1
|
Talukdar S, Mal S, Kundu P. Physico-chemical features and functional relevance of tomato rhomboid proteases. Int J Biol Macromol 2024; 272:132681. [PMID: 38806088 DOI: 10.1016/j.ijbiomac.2024.132681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
In plants, regulated intramembrane proteolysis (RIP) is crucial for proper growth, development, and stress management. Rhomboid proteases (RPs) residing in the membrane play a vital role in orchestrating RIP. Although RPs can be found in most sequenced genomes, tomato rhomboids (SlRPs) have not yet been studied. Using alternative and comprehensive strategies, we found ten SlRPs encoded in the tomato genome. These SlRPs possess signature motifs and transmembrane domains, showing structural similarity to other members of the RP family. Also, SlRPs are genetically related to other known RPs of the Solanaceae family. Seven of the SlRPs retain serine-histidine catalytic dyads, making them proteolytically active, while three iRhoms lack the dyad and other structural motifs. Although SlRPs could have functional redundancy, their distribution and expression pattern indicate tissue specificity and responsiveness to specific external stimuli. The presence of development and stress-response-related cis-elements in the promoters of SlRPs supports this view. Furthermore, our strategically designed substrate-reporter assay shows that SlRPs have proteolytic activity similar to that of known RPs. This study provides a detailed understanding of all SlRPs and their physico-chemical features, shedding light on their involvement in physiological processes.
Collapse
Affiliation(s)
- Sushmita Talukdar
- Department of Biological Sciences, Bose Institute, EN80, Sector V, Bidhannagar, Kolkata 700091, India
| | - Sayan Mal
- Department of Biological Sciences, Bose Institute, EN80, Sector V, Bidhannagar, Kolkata 700091, India
| | - Pallob Kundu
- Department of Biological Sciences, Bose Institute, EN80, Sector V, Bidhannagar, Kolkata 700091, India.
| |
Collapse
|
2
|
Wu Y, Thomas GM, Thomsen M, Bahri S, Lieberman RL. Lipid environment modulates processivity and kinetics of a presenilin homolog acting on multiple substrates in vitro. J Biol Chem 2023; 299:105401. [PMID: 38270390 PMCID: PMC10679502 DOI: 10.1016/j.jbc.2023.105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 01/26/2024] Open
Abstract
Intramembrane proteases (IPs) hydrolyze peptides in the lipid membrane. IPs participate in a number of cellular pathways including immune response and surveillance, and cholesterol biosynthesis, and they are exploited by viruses for replication. Despite their broad importance across biology, how activity is regulated in the cell to control protein maturation and release of specific bioactive peptides at the right place and right time remains largely unanswered, particularly for the intramembrane aspartyl protease (IAP) subtype. At a molecular biochemical level, different IAP homologs can cleave non-biological substrates, and there is no sequence recognition motif among the nearly 150 substrates identified for just one IAP, presenilin-1, the catalytic component of γ-secretase known for its involvement in the production of amyloid-β plaques associated with Alzheimer disease. Here we used gel-based assays combined with quantitative mass spectrometry and FRET-based kinetics assays to probe the cleavage profile of the presenilin homolog from the methanogen Methanoculleus marisnigri JR1 as a function of the surrounding lipid-mimicking environment, either detergent micelles or bicelles. We selected four biological IAP substrates that have not undergone extensive cleavage profiling previously, namely, the viral core protein of Hepatitis C virus, the viral core protein of Classical Swine Fever virus, the transmembrane segment of Notch-1, and the tyrosine receptor kinase ErbB4. Our study demonstrates a proclivity toward cleavage of substrates at positions of low average hydrophobicity and a consistent role for the lipid environment in modulating kinetic properties.
Collapse
Affiliation(s)
- Yuqi Wu
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gwendell M Thomas
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Max Thomsen
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sara Bahri
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
3
|
Yang J, Carvalho LAR, Ji S, Chen S, Moreira R, Verhelst SHL. 4-Oxo-β-Lactams as Novel Inhibitors for Rhomboid Proteases. Chembiochem 2023; 24:e202300418. [PMID: 37671979 DOI: 10.1002/cbic.202300418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
Intramembrane serine proteases (rhomboid proteases) are involved in a variety of biological processes and are implicated in several diseases. Here, we report 4-oxo-β-lactams as a novel scaffold for inhibition of rhomboids. We show that they covalently react with the active site and that the covalent bond is sufficiently stable for detection of the covalent rhomboid-lactam complex. 4-Oxo-β-lactams may therefore find future use as both inhibitors and activity-based probes for rhomboid proteases.
Collapse
Affiliation(s)
- Jian Yang
- Laboratory of, Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
| | - Luís A R Carvalho
- Department of Pharmaceutical Sciences and Medicines, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Shanping Ji
- Laboratory of, Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
| | - Suyuan Chen
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn Strasse 6b, 44227, Dortmund, Germany
| | - Rui Moreira
- Department of Pharmaceutical Sciences and Medicines, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Steven H L Verhelst
- Laboratory of, Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn Strasse 6b, 44227, Dortmund, Germany
| |
Collapse
|
4
|
Zheng Y, Young ND, Song J, Gasser RB. Genome-Wide Analysis of Haemonchus contortus Proteases and Protease Inhibitors Using Advanced Informatics Provides Insights into Parasite Biology and Host-Parasite Interactions. Int J Mol Sci 2023; 24:12320. [PMID: 37569696 PMCID: PMC10418638 DOI: 10.3390/ijms241512320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Biodiversity within the animal kingdom is associated with extensive molecular diversity. The expansion of genomic, transcriptomic and proteomic data sets for invertebrate groups and species with unique biological traits necessitates reliable in silico tools for the accurate identification and annotation of molecules and molecular groups. However, conventional tools are inadequate for lesser-known organismal groups, such as eukaryotic pathogens (parasites), so that improved approaches are urgently needed. Here, we established a combined sequence- and structure-based workflow system to harness well-curated publicly available data sets and resources to identify, classify and annotate proteases and protease inhibitors of a highly pathogenic parasitic roundworm (nematode) of global relevance, called Haemonchus contortus (barber's pole worm). This workflow performed markedly better than conventional, sequence-based classification and annotation alone and allowed the first genome-wide characterisation of protease and protease inhibitor genes and gene products in this worm. In total, we identified 790 genes encoding 860 proteases and protease inhibitors representing 83 gene families. The proteins inferred included 280 metallo-, 145 cysteine, 142 serine, 121 aspartic and 81 "mixed" proteases as well as 91 protease inhibitors, all of which had marked physicochemical diversity and inferred involvements in >400 biological processes or pathways. A detailed investigation revealed a remarkable expansion of some protease or inhibitor gene families, which are likely linked to parasitism (e.g., host-parasite interactions, immunomodulation and blood-feeding) and exhibit stage- or sex-specific transcription profiles. This investigation provides a solid foundation for detailed explorations of the structures and functions of proteases and protease inhibitors of H. contortus and related nematodes, and it could assist in the discovery of new drug or vaccine targets against infections or diseases.
Collapse
Affiliation(s)
- Yuanting Zheng
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Neil D. Young
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Jiangning Song
- Department of Data Science and AI, Faculty of IT, Monash University, Melbourne, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Robin B. Gasser
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
5
|
Kristensen SS, Diep DB, Kjos M, Mathiesen G. The role of site-2-proteases in bacteria: a review on physiology, virulence, and therapeutic potential. MICROLIFE 2023; 4:uqad025. [PMID: 37223736 PMCID: PMC10202637 DOI: 10.1093/femsml/uqad025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Site-2-proteases are a class of intramembrane proteases involved in regulated intramembrane proteolysis. Regulated intramembrane proteolysis is a highly conserved signaling mechanism that commonly involves sequential digestion of an anti-sigma factor by a site-1- and site-2-protease in response to external stimuli, resulting in an adaptive transcriptional response. Variation of this signaling cascade continues to emerge as the role of site-2-proteases in bacteria continues to be explored. Site-2-proteases are highly conserved among bacteria and play a key role in multiple processes, including iron uptake, stress response, and pheromone production. Additionally, an increasing number of site-2-proteases have been found to play a pivotal role in the virulence properties of multiple human pathogens, such as alginate production in Pseudomonas aeruginosa, toxin production in Vibrio cholerae, resistance to lysozyme in enterococci and antimicrobials in several Bacillus spp, and cell-envelope lipid composition in Mycobacterium tuberculosis. The prominent role of site-2-proteases in bacterial pathogenicity highlights the potential of site-2-proteases as novel targets for therapeutic intervention. In this review, we summarize the role of site-2-proteases in bacterial physiology and virulence, as well as evaluate the therapeutic potential of site-2-proteases.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | | | - Morten Kjos
- Corresponding author. NMBU, P.O. Box 5003, 1433 Ås, Norway. E-mail:
| | | |
Collapse
|
6
|
Hodges SL, Bouza AA, Isom LL. Therapeutic Potential of Targeting Regulated Intramembrane Proteolysis Mechanisms of Voltage-Gated Ion Channel Subunits and Cell Adhesion Molecules. Pharmacol Rev 2022; 74:1028-1048. [PMID: 36113879 PMCID: PMC9553118 DOI: 10.1124/pharmrev.121.000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/13/2022] [Indexed: 10/03/2023] Open
Abstract
Several integral membrane proteins undergo regulated intramembrane proteolysis (RIP), a tightly controlled process through which cells transmit information across and between intracellular compartments. RIP generates biologically active peptides by a series of proteolytic cleavage events carried out by two primary groups of enzymes: sheddases and intramembrane-cleaving proteases (iCLiPs). Following RIP, fragments of both pore-forming and non-pore-forming ion channel subunits, as well as immunoglobulin super family (IgSF) members, have been shown to translocate to the nucleus to function in transcriptional regulation. As an example, the voltage-gated sodium channel β1 subunit, which is also an IgSF-cell adhesion molecule (CAM), is a substrate for RIP. β1 RIP results in generation of a soluble intracellular domain, which can regulate gene expression in the nucleus. In this review, we discuss the proposed RIP mechanisms of voltage-gated sodium, potassium, and calcium channel subunits as well as the roles of their generated proteolytic products in the nucleus. We also discuss other RIP substrates that are cleaved by similar sheddases and iCLiPs, such as IgSF macromolecules, including CAMs, whose proteolytically generated fragments function in the nucleus. Importantly, dysfunctional RIP mechanisms are linked to human disease. Thus, we will also review how understanding RIP events and subsequent signaling processes involving ion channel subunits and IgSF proteins may lead to the discovery of novel therapeutic targets. SIGNIFICANCE STATEMENT: Several ion channel subunits and immunoglobulin superfamily molecules have been identified as substrates of regulated intramembrane proteolysis (RIP). This signal transduction mechanism, which generates polypeptide fragments that translocate to the nucleus, is an important regulator of gene transcription. RIP may impact diseases of excitability, including epilepsy, cardiac arrhythmia, and sudden death syndromes. A thorough understanding of the role of RIP in gene regulation is critical as it may reveal novel therapeutic strategies for the treatment of previously intractable diseases.
Collapse
Affiliation(s)
- Samantha L Hodges
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexandra A Bouza
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Lori L Isom
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
7
|
Chen SY, Zacharias M. An internal docking site stabilizes substrate binding to γ-secretase: Analysis by molecular dynamics simulations. Biophys J 2022; 121:2330-2344. [PMID: 35598043 PMCID: PMC9279352 DOI: 10.1016/j.bpj.2022.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022] Open
Abstract
Amyloid precursor protein (APP) is cleaved and processed sequentially by γ-secretase yielding amyloid β (Aβ) peptides of different lengths. Longer Aβ peptides are associated with the formation of neurotoxic plaques related to Alzheimer's disease. Based on the APP substrate-bound structure of γ-secretase, we investigated the enzyme-substrate interaction using molecular dynamics simulations and generated model structures that represent the sequentially cleaved intermediates during the processing reaction. The simulations indicated an internal docking site providing strong enzyme-substrate packing interaction. In the enzyme-substrate complex, it is located close to the region where the helical conformation of the substrate is interrupted and continues toward the active site in an extended conformation. The internal docking site consists of two non-polar pockets that are preferentially filled by large hydrophobic or aromatic substrate side chains to stabilize binding. Placement of smaller residues such as glycine can trigger a shift in the cleavage pattern during the simulations or results in destabilization of substrate binding. The reduced packing by smaller residues also influences the hydration of the active site and the formation of a catalytically active state. The simulations on processed substrate intermediates and a substrate G33I mutation offer an explanation of the experimentally observed relative increase of short Aβ fragment production for this mutation. In addition, studies on a substrate K28A mutation indicate that the internal docking site opposes the tendency of substrate dissociation due to a hydrophobic mismatch at the membrane boundary caused by K28 during processing and substrate movement toward the enzyme active site. The proposed internal docking site could also be useful for the specific design of new γ-secretase modulators.
Collapse
Affiliation(s)
- Shu-Yu Chen
- Physics Department and Center of Functional Protein Assemblies, Technical University of Munich, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department and Center of Functional Protein Assemblies, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
8
|
Rahman F, Wushur I, Malla N, Åstrand OAH, Rongved P, Winberg JO, Sylte I. Zinc-Chelating Compounds as Inhibitors of Human and Bacterial Zinc Metalloproteases. Molecules 2021; 27:molecules27010056. [PMID: 35011288 PMCID: PMC8746695 DOI: 10.3390/molecules27010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibition of bacterial virulence is believed to be a new treatment option for bacterial infections. In the present study, we tested dipicolylamine (DPA), tripicolylamine (TPA), tris pyridine ethylene diamine (TPED), pyridine and thiophene derivatives as putative inhibitors of the bacterial virulence factors thermolysin (TLN), pseudolysin (PLN) and aureolysin (ALN) and the human zinc metalloproteases, matrix metalloprotease-9 (MMP-9) and matrix metalloprotease-14 (MMP-14). These compounds have nitrogen or sulfur as putative donor atoms for zinc chelation. In general, the compounds showed stronger inhibition of MMP-14 and PLN than of the other enzymes, with Ki values in the lower μM range. Except for DPA, none of the compounds showed significantly stronger inhibition of the virulence factors than of the human zinc metalloproteases. TPA and Zn230 were the only compounds that inhibited all five zinc metalloproteinases with a Ki value in the lower μM range. The thiophene compounds gave weak or no inhibition. Docking indicated that some of the compounds coordinated zinc by one oxygen atom from a hydroxyl or carbonyl group, or by oxygen atoms both from a hydroxyl group and a carbonyl group, and not by pyridine nitrogen as in DPA and TPA.
Collapse
Affiliation(s)
- Fatema Rahman
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway; (F.R.); (I.W.); (N.M.); (J.-O.W.)
| | - Imin Wushur
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway; (F.R.); (I.W.); (N.M.); (J.-O.W.)
| | - Nabin Malla
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway; (F.R.); (I.W.); (N.M.); (J.-O.W.)
| | - Ove Alexander Høgmoen Åstrand
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, NO-0316 Oslo, Norway; (O.A.H.Å.); (P.R.)
| | - Pål Rongved
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, NO-0316 Oslo, Norway; (O.A.H.Å.); (P.R.)
| | - Jan-Olof Winberg
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway; (F.R.); (I.W.); (N.M.); (J.-O.W.)
| | - Ingebrigt Sylte
- Molecular Pharmacology and Toxicology, Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway; (F.R.); (I.W.); (N.M.); (J.-O.W.)
- Correspondence: ; Tel.: +47-7764-4705
| |
Collapse
|
9
|
KBE009: A Bestatin-Like Inhibitor of the Trypanosoma cruzi Acidic M17 Aminopeptidase with In Vitro Anti-Trypanosomal Activity. Life (Basel) 2021; 11:life11101037. [PMID: 34685408 PMCID: PMC8540442 DOI: 10.3390/life11101037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Chagas disease, caused by the kinetoplastid parasite Trypanosoma cruzi, is a human tropical illness mainly present in Latin America. The therapies available against this disease are far from ideal. Proteases from pathogenic protozoan have been considered as good drug target candidates. T. cruzi acidic M17 leucyl-aminopeptidase (TcLAP) mediates the major parasite’s leucyl-aminopeptidase activity and is expressed in all parasite stages. Here, we report the inhibition of TcLAP (IC50 = 66.0 ± 13.5 µM) by the bestatin-like peptidomimetic KBE009. This molecule also inhibited the proliferation of T. cruzi epimastigotes in vitro (EC50 = 28.1 ± 1.9 µM) and showed selectivity for the parasite over human dermal fibroblasts (selectivity index: 4.9). Further insight into the specific effect of KBE009 on T. cruzi was provided by docking simulation using the crystal structure of TcLAP and a modeled human orthologous, hLAP3. The TcLAP-KBE009 complex is more stable than its hLAP3 counterpart. KBE009 adopted a better geometrical shape to fit into the active site of TcLAP than that of hLAP3. The drug-likeness and lead-likeness in silico parameters of KBE009 are satisfactory. Altogether, our results provide an initial insight into KBE009 as a promising starting point compound for the rational design of drugs through further optimization.
Collapse
|
10
|
Samy A, Yamano-Adachi N, Koga Y, Omasa T. Secretion of a low-molecular-weight species of endogenous GRP94 devoid of the KDEL motif during endoplasmic reticulum stress in Chinese hamster ovary cells. Traffic 2021; 22:425-438. [PMID: 34536241 PMCID: PMC9293085 DOI: 10.1111/tra.12818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 01/04/2023]
Abstract
GRP94 (glucose‐regulated protein 94) is a well‐studied chaperone with a lysine, aspartic acid, glutamic acid and leucine (KDEL) motif at its C‐terminal, which is responsible for GRP94 localization in the endoplasmic reticulum (ER). GRP94 is upregulated during ER stress to help fold unfolded proteins or direct proteins to ER‐associated degradation. In a previous study, engineered GRP94 without the KDEL motif stimulated a powerful immune response in vaccine cells. In this report, we show that endogenous GRP94 is naturally secreted into the medium in a truncated form that lacks the KDEL motif in Chinese hamster ovary cells. The secretion of the truncated form of GRP94 was stimulated by the induction of ER stress. These truncations prevent GRP94 recognition by KDEL receptors and retention inside the cell. This study sheds light on a potential trafficking phenomenon during the unfolded protein response that may help understand the functional role of GRP94 as a trafficking molecule.
Collapse
Affiliation(s)
- Andrew Samy
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Noriko Yamano-Adachi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Yuichi Koga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
11
|
Abstract
Proteases play a central role in regulating renal pathophysiology and are increasingly evaluated as actionable drug targets. Here, we review the role of proteolytic systems in inflammatory kidney disease. Inflammatory kidney diseases are associated with broad dysregulations of extracellular and intracellular proteolysis. As an example of a proteolytic system, the complement system plays a significant role in glomerular inflammatory kidney disease and is currently under clinical investigation. Based on two glomerular kidney diseases, lupus nephritis, and membranous nephropathy, we portrait two proteolytic pathomechanisms and the role of the complement system. We discuss how profiling proteolytic activity in patient samples could be used to stratify patients for more targeted interventions in inflammatory kidney diseases. We also describe novel comprehensive, quantitative tools to investigate the entirety of proteolytic processes in a tissue sample. Emphasis is placed on mass spectrometric approaches that enable the comprehensive analysis of the complement system, as well as protease activities and regulation in general.
Collapse
|
12
|
Lysyk L, Brassard R, Arutyunova E, Siebert V, Jiang Z, Takyi E, Morrison M, Young HS, Lemberg MK, O'Donoghue AJ, Lemieux MJ. Insights into the catalytic properties of the mitochondrial rhomboid protease PARL. J Biol Chem 2021; 296:100383. [PMID: 33556373 PMCID: PMC7966987 DOI: 10.1016/j.jbc.2021.100383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
The rhomboid protease PARL is a critical regulator of mitochondrial homeostasis through its cleavage of substrates such as PINK1, PGAM5, and Smac/Diablo, which have crucial roles in mitochondrial quality control and apoptosis. However, the catalytic properties of PARL, including the effect of lipids on the protease, have never been characterized in vitro. To address this, we isolated human PARL expressed in yeast and used FRET-based kinetic assays to measure proteolytic activity in vitro. We show that PARL activity in detergent is enhanced by cardiolipin, a lipid enriched in the mitochondrial inner membrane. Significantly higher turnover rates were observed for PARL reconstituted in proteoliposomes, with Smac/Diablo being cleaved most rapidly at a rate of 1 min−1. In contrast, PGAM5 is cleaved with the highest efficiency (kcat/KM) compared with PINK1 and Smac/Diablo. In proteoliposomes, a truncated β-cleavage form of PARL, a physiological form known to affect mitochondrial fragmentation, is more active than the full-length enzyme for hydrolysis of PINK1, PGAM5, and Smac/Diablo. Multiplex profiling of 228 peptides reveals that PARL prefers substrates with a bulky side chain such as Phe in P1, which is distinct from the preference for small side chain residues typically found with bacterial rhomboid proteases. This study using recombinant PARL provides fundamental insights into its catalytic activity and substrate preferences that enhance our understanding of its role in mitochondrial function and has implications for specific inhibitor design.
Collapse
Affiliation(s)
- Laine Lysyk
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Raelynn Brassard
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Elena Arutyunova
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Verena Siebert
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Emmanuella Takyi
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Melissa Morrison
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Howard S Young
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - M Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine and Dentistry, Membrane Protein Disease Research Group, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
13
|
Van Kersavond T, Konopatzki R, van der Plassche MAT, Yang J, Verhelst SHL. Rapid synthesis of internal peptidyl α-ketoamides by on resin oxidation for the construction of rhomboid protease inhibitors. RSC Adv 2021; 11:4196-4199. [PMID: 35424368 PMCID: PMC8694341 DOI: 10.1039/d0ra10614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/01/2021] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Rhomboid proteases are intramembrane serine proteases, which are involved in a wide variety of biological processes and have been implied in various human diseases. Recently, peptidyl α-ketoamides have been reported as rhomboid inhibitors with high potency and selectivity – owing to their interaction with both the primed and non-primed site of the target protease. However, their synthesis has been performed by solution phase chemistry. Here, we report a solid phase strategy towards ketoamides as rhomboid protease inhibitors, allowing rapid synthesis and optimization. We found that the primed site binding part of inhibitors is crucial for potency. Rhomboid intramembrane serine proteases are involved in various biological processes. A solid phase synthesis of internal α-ketoamides reported here shows that primed site elements are crucial for rhomboid protease inhibition.![]()
Collapse
Affiliation(s)
| | | | | | - Jian Yang
- KU Leuven
- Department of Cellular and Molecular Medicine
- Laboratory of Chemical Biology
- 3000 Leuven
- Belgium
| | - Steven H. L. Verhelst
- Leibniz Institute for Analytical Sciences ISAS
- 44227 Dortmund
- Germany
- KU Leuven
- Department of Cellular and Molecular Medicine
| |
Collapse
|
14
|
Barniol-Xicota M, Verhelst SHL. Isolation of intramembrane proteases in membrane-like environments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183193. [PMID: 31945321 DOI: 10.1016/j.bbamem.2020.183193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Abstract
Intramembrane proteases (IMPs) are proteolytic enzymes embedded in the lipid bilayer, where they cleave transmembrane substrates. The importance of IMPs relies on their role in a wide variety of cellular processes and diseases. In order to study the activity and function of IMPs, their purified form is often desired. The production of pure and active IMPs has proven to be a challenging task. This process unavoidably requires the use of solubilizing agents that will, to some extent, alter the native environment of these proteases. In this review we present the current solubilization and reconstitution techniques that have been applied to IMPs. In addition, we describe how these techniques had an influence on the activity and structural studies of IMPs, focusing on rhomboid proteases and γ-secretase.
Collapse
Affiliation(s)
- Marta Barniol-Xicota
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49, Box 802, B-3000, Belgium.
| | - Steven H L Verhelst
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49, Box 802, B-3000, Belgium; Leibniz Institute for Analytical Sciences, ISAS, e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany.
| |
Collapse
|
15
|
Rhomboid-Like-2 Intramembrane Protease Mediates Metalloprotease-Independent Regulation of Cadherins. Int J Mol Sci 2019; 20:ijms20235958. [PMID: 31783481 PMCID: PMC6928865 DOI: 10.3390/ijms20235958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
Cadherins are a major family of cell-cell adhesive receptors, which are implicated in development, tissue homeostasis, and cancer. Here, we show a novel mechanism of post-translational regulation of E-cadherin in cancer cells by an intramembrane protease of the Rhomboid family, RHBDL2, which leads to the shedding of E-cadherin extracellular domain. In addition, our data indicate that RHBDL2 mediates a similar activity on VE-cadherin, which is selectively expressed by endothelial cells. We show that RHBDL2 promotes cell migration, which is consistent with its ability to interfere with the functional role of cadherins as negative regulators of motility; moreover, the two players appear to lie in the same functional pathway. Importantly, we show that RHBDL2 expression is induced by the inflammatory chemokine TNFα. The E-cadherin extracellular domain is known to be released by metalloproteases (MMPs); however, here, we provide evidence of a novel MMP-independent, TNFα inducible, E-cadherin processing mechanism that is mediated by RHBDL2. Thus, the intramembrane protease RHBDL2 is a novel regulator of cadherins promoting cell motility.
Collapse
|
16
|
Beard HA, Barniol-Xicota M, Yang J, Verhelst SHL. Discovery of Cellular Roles of Intramembrane Proteases. ACS Chem Biol 2019; 14:2372-2388. [PMID: 31287658 DOI: 10.1021/acschembio.9b00404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intramembrane proteases (IMPs) are localized within lipid bilayers of membranes-either the cell membrane or membranes of various organelles. Cleavage of substrates often results in release from the membrane, leading to a downstream biological effect. This mechanism allows different signaling events to happen through intramembrane proteolysis. Over the years, various mechanistically distinct families of IMPs have been discovered, but the research progress has generally been slower than for soluble proteases due to the challenges associated with membrane proteins. In this review we summarize how each mechanistic family of IMPs was discovered, which chemical tools are available for the study of IMPs, and which techniques have been developed for the discovery of IMP substrates. Finally, we discuss the various roles in cellular physiology of some of these IMPs.
Collapse
Affiliation(s)
- Hester A. Beard
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Marta Barniol-Xicota
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Jian Yang
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
| | - Steven H. L. Verhelst
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestr. 49, 3000 Leuven, Belgium
- Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| |
Collapse
|
17
|
Goblirsch BR, Pryor EE, Wiener MC. The tripartite architecture of the eukaryotic integral membrane protein zinc metalloprotease Ste24. Proteins 2019; 88:604-615. [PMID: 31644822 PMCID: PMC7168092 DOI: 10.1002/prot.25841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Abstract
Ste24 enzymes, a family of eukaryotic integral membrane proteins, are zinc metalloproteases (ZMPs) originally characterized as “CAAX proteases” targeting prenylated substrates, including a‐factor mating pheromone in yeast and prelamin A in humans. Recently, Ste24 was shown to also cleave nonprenylated substrates. Reduced activity of the human ortholog, HsSte24, is linked to multiple disease states (laminopathies), including progerias and lipid disorders. Ste24 possesses a unique “α‐barrel” structure consisting of seven transmembrane (TM) α‐helices encircling a large intramembranous cavity (~14 000 Å3). The catalytic zinc, coordinated via a HExxH…E/H motif characteristic of gluzincin ZMPs, is positioned at one of the cavity's bases. The interrelationship between Ste24 as a gluzincin, a long‐studied class of soluble ZMPs, and as a novel cavity‐containing integral membrane protein protease has been minimally explored to date. Informed by homology to well‐characterized soluble, gluzincin ZMPs, we develop a model of Ste24 that provides a conceptual framework for this enzyme family, suitable for development and interpretation of structure/function studies. The model consists of an interfacial, zinc‐containing “ZMP Core” module surrounded by a “ZMP Accessory” module, both capped by a TM helical “α‐barrel” module of as yet unknown function. Multiple sequence alignment of 58 Ste24 orthologs revealed 38 absolutely conserved residues, apportioned unequally among the ZMP Core (18), ZMP Accessory (13), and α‐barrel (7) modules. This Tripartite Architecture representation of Ste24 provides a unified image of this enzyme family.
Collapse
Affiliation(s)
- Brandon R Goblirsch
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Edward E Pryor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Michael C Wiener
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
18
|
Cho S, Baker RP, Ji M, Urban S. Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide release. Nat Struct Mol Biol 2019; 26:910-918. [PMID: 31570873 PMCID: PMC6858540 DOI: 10.1038/s41594-019-0296-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/09/2019] [Indexed: 12/04/2022]
Abstract
Protein cleavage inside the cell membrane triggers various patho-physiological signaling pathways, but the mechanism of catalysis is poorly understood. We solved ten structures of the Escherichia coli rhomboid protease in a bicelle membrane undergoing time-resolved steps that encompass the entire proteolytic reaction on a transmembrane substrate and an aldehyde inhibitor. Extensive gate opening accompanied substrate, but not inhibitor, binding, revealing that substrates and inhibitors take different paths to the active site. Catalysis unexpectedly commenced with, and was guided through subsequent catalytic steps by, motions of an extracellular loop, with local contributions from active site residues. We even captured the elusive tetrahedral intermediate that is uncleaved but covalently attached to the catalytic serine, around which the substrate was forced to bend dramatically. This unexpectedly stable intermediate indicates rhomboid catalysis uses an unprecedented reaction coordinate that may involve mechanically stressing the peptide bond, and could be selectively targeted by inhibitors.
Collapse
Affiliation(s)
- Sangwoo Cho
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosanna P Baker
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ming Ji
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Siniša Urban
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
19
|
Abstract
Membranes surrounding the biological cell and its internal compartments host proteins that catalyze chemical reactions essential for the functioning of the cell. Rather than being a passive structural matrix that holds membrane-embedded proteins in place, the membrane can largely shape the conformational energy landscape of membrane proteins and impact the energetics of their chemical reaction. Here, we highlight the challenges in understanding how lipids impact the conformational energy landscape of macromolecular membrane complexes whose functioning involves chemical reactions including proton transfer. We review here advances in our understanding of how chemical reactions occur at membrane interfaces gleaned with both theoretical and experimental advances using simple protein systems as guides. Our perspective is that of bridging experiments with theory to understand general physicochemical principles of membrane reactions, with a long term goal of furthering our understanding of the role of the lipids on the functioning of complex macromolecular assemblies at the membrane interface.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - M Joanne Lemieux
- University of Alberta , Department of Biochemistry, Membrane Protein Disease Research Group , Edmonton , Alberta T6G 2H7 , Canada
| |
Collapse
|
20
|
Bongard J, Schmitz AL, Wolf A, Zischinsky G, Pieren M, Schellhorn B, Bravo-Rodriguez K, Schillinger J, Koch U, Nussbaumer P, Klebl B, Steinmann J, Buer J, Sanchez-Garcia E, Ehrmann M, Kaiser M. Chemical Validation of DegS As a Target for the Development of Antibiotics with a Novel Mode of Action. ChemMedChem 2019; 14:1074-1078. [PMID: 30945468 DOI: 10.1002/cmdc.201900193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 12/29/2022]
Abstract
Despite the availability of hundreds of antibiotic drugs, infectious diseases continue to remain one of the most notorious health issues. In addition, the disparity between the spread of multidrug-resistant pathogens and the development of novel classes of antibiotics exemplify an important unmet medical need that can only be addressed by identifying novel targets. Herein we demonstrate, by the development of the first in vivo active DegS inhibitors based on a pyrazolo[1,5-a]-1,3,5-triazine scaffold, that the serine protease DegS and the cell envelope stress-response pathway σE represent a target for generating antibiotics with a novel mode of action. Moreover, DegS inhibition is synergistic with well-established membrane-perturbing antibiotics, thereby opening promising avenues for rational antibiotic drug design.
Collapse
Affiliation(s)
- Jens Bongard
- Microbiology, Faculty of Biology, Center of Medical Biotechnology, University Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Anna Laura Schmitz
- Chemical Biology, Faculty of Biology, Center of Medical Biotechnology, University Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Alex Wolf
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227, Dortmund, Germany
| | | | - Michel Pieren
- BioVersys AG, Hochbergerstrasse 60C, 4057, Basel, Switzerland
| | | | - Kenny Bravo-Rodriguez
- Microbiology, Faculty of Biology, Center of Medical Biotechnology, University Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany.,Computational Biochemistry, Faculty of Biology & Faculty of Chemistry, Center of Medical Biotechnology, University Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Jasmin Schillinger
- Microbiology, Faculty of Biology, Center of Medical Biotechnology, University Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Uwe Koch
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227, Dortmund, Germany
| | - Peter Nussbaumer
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227, Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, Otto-Hahn-Str. 15, 44227, Dortmund, Germany
| | - Jörg Steinmann
- University Hospital Essen, University of Duisburg-Essen, Institute of Medical Microbiology, Hufelandstr. 55, 45122, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Prof.-Ernst-Nathan-Straße 1, 90419, Nürnberg, Germany
| | - Jan Buer
- University Hospital Essen, University of Duisburg-Essen, Institute of Medical Microbiology, Hufelandstr. 55, 45122, Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Faculty of Biology & Faculty of Chemistry, Center of Medical Biotechnology, University Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Michael Ehrmann
- Microbiology, Faculty of Biology, Center of Medical Biotechnology, University Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| | - Markus Kaiser
- Chemical Biology, Faculty of Biology, Center of Medical Biotechnology, University Duisburg-Essen, Universitätsstr. 2, 45117, Essen, Germany
| |
Collapse
|
21
|
Naing SH, Oliver RC, Weiss KL, Urban VS, Lieberman RL. Solution Structure of an Intramembrane Aspartyl Protease via Small Angle Neutron Scattering. Biophys J 2019; 114:602-608. [PMID: 29414706 DOI: 10.1016/j.bpj.2017.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/04/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022] Open
Abstract
Intramembrane aspartyl proteases (IAPs) comprise one of four families of integral membrane proteases that hydrolyze substrates within the hydrophobic lipid bilayer. IAPs include signal peptide peptidase, which processes remnant signal peptides from nascent polypeptides in the endoplasmic reticulum, and presenilin, the catalytic component of the γ-secretase complex that processes Notch and amyloid precursor protein. Despite their broad biomedical reach, basic structure-function relationships of IAPs remain active areas of research. Characterization of membrane-bound proteins is notoriously challenging due to their inherently hydrophobic character. For IAPs, oligomerization state in solution is one outstanding question, with previous proposals for monomer, dimer, tetramer, and octamer. Here we used small angle neutron scattering (SANS) to characterize n-dodecyl-β-D-maltopyranoside (DDM) detergent solutions containing and absent a microbial IAP ortholog. A unique feature of SANS is the ability to modulate the solvent composition to mask all but the enzyme of interest. The signal from the IAP was enhanced by deuteration and, uniquely, scattering from DDM and buffers were matched by the use of both tail-deuterated DDM and D2O. The radius of gyration calculated for IAP and the corresponding ab initio consensus model are consistent with a monomer. The model is slightly smaller than the crystallographic IAP monomer, suggesting a more compact protein in solution compared with the crystal lattice. Our study provides direct insight into the oligomeric state of purified IAP in surfactant solution, and demonstrates the utility of fully contrast-matching the detergent in SANS to characterize other intramembrane proteases and their membrane-bound substrates.
Collapse
Affiliation(s)
- Swe-Htet Naing
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Ryan C Oliver
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
22
|
Schaduangrat N, Prachayasittikul V, Choomwattana S, Wongchitrat P, Phopin K, Suwanjang W, Malik AA, Vincent B, Nantasenamat C. Multidisciplinary approaches for targeting the secretase protein family as a therapeutic route for Alzheimer's disease. Med Res Rev 2019; 39:1730-1778. [PMID: 30628099 DOI: 10.1002/med.21563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/21/2018] [Accepted: 12/24/2018] [Indexed: 12/27/2022]
Abstract
The continual increase of the aging population worldwide renders Alzheimer's disease (AD) a global prime concern. Several attempts have been focused on understanding the intricate complexity of the disease's development along with the on- andgoing search for novel therapeutic strategies. Incapability of existing AD drugs to effectively modulate the pathogenesis or to delay the progression of the disease leads to a shift in the paradigm of AD drug discovery. Efforts aimed at identifying AD drugs have mostly focused on the development of disease-modifying agents in which effects are believed to be long lasting. Of particular note, the secretase enzymes, a group of proteases responsible for the metabolism of the β-amyloid precursor protein (βAPP) and β-amyloid (Aβ) peptides production, have been underlined for their promising therapeutic potential. This review article attempts to comprehensively cover aspects related to the identification and use of drugs targeting the secretase enzymes. Particularly, the roles of secretases in the pathogenesis of AD and their therapeutic modulation are provided herein. Moreover, an overview of the drug development process and the contribution of computational (in silico) approaches for facilitating successful drug discovery are also highlighted along with examples of relevant computational works. Promising chemical scaffolds, inhibitors, and modulators against each class of secretases are also summarized herein. Additionally, multitarget secretase modulators are also taken into consideration in light of the current growing interest in the polypharmacology of complex diseases. Finally, challenging issues and future outlook relevant to the discovery of drugs targeting secretases are also discussed.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Veda Prachayasittikul
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Saowapak Choomwattana
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Prapimpun Wongchitrat
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,Centre National de la Recherche Scientifique, Paris, France
| | - Chanin Nantasenamat
- Faculty of Medical Technology, Center of Data Mining and Biomedical Informatics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
23
|
Abstract
Proteases drive the life cycle of all proteins, ensuring the transportation and activation of newly minted, would-be proteins into their functional form while recycling spent or unneeded proteins. Far from their image as engines of protein digestion, proteases play fundamental roles in basic physiology and regulation at multiple levels of systems biology. Proteases are intimately associated with disease and modulation of proteolytic activity is the presumed target for successful therapeutics. "Proteases: Pivot Points in Functional Proteomics" examines the crucial roles of proteolysis across a wide range of physiological processes and diseases. The existing and potential impacts of proteolysis-related activity on drug and biomarker development are presented in detail. All told the decisive roles of proteases in four major categories comprising 23 separate subcategories are addressed. Within this construct, 15 sets of subject-specific, tabulated data are presented that include identification of proteases, protease inhibitors, substrates, and their actions. Said data are derived from and confirmed by over 300 references. Cross comparison of datasets indicates that proteases, their inhibitors/promoters and substrates intersect over a range of physiological processes and diseases, both chronic and pathogenic. Indeed, "Proteases: Pivot Points …" closes by dramatizing this very point through association of (pro)Thrombin and Fibrin(ogen) with: hemostasis, innate immunity, cardiovascular and metabolic disease, cancer, neurodegeneration, and bacterial self-defense.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sarah E Leonard
- Chemical and Biomolecular Engineering, University of Illinois Champaign-Urbana School of Chemical Sciences, Champaign, IL, USA
| | - Ray C Perkins
- New Liberty Proteomics Corporation, New Liberty, KY, USA.
| |
Collapse
|
24
|
Costa MI, Cerletti M, Paggi RA, Trötschel C, De Castro RE, Poetsch A, Giménez MI. Haloferax volcanii Proteome Response to Deletion of a Rhomboid Protease Gene. J Proteome Res 2018; 17:961-977. [PMID: 29301397 DOI: 10.1021/acs.jproteome.7b00530] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhomboids are conserved intramembrane serine proteases involved in cell signaling processes. Their role in prokaryotes is scarcely known and remains to be investigated in Archaea. We previously constructed a rhomboid homologue deletion mutant (ΔrhoII) in Haloferax volcanii, which showed reduced motility, increased novobiocin sensitivity, and an N- glycosylation defect. To address the impact of rhoII deletion on H. volcanii physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. A total of 1847 proteins were identified (45.8% of H. volcanii predicted proteome), from which 103 differed in amount. Additionally, the mutant strain evidenced 99 proteins with altered electrophoretic migration, which suggested differential post-translational processing/modification. Integral membrane proteins that evidenced variations in concentration, electrophoretic migration, or semitryptic cleavage in the mutant were considered as potential RhoII targets. These included a PrsW protease homologue (which was less stable in the mutant strain), a predicted halocyanin, and six integral membrane proteins potentially related to the mutant glycosylation (S-layer glycoprotein, Agl15) and cell adhesion/motility (flagellin1, HVO_1153, PilA1, and PibD) defects. This study investigated for the first time the impact of a rhomboid protease on the whole proteome of an organism.
Collapse
Affiliation(s)
- Mariana I Costa
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Micaela Cerletti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Roberto A Paggi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Christian Trötschel
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum , 44801 Bochum, Germany
| | - Rosana E De Castro
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| | - Ansgar Poetsch
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum , 44801 Bochum, Germany.,School of Biomedical and Healthcare Sciences, Plymouth University , Plymouth PL4 8AA, United Kingdom
| | - María I Giménez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Funes 3250 4to nivel, Mar del Plata, Buenos Aires 7600, Argentina
| |
Collapse
|
25
|
Embedded in the Membrane: How Lipids Confer Activity and Specificity to Intramembrane Proteases. J Membr Biol 2017; 251:369-378. [PMID: 29260282 DOI: 10.1007/s00232-017-0008-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
Proteases, sharp yet unforgivable tools of every cell, require tight regulation to ensure specific non-aberrant cleavages. The relatively recent discovered class of intramembrane proteases has gained increasing interest due to their involvement in important signaling pathways linking them to diseases including Alzheimer's disease and cancer. Despite tremendous efforts, their regulatory mechanisms have only started to unravel. There is evidence that the membrane composition itself can regulate intramembrane protease activity and specificity. In this review, we highlight the work on γ-secretase and rhomboid proteases and summarize several studies as to how different lipids impact on enzymatic activity.
Collapse
|
26
|
Bogyo M. Introduction to the Special Issue on Proteases and Proteolysis in Health and Disease. FEBS J 2017; 284:1392-1393. [PMID: 28503839 DOI: 10.1111/febs.14089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This Special Issue on Proteases and Proteolysis in Health and Disease comprises 11 reviews that cover a broad range of topics in this diverse field. We hope you find these pieces as engaging and informative as we have and we are grateful to their authors for taking the time to write for The FEBS Journal.
Collapse
Affiliation(s)
- Matthew Bogyo
- Department of Pathology, School of Medicine, Stanford University, CA, USA
| |
Collapse
|
27
|
Coradin M, Karch KR, Garcia BA. Monitoring proteolytic processing events by quantitative mass spectrometry. Expert Rev Proteomics 2017; 14:409-418. [PMID: 28395554 DOI: 10.1080/14789450.2017.1316977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Protease activity plays a key role in a wide variety of biological processes including gene expression, protein turnover and development. misregulation of these proteins has been associated with many cancer types such as prostate, breast, and skin cancer. thus, the identification of protease substrates will provide key information to understand proteolysis-related pathologies. Areas covered: Proteomics-based methods to investigate proteolysis activity, focusing on substrate identification, protease specificity and their applications in systems biology are reviewed. Their quantification strategies, challenges and pitfalls are underlined and the biological implications of protease malfunction are highlighted. Expert commentary: Dysregulated protease activity is a hallmark for some disease pathologies such as cancer. Current biochemical approaches are low throughput and some are limited by the amount of sample required to obtain reliable results. Mass spectrometry based proteomics provides a suitable platform to investigate protease activity, providing information about substrate specificity and mapping cleavage sites.
Collapse
Affiliation(s)
- Mariel Coradin
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Kelly R Karch
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Benjamin A Garcia
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
28
|
Arachea BT, Wiener MC. Acquisition of accurate data from intramolecular quenched fluorescence protease assays. Anal Biochem 2017; 522:30-36. [PMID: 28119065 DOI: 10.1016/j.ab.2017.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
The Intramolecular Quenched Fluorescence (IQF) protease assay utilizes peptide substrates containing donor-quencher pairs that flank the scissile bond. Following protease cleavage, the dequenched donor emission of the product is subsequently measured. Inspection of the IQF literature indicates that rigorous treatment of systematic errors in observed fluorescence arising from inner-filter absorbance (IF) and non-specific intermolecular quenching (NSQ) is incompletely performed. As substrate and product concentrations vary during the time-course of enzyme activity, iterative solution of the kinetic rate equations is, generally, required to obtain the proper time-dependent correction to the initial velocity fluorescence data. Here, we demonstrate that, if the IQF assay is performed under conditions where IF and NSQ are approximately constant during the measurement of initial velocity for a given initial substrate concentration, then a simple correction as a function of initial substrate concentration can be derived and utilized to obtain accurate initial velocity data for analysis.
Collapse
Affiliation(s)
- Buenafe T Arachea
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Michael C Wiener
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|