhong Yu
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Pascal GP Martin
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Jim Beynon
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | - Scott D Michaels
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | | | - Gordon G Simpson
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
- The James Hutton InstituteInvergowrieUnited Kingdom
| |
Collapse
|
18
|
Holmes DR, Bredow M, Thor K, Pascetta SA, Sementchoukova I, Siegel KR, Zipfel C, Monaghan J. A novel allele of the Arabidopsis thaliana MACPF protein CAD1 results in deregulated immune signaling. Genetics 2021; 217:6144930. [PMID: 33779749 DOI: 10.1093/genetics/iyab022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/05/2021] [Indexed: 11/12/2022] Open
Abstract
Immune recognition in plants is governed by two major classes of receptors: pattern recognition receptors (PRRs) and nucleotide-binding leucine-rich repeat receptors (NLRs). Located at the cell surface, PRRs bind extracellular ligands originating from microbes (indicative of "non-self") or damaged plant cells (indicative of "infected-self"), and trigger signaling cascades to protect against infection. Located intracellularly, NLRs sense pathogen-induced physiological changes and trigger localized cell death and systemic resistance. Immune responses are under tight regulation in order to maintain homeostasis and promote plant health. In a forward-genetic screen to identify regulators of PRR-mediated immune signaling, we identified a novel allele of the membrane-attack complex and perforin (MACPF)-motif containing protein CONSTITUTIVE ACTIVE DEFENSE 1 (CAD1) resulting from a missense mutation in a conserved N-terminal cysteine. We show that cad1-5 mutants display deregulated immune signaling and symptoms of autoimmunity dependent on the lipase-like protein ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), suggesting that CAD1 integrity is monitored by the plant immune system. We further demonstrate that CAD1 localizes to both the cytosol and plasma membrane using confocal microscopy and subcellular fractionation. Our results offer new insights into immune homeostasis and provide tools to further decipher the intriguing role of MACPF proteins in plants.
Collapse
Affiliation(s)
- Danalyn R Holmes
- Department of Biology, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Melissa Bredow
- Department of Biology, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Kathrin Thor
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sydney A Pascetta
- Department of Biology, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | | | - Kristen R Siegel
- Department of Biology, Queen's University, Kingston K7L 3N6, Ontario, Canada
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.,Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich CH-8008, Switzerland
| | - Jacqueline Monaghan
- Department of Biology, Queen's University, Kingston K7L 3N6, Ontario, Canada.,The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
19
|
Abstract
Plants utilize a two-tiered immune system consisting of pattern recognition receptor (PRR)-triggered immunity (PTI) and effector-triggered immunity (ETI) to defend themselves against pathogenic microbes. The receptor protein kinase BAK1 plays a central role in multiple PTI signaling pathways in Arabidopsis However, double mutants made by BAK1 and its closest paralog BKK1 exhibit autoimmune phenotypes, including cell death resembling a typical nucleotide-binding leucine-rich repeat protein (NLR)-mediated ETI response. The molecular mechanisms of the cell death caused by the depletion of BAK1 and BKK1 are poorly understood. Here, we show that the cell-death phenotype of bak1 bkk1 is suppressed when a group of NLRs, ADR1s, are mutated, indicating the cell-death of bak1 bkk1 is the consequence of NLR activation. Furthermore, introduction of a Pseudomonas syringae effector HopB1, which proteolytically cleaves activated BAK1 and its paralogs via either gene transformation or bacterium-delivery, results in a cell-death phenotype in an ADR1s-dependent manner. Our study thus pinpoints that BAK1 and its paralogs are likely guarded by NLRs.
Collapse
|
20
|
Schenke D, Cai D. Applications of CRISPR/Cas to Improve Crop Disease Resistance: Beyond Inactivation of Susceptibility Factors. iScience 2020; 23:101478. [PMID: 32891884 PMCID: PMC7479627 DOI: 10.1016/j.isci.2020.101478] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Current crop production systems are prone to increasing pathogen pressure. Fundamental understanding of molecular plant-pathogen interactions, the availability of crop and pathogen genomic information, as well as emerging genome editing permits a novel approach for breeding of crop disease resistance. We describe here strategies to identify new targets for resistance breeding with focus on interruption of the compatible plant-pathogen interaction by CRISPR/Cas-mediated genome editing. Basically, crop genome editing can be applied in several ways to achieve this goal. The most common approach focuses on the "simple" knockout by non-homologous end joining repair of plant susceptibility factors required for efficient host colonization. However, genome re-writing via homology-directed repair or base editing can also prevent host manipulation by changing the targets of pathogen-derived effectors or molecules beyond recognition, which also decreases plant susceptibility. We conclude that genome editing by CRISPR/Cas will become increasingly indispensable to generate in relatively short time beneficial resistance traits in crops to meet upcoming challenges.
Collapse
Affiliation(s)
- Dirk Schenke
- Institute of Phytopathology, Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts-University of Kiel, Hermann Rodewald Str. 9, 24118 Kiel, Germany
| | - Daguang Cai
- Institute of Phytopathology, Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts-University of Kiel, Hermann Rodewald Str. 9, 24118 Kiel, Germany
| |
Collapse
|
21
|
Zavaliev R, Mohan R, Chen T, Dong X. Formation of NPR1 Condensates Promotes Cell Survival during the Plant Immune Response. Cell 2020; 182:1093-1108.e18. [PMID: 32810437 DOI: 10.1016/j.cell.2020.07.016] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/20/2020] [Accepted: 07/13/2020] [Indexed: 01/07/2023]
Abstract
In plants, pathogen effector-triggered immunity (ETI) often leads to programmed cell death, which is restricted by NPR1, an activator of systemic acquired resistance. However, the biochemical activities of NPR1 enabling it to promote defense and restrict cell death remain unclear. Here we show that NPR1 promotes cell survival by targeting substrates for ubiquitination and degradation through formation of salicylic acid-induced NPR1 condensates (SINCs). SINCs are enriched with stress response proteins, including nucleotide-binding leucine-rich repeat immune receptors, oxidative and DNA damage response proteins, and protein quality control machineries. Transition of NPR1 into condensates is required for formation of the NPR1-Cullin 3 E3 ligase complex to ubiquitinate SINC-localized substrates, such as EDS1 and specific WRKY transcription factors, and promote cell survival during ETI. Our analysis of SINCs suggests that NPR1 is centrally integrated into the cell death or survival decisions in plant immunity by modulating multiple stress-responsive processes in this quasi-organelle.
Collapse
Affiliation(s)
- Raul Zavaliev
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Tianyuan Chen
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
22
|
Abstract
Pathogen recognition by the plant immune system leads to defense responses that are often accompanied by a form of regulated cell death known as the hypersensitive response (HR). HR shares some features with regulated necrosis observed in animals. Genetically, HR can be uncoupled from local defense responses at the site of infection and its role in immunity may be to activate systemic responses in distal parts of the organism. Recent advances in the field reveal conserved cell death-specific signaling modules that are assembled by immune receptors in response to pathogen-derived effectors. The structural elucidation of the plant resistosome-an inflammasome-like structure that may attach to the plasma membrane on activation-opens the possibility that HR cell death is mediated by the formation of pores at the plasma membrane. Necrotrophic pathogens that feed on dead tissue have evolved strategies to trigger the HR cell death pathway as a survival strategy. Ectopic activation of immunomodulators during autoimmune reactions can also promote HR cell death. In this perspective, we discuss the role and regulation of HR in these different contexts.
Collapse
Affiliation(s)
- Eugenia Pitsili
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Barcelona, Spain
| | - Ujjal J Phukan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Barcelona, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
23
|
van Butselaar T, Van den Ackerveken G. Salicylic Acid Steers the Growth-Immunity Tradeoff. TRENDS IN PLANT SCIENCE 2020; 25:566-576. [PMID: 32407696 DOI: 10.1016/j.tplants.2020.02.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 05/10/2023]
Abstract
Plants possess an effective immune system to combat most microbial attackers. The activation of immune responses to biotrophic pathogens requires the hormone salicylic acid (SA). Accumulation of SA triggers a plethora of immune responses (like massive transcriptional reprogramming, cell wall strengthening, and production of secondary metabolites and antimicrobial proteins). A tradeoff of strong immune responses is the active suppression of plant growth and development. The tradeoff also works the opposite way, where active growth and developmental processes suppress SA production and immune responses. Here, we review research on the role of SA in the growth-immunity tradeoff and examples of how the tradeoff can be bypassed. This knowledge will be instrumental in resistance breeding of crops with optimal growth and effective immunity.
Collapse
Affiliation(s)
- Tijmen van Butselaar
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands.
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands.
| |
Collapse
|
24
|
Prokchorchik M, Choi S, Chung EH, Won K, Dangl JL, Sohn KH. A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors. THE NEW PHYTOLOGIST 2020; 225:1327-1342. [PMID: 31550400 DOI: 10.1111/nph.16218] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Some virulence effectors secreted from pathogens target host proteins and induce biochemical modifications that are monitored by nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Arabidopsis RIN4 protein (AtRIN4: RPM1-interacting protein 4) homologs are present in diverse plant species and targeted by several bacterial type III effector proteins including the cysteine protease AvrRpt2. RIN4 is 'guarded' by several independently evolved NLRs from various plant species, including Arabidopsis RPS2. Recently, it was shown that the MR5 NLR from a wild apple relative can recognize the AvrRpt2 effector from Erwinia amylovora, but the details of this recognition remained unclear. The present contribution reports the mechanism of AvrRpt2 recognition by independently evolved NLRs, MR5 from apple and RPS2, both of which require proteolytically processed RIN4 for activation. It shows that the C-terminal cleaved product of apple RIN4 (MdRIN4) but not AtRIN4 is necessary and sufficient for MR5 activation. Additionally, two polymorphic residues in AtRIN4 and MdRIN4 are identified that are crucial in the regulation of and physical association with NLRs. It is proposed that polymorphisms in RIN4 from distantly related plant species allow it to remain an effector target while maintaining compatibility with multiple NLRs.
Collapse
Affiliation(s)
- Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
| | - Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Eui-Hwan Chung
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
| | - Kyungho Won
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Naju, 54875, Korea
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3280, USA
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
25
|
Schultz-Larsen T, Lenk A, Kalinowska K, Vestergaard LK, Pedersen C, Isono E, Thordal-Christensen H. The AMSH3 ESCRT-III-Associated Deubiquitinase Is Essential for Plant Immunity. Cell Rep 2019; 25:2329-2338.e5. [PMID: 30485803 DOI: 10.1016/j.celrep.2018.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/04/2018] [Accepted: 10/31/2018] [Indexed: 11/28/2022] Open
Abstract
Plant "nucleotide-binding leucine-rich repeat" receptor proteins (NLRs) detect alterations in host targets of pathogen effectors and trigger immune responses. The Arabidopsis thaliana mutant pen1 syp122 displays autoimmunity, and a mutant screen identified the deubiquitinase "associated molecule with the SH3 domain of STAM3" (AMSH3) to be required for this phenotype. AMSH3 has previously been implicated in ESCRT-mediated vacuolar targeting. Pathology experiments show that AMSH3 activity is required for immunity mediated by the CC-NLRs, RPS2 and RPM1. Co-expressing the autoactive RPM1D505V and the catalytically inactive ESCRT-III protein SKD1E232Q in Nicotiana benthamiana supports the requirement of ESCRT-associated functions for this CC-NLR-activated immunity. Meanwhile, loss of ESCRT function in A. thaliana is lethal, and we find that AMSH3 knockout-triggered seedling lethality is "enhanced disease susceptibility 1" (EDS1) dependent. Future studies may reveal whether AMSH3 is monitored by a TIR-NLR immunity receptor.
Collapse
Affiliation(s)
- Torsten Schultz-Larsen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Andrea Lenk
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Kamila Kalinowska
- Department of Plant Sciences, Technical University of Munich, 85456 Freising, Germany
| | - Lau Kræsing Vestergaard
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Carsten Pedersen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Erika Isono
- Department of Plant Sciences, Technical University of Munich, 85456 Freising, Germany; Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Hans Thordal-Christensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
26
|
Desaki Y, Takahashi S, Sato K, Maeda K, Matsui S, Yoshimi I, Miura T, Jumonji JI, Takeda J, Yashima K, Kohari M, Suenaga T, Terada H, Narisawa T, Shimizu T, Yumoto E, Miyamoto K, Narusaka M, Narusaka Y, Kaku H, Shibuya N. PUB4, a CERK1-Interacting Ubiquitin Ligase, Positively Regulates MAMP-Triggered Immunity in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:2573-2583. [PMID: 31368495 DOI: 10.1093/pcp/pcz151] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Lysin motif (LysM) receptor-like kinase CERK1 is a co-receptor essential for plant immune responses against carbohydrate microbe-associated molecular patterns (MAMPs). Concerning the immediate downstream signaling components of CERK1, receptor-like cytoplasmic kinases such as PBL27 and other RLCK VII members have been reported to regulate immune responses positively. In this study, we report that a novel CERK1-interacting E3 ubiquitin ligase, PUB4, is also involved in the regulation of MAMP-triggered immune responses. Knockout of PUB4 resulted in the alteration of chitin-induced defense responses, indicating that PUB4 positively regulates reactive oxygen species generation and callose deposition but negatively regulates MAPK activation and defense gene expression. On the other hand, detailed analyses of a double knockout mutant of pub4 and sid2, a mutant of salicylic acid (SA) synthesis pathway, showed that the contradictory phenotype of the pub4 mutant was actually caused by abnormal accumulation of SA in this mutant and that PUB4 is a positive regulator of immune responses. The present and recent findings on the role of PUB4 indicate that PUB4 is a unique E3 ubiquitin ligase involved in the regulation of both plant immunity and growth/development.
Collapse
Affiliation(s)
- Yoshitake Desaki
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Shohei Takahashi
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Kenta Sato
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Kanako Maeda
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Saki Matsui
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Ikuya Yoshimi
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Takaki Miura
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Jun-Ichi Jumonji
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Jun Takeda
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Kohei Yashima
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Masaki Kohari
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Takayoshi Suenaga
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Hayato Terada
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Tomoko Narisawa
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Takeo Shimizu
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Koji Miyamoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Mari Narusaka
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences, Okayama, Japan
| | - Yoshihiro Narusaka
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences, Okayama, Japan
| | - Hanae Kaku
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
27
|
Guzmán-Benito I, Donaire L, Amorim-Silva V, Vallarino JG, Esteban A, Wierzbicki AT, Ruiz-Ferrer V, Llave C. The immune repressor BIR1 contributes to antiviral defense and undergoes transcriptional and post-transcriptional regulation during viral infections. THE NEW PHYTOLOGIST 2019; 224:421-438. [PMID: 31111491 PMCID: PMC6711825 DOI: 10.1111/nph.15931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
BIR1 is a receptor-like kinase that functions as a negative regulator of basal immunity and cell death in Arabidopsis. Using Arabidopsis thaliana and Tobacco rattle virus (TRV), we investigate the antiviral role of BIR1, the molecular mechanisms of BIR1 gene expression regulation during viral infections, and the effects of BIR1 overexpression on plant immunity and development. We found that SA acts as a signal molecule for BIR1 activation during infection. Inactivating mutations of BIR1 in the bir1-1 mutant cause strong antiviral resistance independently of constitutive cell death or SA defense priming. BIR1 overexpression leads to severe developmental defects, cell death and premature death, which correlate with the constitutive activation of plant immune responses. Our findings suggest that BIR1 acts as a negative regulator of antiviral defense in plants, and indicate that RNA silencing contributes, alone or in conjunction with other regulatory mechanisms, to define a threshold expression for proper BIR1 function beyond which an autoimmune response may occur. This work provides novel mechanistic insights into the regulation of BIR1 homeostasis that may be common for other plant immune components.
Collapse
Affiliation(s)
- Irene Guzmán-Benito
- Departmento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040-Madrid, Spain
- Doctorado en Biotecnología y Recursos Genéticos de Plantas y Microorganismos Asociados, ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040-Madrid, Spain
| | - Livia Donaire
- Departmento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040-Madrid, Spain
| | - Vítor Amorim-Silva
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”, Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071-Málaga, Spain
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”, Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071-Málaga, Spain
| | - Alicia Esteban
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea “La Mayora”, Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Universidad de Málaga, Campus Teatinos, 29071-Málaga, Spain
| | - Andrzej T. Wierzbicki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Virginia Ruiz-Ferrer
- Departmento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040-Madrid, Spain
| | - César Llave
- Departmento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040-Madrid, Spain
| |
Collapse
|
28
|
A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res 2019; 29:820-831. [PMID: 31444468 DOI: 10.1038/s41422-019-0219-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/01/2019] [Indexed: 01/17/2023] Open
Abstract
The transient elevation of cytoplasmic calcium is essential for pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). However, the calcium channels responsible for this process have remained unknown. Here, we show that rice CDS1 (CELL DEATH and SUSCEPTIBLE to BLAST 1) encoding OsCNGC9, a cyclic nucleotide-gated channel protein, positively regulates the resistance to rice blast disease. We show that OsCNGC9 mediates PAMP-induced Ca2+ influx and that this event is critical for PAMPs-triggered ROS burst and induction of PTI-related defense gene expression. We further show that a PTI-related receptor-like cytoplasmic kinase OsRLCK185 physically interacts with and phosphorylates OsCNGC9 to activate its channel activity. Our results suggest a signaling cascade linking pattern recognition to calcium channel activation, which is required for initiation of PTI and disease resistance in rice.
Collapse
|
29
|
Li T, Wang Q, Feng R, Li L, Ding L, Fan G, Li W, Du Y, Zhang M, Huang G, Schäfer P, Meng Y, Tyler BM, Shan W. Negative regulators of plant immunity derived from cinnamyl alcohol dehydrogenases are targeted by multiple Phytophthora Avr3a-like effectors. THE NEW PHYTOLOGIST 2019. [PMID: 31436314 DOI: 10.1111/nph.16139] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/15/2019] [Indexed: 05/21/2023]
Abstract
Oomycete pathogens secrete numerous effectors to manipulate host immunity. While some effectors share a conserved structural fold, it remains unclear if any have conserved host targets. Avr3a-like family effectors, which are related to Phytophthora infestans effector PiAvr3a and are widely distributed across diverse clades of Phytophthora species, were used to study this question. By using yeast-two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays, we identified members of the plant cinnamyl alcohol dehydrogenase 7 (CAD7) subfamily as targets of multiple Avr3a-like effectors from Phytophthora pathogens. The CAD7 subfamily has expanded in plant genomes but lost the lignin biosynthetic activity of canonical CAD subfamilies. In turn, we identified CAD7s as negative regulators of plant immunity that are induced by Phytophthora infection. Moreover, AtCAD7 was stabilized by Avr3a-like effectors and involved in suppression of pathogen-associated molecular pattern-triggered immunity, including callose deposition, reactive oxygen species burst and WRKY33 expression. Our results reveal CAD7 subfamily proteins as negative regulators of plant immunity that are exploited by multiple Avr3a-like effectors to promote infection in different host plants.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruirui Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Licai Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liwen Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangjin Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Meixiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
30
|
Hake K, Romeis T. Protein kinase-mediated signalling in priming: Immune signal initiation, propagation, and establishment of long-term pathogen resistance in plants. PLANT, CELL & ENVIRONMENT 2019; 42:904-917. [PMID: 30151921 DOI: 10.1111/pce.13429] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 05/03/2023]
Abstract
"Priming" in plant phytopathology describes a phenomenon where the "experience" of primary infection by microbial pathogens leads to enhanced and beneficial protection of the plant against secondary infection. The plant is able to establish an immune memory, a state of systemic acquired resistance (SAR), in which the information of "having been attacked" is integrated with the action of "being prepared to defend when it happens again." Accordingly, primed plants are often characterized by faster and stronger activation of immune reactions that ultimately result in a reduction of pathogen spread and growth. Prerequisites for SAR are (a) the initiation of immune signalling subsequent to pathogen recognition, (b) a rapid defence signal propagation from a primary infected local site to uninfected distal parts of the plant, and (c) a switch into an immune signal-dependent establishment and subsequent long-lasting maintenance of phytohormone salicylic acid-based systemic immunity. Here, we provide a summary on protein kinases that contribute to these three conceptual aspects of "priming" in plant phytopathology, complemented by data addressing the role of protein kinases crucial for immune signal initiation also for signal propagation and SAR.
Collapse
Affiliation(s)
- Katharina Hake
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Centre of Plant Sciences, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
31
|
Chakraborty J, Ghosh P, Das S. Autoimmunity in plants. PLANTA 2018; 248:751-767. [PMID: 30046903 DOI: 10.1007/s00425-018-2956-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/15/2018] [Indexed: 05/22/2023]
Abstract
Attenuation in the activity of the negative regulators or the hyperactivity of plant innate immune receptors often causes ectopic defense activation manifested in severe growth retardation and spontaneous lesion formations, referred to as autoimmunity. In this review, we have described the cellular and molecular basis of the development of autoimmune responses for their useful applications in plant defense. Plants are exposed to diverse disease-causing pathogens, which bring infections by taking over the control on host immune machineries. To counter the challenges of evolving pathogenic races, plants recruit specific types of intracellular immune receptors that mostly belong to the family of polymorphic nucleotide-binding oligomerization domain-containing leucine-rich repeat (NLR) proteins. Upon recognition of effector molecules, NLR triggers hyperimmune signaling, which culminates in the form of a typical programmed cell death, designated hypersensitive response. Besides, few plant NLRs also guard certain host proteins known as 'guardee' that are modified by effector proteins. However, this fine-tuned innate immune system can be lopsided upon knock-out of the alleles that correspond to the host guardees, which mimick the presence of pathogen. The absence of pathogens causes inappropriate activation of the respective NLRs and results in the constitutive activation of plant defense and exhibiting autoimmunity. In plants, autoimmune mutants are readily scorable due to their dwarf phenotype and development of characteristic macroscopic disease lesions. Here, we summarize recent reports on autoimmune response in plants, how it is triggered, and phenotypic consequences associated with this phenomenon.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Prithwi Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
32
|
Zhang M, Chiang YH, Toruño TY, Lee D, Ma M, Liang X, Lal NK, Lemos M, Lu YJ, Ma S, Liu J, Day B, Dinesh-Kumar SP, Dehesh K, Dou D, Zhou JM, Coaker G. The MAP4 Kinase SIK1 Ensures Robust Extracellular ROS Burst and Antibacterial Immunity in Plants. Cell Host Microbe 2018; 24:379-391.e5. [PMID: 30212650 PMCID: PMC6279242 DOI: 10.1016/j.chom.2018.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022]
Abstract
Microbial patterns are recognized by cell-surface receptors to initiate pattern-triggered immunity (PTI) in plants. Receptor-like cytoplasmic kinases (RLCKs), such as BIK1, and calcium-dependent protein kinases (CPKs) are engaged during PTI to activate the NADPH oxidase RBOHD for reactive oxygen species (ROS) production. It is unknown whether protein kinases besides CPKs and RLCKs participate in RBOHD regulation. We screened mutants in all ten Arabidopsis MAP4 kinases (MAP4Ks) and identified the conserved MAP4K SIK1 as a positive regulator of PTI. sik1 mutants were compromised in their ability to elicit the ROS burst in response to microbial features and exhibited compromised PTI to bacterial infection. SIK1 directly interacts with, phosphorylates, and stabilizes BIK1 in a kinase activity-dependent manner. Furthermore, SIK1 directly interacts with and phosphorylates RBOHD upon flagellin perception. Thus, SIK1 positively regulates immunity by stabilizing BIK1 and activating RBOHD to promote the extracellular ROS burst.
Collapse
Affiliation(s)
- Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Yi-Hsuan Chiang
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Tania Y Toruño
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - DongHyuk Lee
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Miaomiao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Neeraj K Lal
- Department of Plant Biology and the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Mark Lemos
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA; Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Yi-Ju Lu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Shisong Ma
- Department of Plant Biology and the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Jun Liu
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Katayoon Dehesh
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA; Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
33
|
Choi S, Jayaraman J, Sohn KH. Arabidopsis thaliana SOBER1 (SUPPRESSOR OF AVRBST-ELICITED RESISTANCE 1) suppresses plant immunity triggered by multiple bacterial acetyltransferase effectors. THE NEW PHYTOLOGIST 2018; 219:324-335. [PMID: 29577317 DOI: 10.1111/nph.15125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/19/2018] [Indexed: 05/21/2023]
Abstract
Plants evolved disease resistance (R) proteins that recognize corresponding pathogen effectors and activate effector-triggered immunity (ETI). However, it is largely unknown why, in some cases, a suppressor of ETI exists in plants. Arabidopsis SOBER1 (Suppressor of AvrBsT-elicited Resistance 1) was identified previously as a suppressor of Xanthomonas acetyltransferase effector AvrBsT-triggered immunity. Nevertheless, the extent to which SOBER1 suppresses ETI is unclear. Here, we identified SOBER1 as a suppressor of Pseudomonas acetyltransferase effector HopZ5-triggered immunity in Arabidopsis using recombinant inbred lines. Further analysis showed that SOBER1 suppresses immunity triggered by multiple bacterial acetyltransferases. Interestingly, SOBER1 interferes with the immunity signalling activated by some but not all tested acetyltransferase effectors, indicating that SOBER1 might target components that are shared between several ETI pathways.
Collapse
Affiliation(s)
- Sera Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
| | - Jay Jayaraman
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
- New Zealand Institute for Plant & Food Research Limited (PFR), Mt Albert, Auckland, 1025, New Zealand
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
34
|
Rodriguez E, Chevalier J, El Ghoul H, Voldum-Clausen K, Mundy J, Petersen M. DNA damage as a consequence of NLR activation. PLoS Genet 2018; 14:e1007235. [PMID: 29462140 PMCID: PMC5834200 DOI: 10.1371/journal.pgen.1007235] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 03/02/2018] [Accepted: 01/31/2018] [Indexed: 01/20/2023] Open
Abstract
DNA damage observed during plant immune responses is reported to be an intrinsic component of plant immunity. However, other immune responses may suppress DNA damage to maintain host genome integrity. Here, we show that immunity-related DNA damage can be abrogated by preventing cell death triggered by Nucleotide-binding, Leucine-rich-repeat immune Receptors (NLRs). SNI1 (suppressor of npr1-1, inducible 1), a subunit of the structural maintenance of chromosome (SMC) 5/6 complex, was reported to be a negative regulator of systemic acquired resistance (SAR) and to be necessary for controlling DNA damage. We find that cell death and DNA damage in sni1 loss-of-function mutants are prevented by mutations in the NLR signaling component EDS1. Similar to sni1, elevated DNA damage is seen in other autoimmune mutants with cell death lesions, including camta3, pub13 and vad1, but not in dnd1, an autoimmune mutant with no visible cell death. We find that as in sni1, DNA damage in camta3 is EDS1-dependent, but that it is also NLR-dependent. Using the NLR RPM1 as a model, we also show that extensive DNA damage is observed when an NLR is directly triggered by effectors. We also find that the expression of DNA damage repair (DDR) genes in mutants with cell death lesions is down regulated, suggesting that degraded DNA that accumulates during cell death is a result of cellular dismantling and is not sensed as damaged DNA that calls for repair. Our observations also indicate that SNI1 is not directly involved in SAR or DNA damage accumulation.
Collapse
Affiliation(s)
- Eleazar Rodriguez
- Department of Biology, University of Copenhagen. Copenhagen, Denmark
| | | | - Hassan El Ghoul
- Department of Biology, University of Copenhagen. Copenhagen, Denmark
| | | | - John Mundy
- Department of Biology, University of Copenhagen. Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, University of Copenhagen. Copenhagen, Denmark
| |
Collapse
|
35
|
Su J, Spears BJ, Kim SH, Gassmann W. Constant vigilance: plant functions guarded by resistance proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:637-650. [PMID: 29232015 DOI: 10.1111/tpj.13798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 05/09/2023]
Abstract
Unlike animals, plants do not have an adaptive immune system and have instead evolved sophisticated and multi-layered innate immune mechanisms. To overcome plant immunity, pathogens secrete a diverse array of effectors into the apoplast and virtually all cellular compartments to dampen immune signaling and interfere with plant functions. Here we describe the scope of the arms race throughout the cell and summarize various strategies used by both plants and pathogens. Through studying the ongoing evolutionary battle between plants and key pathogens, we may yet uncover potential ways to achieve the ultimate goal of engineering broad-spectrum resistant crops without affecting food quality or productivity.
Collapse
Affiliation(s)
- Jianbin Su
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Benjamin J Spears
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Sang Hee Kim
- Division of Applied Life Science (BK 21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Division of Life Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Walter Gassmann
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
36
|
Creighton MT, Kolton A, Kataya ARA, Maple-Grødem J, Averkina IO, Heidari B, Lillo C. Methylation of protein phosphatase 2A-Influence of regulators and environmental stress factors. PLANT, CELL & ENVIRONMENT 2017; 40:2347-2358. [PMID: 28741704 DOI: 10.1111/pce.13038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 05/13/2023]
Abstract
Protein phosphatase 2A catalytic subunit (PP2A-C) has a terminal leucine subjected to methylation, a regulatory mechanism conserved from yeast to mammals and plants. Two enzymes, LCMT1 and PME1, methylate and demethylate PP2A-C, respectively. The physiological importance of these posttranslational modifications is still enigmatic. We investigated these processes in Arabidopsis thaliana by mutant phenotyping, by global expression analysis, and by monitoring methylation status of PP2A-C under different environmental conditions. The lcmt1 mutant, possessing essentially only unmethylated PP2A-C, had less dense rosettes, and earlier flowering than wild type (WT). The pme1 mutant, with 30% reduction in unmethylated PP2A-C, was phenotypically comparable with WT. Approximately 200 overlapping genes were twofold upregulated, and 200 overlapping genes were twofold downregulated in both lcmt1 and pme1 relative to WT. Differences between the 2 mutants were also striking; 97 genes were twofold upregulated in pme1 compared with lcmt1, indicating that PME1 acts as a negative regulator for these genes. Analysis of enriched GO terms revealed categories of both abiotic and biotic stress genes. Furthermore, methylation status of PP2A-C was influenced by environmental stress, especially by hypoxia and salt stress, which led to increased levels of unmethylated PP2A-C, and highlights the importance of PP2A-C methylation/demethylation in environmental responses.
Collapse
Affiliation(s)
- Maria T Creighton
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | - Anna Kolton
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, 31-425 Kraków, Poland
| | - Amr R A Kataya
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | - Jodi Maple-Grødem
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | - Irina O Averkina
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | - Behzad Heidari
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | - Cathrine Lillo
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| |
Collapse
|
37
|
Yasuda S, Okada K, Saijo Y. A look at plant immunity through the window of the multitasking coreceptor BAK1. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:10-18. [PMID: 28458047 DOI: 10.1016/j.pbi.2017.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 05/07/2023]
Abstract
Recognition of microbe- and danger-associated molecular patterns (MAMPs and DAMPs, respectively) by pattern recognition receptors (PRRs) is central to innate immunity in both plants and animals. The plant PRRs described to date are all cell surface-localized receptors. According to their ligand-binding ectodomains, each PRR engages a specific coreceptor or adaptor kinase in its signaling complexes to regulate defense signaling. With a focus on the coreceptor RLK BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) and related SOMATIC EMBRYOGENESIS RECEPTOR KINASEs (SERKs), here we review the increasing inventory of BAK1 partners and their functions in plant immunity. We also discuss the significance of autoimmunity triggered by BAK1/SERK4 disintegration in shaping the strategies for attenuation of PRR signaling by infectious microbes and host plants.
Collapse
Affiliation(s)
- Shigetaka Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kentaro Okada
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; Japan Science and Technology (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi 332-0012, Japan.
| |
Collapse
|
38
|
Khafif M, Balagué C, Huard-Chauveau C, Roby D. An essential role for the VASt domain of the Arabidopsis VAD1 protein in the regulation of defense and cell death in response to pathogens. PLoS One 2017; 12:e0179782. [PMID: 28683084 PMCID: PMC5500287 DOI: 10.1371/journal.pone.0179782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/04/2017] [Indexed: 11/24/2022] Open
Abstract
Several regulators of programmed cell death (PCD) have been identified in plants which encode proteins with putative lipid-binding domains. Among them, VAD1 (Vascular Associated Death) contains a novel protein domain called VASt (VAD1 analog StAR-related lipid transfer) still uncharacterized. The Arabidopsis mutant vad1-1 has been shown to exhibit a lesion mimic phenotype with light-conditional appearance of propagative hypersensitive response-like lesions along the vascular system, associated with defense gene expression and increased resistance to Pseudomonas strains. To test the potential of ectopic expression of VAD1 to influence HR cell death and to elucidate the role of the VASt domain in this function, we performed a structure-function analysis of VAD1 by transient over-expression in Nicotiana benthamiana and by complementation of the mutant vad1-1. We found that (i) overexpression of VAD1 controls negatively the HR cell death and defense expression either transiently in Nicotiana benthamania or in Arabidopsis plants in response to avirulent strains of Pseudomonas syringae, (ii) VAD1 is expressed in multiple subcellular compartments, including the nucleus, and (iii) while the GRAM domain does not modify neither the subcellular localization of VAD1 nor its immunorepressor activity, the domain VASt plays an essential role in both processes. In conclusion, VAD1 acts as a negative regulator of cell death associated with the plant immune response and the VASt domain of this unknown protein plays an essential role in this function, opening the way for the functional analysis of VASt-containing proteins and the characterization of novel mechanisms regulating PCD.
Collapse
Affiliation(s)
- Mehdi Khafif
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Claudine Balagué
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Dominique Roby
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
39
|
Pruitt RN, Joe A, Zhang W, Feng W, Stewart V, Schwessinger B, Dinneny JR, Ronald PC. A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone. THE NEW PHYTOLOGIST 2017; 215:725-736. [PMID: 28556915 PMCID: PMC5901733 DOI: 10.1111/nph.14609] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/18/2017] [Indexed: 05/13/2023]
Abstract
The biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces a sulfated peptide named RaxX, which shares similarity to peptides in the PSY (plant peptide containing sulfated tyrosine) family. We hypothesize that RaxX mimics the growth-stimulating activity of PSY peptides. Root length was measured in Arabidopsis and rice treated with synthetic RaxX peptides. We also used comparative genomic analyses and reactive oxygen species burst assays to evaluate the activity of RaxX and PSY peptides. Here we found that a synthetic sulfated RaxX derivative comprising 13 residues (RaxX13-sY), highly conserved between RaxX and PSY, induces root growth in Arabidopsis and rice in a manner similar to that triggered by PSY. We identified residues that are required for activation of immunity mediated by the rice XA21 receptor but that are not essential for root growth induced by PSY. Finally, we showed that a Xanthomonas strain lacking raxX is impaired in virulence. These findings suggest that RaxX serves as a molecular mimic of PSY peptides to facilitate Xoo infection and that XA21 has evolved the ability to recognize and respond specifically to the microbial form of the peptide.
Collapse
Affiliation(s)
- Rory N. Pruitt
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Feedstocks Division, Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Joe
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Feedstocks Division, Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Weiguo Zhang
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
| | - Wei Feng
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Valley Stewart
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Benjamin Schwessinger
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Feedstocks Division, Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - José R. Dinneny
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
- Feedstocks Division, Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
40
|
Lolle S, Greeff C, Petersen K, Roux M, Jensen MK, Bressendorff S, Rodriguez E, Sømark K, Mundy J, Petersen M. Matching NLR Immune Receptors to Autoimmunity in camta3 Mutants Using Antimorphic NLR Alleles. Cell Host Microbe 2017; 21:518-529.e4. [DOI: 10.1016/j.chom.2017.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/16/2016] [Accepted: 03/09/2017] [Indexed: 11/29/2022]
|
41
|
Scheres B, van der Putten WH. The plant perceptron connects environment to development. Nature 2017; 543:337-345. [DOI: 10.1038/nature22010] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/10/2017] [Indexed: 12/23/2022]
|
42
|
Huysmans M, Lema A S, Coll NS, Nowack MK. Dying two deaths - programmed cell death regulation in development and disease. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:37-44. [PMID: 27865098 DOI: 10.1016/j.pbi.2016.11.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) is a fundamental cellular process that has adopted a plethora of vital functions in multicellular organisms. In plants, PCD processes are elicited as an inherent part of regular development in specific cell types or tissues, but can also be triggered by biotic and abiotic stresses. Although over the last years we have seen progress in our understanding of the molecular regulation of different plant PCD processes, it is still unclear whether a common core machinery exists that controls cell death in development and disease. In this review, we discuss recent advances in the field, comparing some aspects of the molecular regulation controlling developmental and pathogen-triggered PCD in plants.
Collapse
Affiliation(s)
- Marlies Huysmans
- VIB Department of Plant Systems Biology, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Saul Lema A
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra-Cerdanyola del Valles 08193, Catalonia, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra-Cerdanyola del Valles 08193, Catalonia, Spain.
| | - Moritz K Nowack
- VIB Department of Plant Systems Biology, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
| |
Collapse
|
43
|
Liu Y, Huang X, Li M, He P, Zhang Y. Loss-of-function of Arabidopsis receptor-like kinase BIR1 activates cell death and defense responses mediated by BAK1 and SOBIR1. THE NEW PHYTOLOGIST 2016; 212:637-645. [PMID: 27400831 DOI: 10.1111/nph.14072] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/25/2016] [Indexed: 05/25/2023]
Abstract
The Arabidopsis receptor-like kinase (RLK) BIR1 (BAK1-INTERACTING RECEPTOR-LIKE KINASE 1) functions as a negative regulator of plant immunity. Previous work showed that loss-of-function of BIR1 leads to constitutive activation of cell death and defense responses. These autoimmune phenotypes are partially dependent on another RLK, SOBIR1. In order to identify additional components involved in the BIR1-regulated plant defense signaling pathway, a suppressor screen was carried out in the bir1-1 pad4-1 mutant background. Mutations in the suppressor mutants were identified by genetic mapping and re-sequencing of the mutant genomes. A number of suppressor mutants were found to carry mutations in an additional RLK, BAK1, indicating that BAK1 is required for activation of cell death and defense responses in bir1-1. Co-immunoprecipitation analysis revealed that BAK1 and SOBIR1 associate with each other in planta when the function of BIR1 is compromised. Although BAK1 was previously characterized as a negative regulator of cell death, our study highlights a novel role of BAK1 in promoting cell death and defense responses in conjunction with SOBIR1.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Xingchuan Huang
- National Institute of Biological Sciences, Zhongguancun Life Science Park, 7 Science Park Road, Beijing, 102206, China
| | - Meng Li
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Ping He
- Department of Biochemistry & Biophysics, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX, 77843, USA
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4.
| |
Collapse
|
44
|
|
45
|
|
46
|
van Wersch R, Li X, Zhang Y. Mighty Dwarfs: Arabidopsis Autoimmune Mutants and Their Usages in Genetic Dissection of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2016; 7:1717. [PMID: 27909443 PMCID: PMC5112265 DOI: 10.3389/fpls.2016.01717] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/01/2016] [Indexed: 05/17/2023]
Abstract
Plants lack the adaptive immune system possessed by mammals. Instead they rely on innate immunity to defend against pathogen attacks. Genomes of higher plants encode a large number of plant immune receptors belonging to different protein families, which are involved in the detection of pathogens and activation of downstream defense pathways. Plant immunity is tightly controlled to avoid activation of defense responses in the absence of pathogens, as failure to do so can lead to autoimmunity that compromises plant growth and development. Many autoimmune mutants have been reported, most of which are associated with dwarfism and often spontaneous cell death. In this review, we summarize previously reported Arabidopsis autoimmune mutants, categorizing them based on their functional groups. We also discuss how their obvious morphological phenotypes make them ideal tools for epistatic analysis and suppressor screens, and summarize genetic screens that have been carried out in various autoimmune mutant backgrounds.
Collapse
Affiliation(s)
- Rowan van Wersch
- Department of Botany, University of British Columbia, VancouverBC, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, VancouverBC, Canada
- The Michael Smith Laboratories, University of British Columbia, VancouverBC, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, VancouverBC, Canada
- *Correspondence: Yuelin Zhang,
| |
Collapse
|