1
|
Dai Q, Peng Y, He P, Wu X. Interactions and communications in the prostate tumour microenvironment: evolving towards effective cancer therapy. J Drug Target 2024:1-21. [PMID: 39445641 DOI: 10.1080/1061186x.2024.2418344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Prostate cancer is one of the most common malignancies in men. The tumour microenvironment (TME) has a critical role in the initiation, progression, and metastasis of prostate cancer. TME contains various cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, immune cells such as macrophages, lymphocytes B and T, natural killer (NK) cells, and other proteins such as extracellular matrix (ECM) components. The interactions and communications between these cells within the TME are crucial for the growth and response of various solid tumours, such as prostate cancer to different anticancer modalities. In this review article, we exemplify the various mechanisms by which the TME influences prostate cancer progression. The roles of different cells, cytokines, chemokines, and growth factors in modulating the immune response and prostate tumour growth will be discussed. The impact of these cells and factors and other ECM components on tumour cell invasion and metastasis will also be discussed. We explain how these interactions in TME can affect the response of prostate cancer to therapy. We also highlight the importance of understanding these interactions to develop novel therapeutic approaches for prostate cancer.
Collapse
Affiliation(s)
- Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Tikhonova MA, Shoeva OY, Tenditnik MV, Akopyan AA, Litvinova EA, Popova NA, Amstislavskaya TG, Khlestkina EK. Antitumor Effects of an Anthocyanin-Rich Grain Diet in a Mouse Model of Lewis Lung Carcinoma. Int J Mol Sci 2024; 25:5727. [PMID: 38891915 PMCID: PMC11171629 DOI: 10.3390/ijms25115727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Functional foods enriched with plant polyphenol anthocyanins attract particular attention due to their health-promoting properties, including antitumor activity. We evaluated the effects of a grain diet rich in anthocyanins in a mouse model of Lewis lung carcinoma. Mice of the C57BL/6 strain were fed with wheat of near-isogenic lines differing in the anthocyanin content for four months prior to tumor transplantation. Although a significant decrease in the size of the tumor and the number of metastases in the lungs was revealed in the groups with both types of grain diet, the highest percentage of animals without metastases and with attenuated cell proliferation in the primary tumor were observed in the mice with the anthocyanin-rich diet. Both grain diets reduced the body weight gain and spleen weight index. The antitumor effects of the grain diets were associated with the activation of different mechanisms: immune response of the allergic type with augmented interleukin(IL)-9 and eotaxin serum levels in mice fed with control grain vs. inhibition of the IL-6/LIF system accompanied by a decrease in the tumor-associated M2 macrophage marker arginase 1 gene mRNA levels and enhanced autophagy in the tumor evaluated by the mRNA levels of Beclin 1 gene. Thus, anthocyanin-rich wheat is suggested as a promising source of functional nutrition with confirmed in vivo antitumor activity.
Collapse
Affiliation(s)
- Maria A. Tikhonova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia; (O.Y.S.); (T.G.A.)
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Olesya Y. Shoeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia; (O.Y.S.); (T.G.A.)
| | - Michael V. Tenditnik
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Anna A. Akopyan
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Ekaterina A. Litvinova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Nelly A. Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia; (O.Y.S.); (T.G.A.)
- Department of Neuroscience, V. Zelman Institute for Medicine and Psychology, Faculty of Life Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Tamara G. Amstislavskaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia; (O.Y.S.); (T.G.A.)
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
- Department of Neuroscience, V. Zelman Institute for Medicine and Psychology, Faculty of Life Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (IC&G SB RAS), 630090 Novosibirsk, Russia; (O.Y.S.); (T.G.A.)
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia
| |
Collapse
|
3
|
Qin Z, Han Y, Du Y, Zhang Y, Bian Y, Wang R, Wang H, Guo F, Yuan H, Pan Y, Jin J, Zhou Q, Wang Y, Han F, Xu Y, Jiang J. Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells promote alveolar bone regeneration by regulating macrophage polarization. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1010-1026. [PMID: 38489007 DOI: 10.1007/s11427-023-2454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/19/2023] [Indexed: 03/17/2024]
Abstract
Alveolar bone regeneration has been strongly linked to macrophage polarization. M1 macrophages aggravate alveolar bone loss, whereas M2 macrophages reverse this process. Berberine (BBR), a natural alkaloid isolated and refined from Chinese medicinal plants, has shown therapeutic effects in treating metabolic disorders. In this study, we first discovered that culture supernatant (CS) collected from BBR-treated human bone marrow mesenchymal stem cells (HBMSCs) ameliorated periodontal alveolar bone loss. CS from the BBR-treated HBMSCs contained bioactive materials that suppressed the M1 polarization and induced the M2 polarization of macrophages in vivo and in vitro. To clarify the underlying mechanism, the bioactive materials were applied to different animal models. We discovered macrophage colony-stimulating factor (M-CSF), which regulates macrophage polarization and promotes bone formation, a key macromolecule in the CS. Injection of pure M-CSF attenuated experimental periodontal alveolar bone loss in rats. Colony-stimulating factor 1 receptor (CSF1R) inhibitor or anti-human M-CSF (M-CSF neutralizing antibody, Nab) abolished the therapeutic effects of the CS of BBR-treated HBMSCs. Moreover, AKT phosphorylation in macrophages was activated by the CS, and the AKT activator reversed the negative effect of the CSF1R inhibitor or Nab. These results suggest that the CS of BBR-treated HBMSCs modulates macrophage polarization via the M-CSF/AKT axis. Further studies also showed that CS of BBR-treated HBMSCs accelerated bone formation and M2 polarization in rat teeth extraction sockets. Overall, our findings established an essential role of BBR-treated HBMSCs CS and this might be the first report to show that the products of BBR-treated HBMSCs have active effects on alveolar bone regeneration.
Collapse
Affiliation(s)
- Ziyue Qin
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yixuan Zhang
- Gusu school, Nanjing medical university, Suzhou, 215002, China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Haoran Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yongchu Pan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, Key Laboratory for Aging & Disease, The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Qigang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing Jiangsu, 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jiandong Jiang
- Department of Virology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
4
|
Yi L, Gai Y, Chen Z, Tian K, Liu P, Liang H, Xu X, Peng Q, Luo X. Macrophage colony-stimulating factor and its role in the tumor microenvironment: novel therapeutic avenues and mechanistic insights. Front Oncol 2024; 14:1358750. [PMID: 38646440 PMCID: PMC11027505 DOI: 10.3389/fonc.2024.1358750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024] Open
Abstract
The tumor microenvironment is a complex ecosystem where various cellular and molecular interactions shape the course of cancer progression. Macrophage colony-stimulating factor (M-CSF) plays a pivotal role in this context. This study delves into the biological properties and functions of M-CSF in regulating tumor-associated macrophages (TAMs) and its role in modulating host immune responses. Through the specific binding to its receptor colony-stimulating factor 1 receptor (CSF-1R), M-CSF orchestrates a cascade of downstream signaling pathways to modulate macrophage activation, polarization, and proliferation. Furthermore, M-CSF extends its influence to other immune cell populations, including dendritic cells. Notably, the heightened expression of M-CSF within the tumor microenvironment is often associated with dismal patient prognoses. Therefore, a comprehensive investigation into the roles of M-CSF in tumor growth advances our comprehension of tumor development mechanisms and unveils promising novel strategies and approaches for cancer treatment.
Collapse
Affiliation(s)
- Li Yi
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Yihan Gai
- School of Stomatology, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Zhuo Chen
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Kecan Tian
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Pengfei Liu
- School of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Hongrui Liang
- School of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Xinyu Xu
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Qiuyi Peng
- School of Basic Medical Sciences, Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Xiaoqing Luo
- Medical Technology College of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| |
Collapse
|
5
|
Vieira GDS, Kimura TDC, Scarini JF, de Lima-Souza RA, Lavareze L, Emerick C, Gonçalves MT, Damas II, Figueiredo-Maciel T, Sales de Sá R, Aquino IG, Gonçalves de Paiva JP, Fernandes PM, Gonçalves MWA, Kowalski LP, Altemani A, Fillmore GC, Mariano FV, Egal ESA. Hematopoietic colony-stimulating factors in head and neck cancers: Recent advances and therapeutic challenges. Cytokine 2024; 173:156417. [PMID: 37944421 DOI: 10.1016/j.cyto.2023.156417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Colony-stimulating factors (CSFs) are key cytokines responsible for the production, maturation, and mobilization of the granulocytic and macrophage lineages from the bone marrow, which have been gaining attention for playing pro- and/or anti-tumorigenic roles in cancer. Head and neck cancers (HNCs) represent a group of heterogeneous neoplasms with high morbidity and mortality worldwide. Treatment for HNCs is still limited even with the advancements in cancer immunotherapy. Novel treatments for patients with recurrent and metastatic HNCs are urgently needed. This article provides an in-depth review of the role of hematopoietic cytokines such as granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), and interleukin-3 (IL-3; also known as multi-CSF) in the HNCs tumor microenvironment. We have reviewed current results from clinical trials using CSFs as adjuvant therapy to treat HNCs patients, and also clinical findings reported to date on the therapeutic application of CSFs toxicities arising from chemoradiotherapy.
Collapse
Affiliation(s)
- Gustavo de Souza Vieira
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carolina Emerick
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mayara Trevizol Gonçalves
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ingrid Iara Damas
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tayná Figueiredo-Maciel
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Raisa Sales de Sá
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Iara Gonçalves Aquino
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - João Paulo Gonçalves de Paiva
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Patrícia Maria Fernandes
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery, School of Medicine, University of São Paulo (USP), São Paulo, Brazil; Department of Head and Neck Surgery and Otolaryngology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gary Chris Fillmore
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Erika Said Abu Egal
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States.
| |
Collapse
|
6
|
Zou Y, Kamada N, Seong SY, Seo SU. CD115 - monocytic myeloid-derived suppressor cells are precursors of OLFM4 high polymorphonuclear myeloid-derived suppressor cells. Commun Biol 2023; 6:272. [PMID: 36922564 PMCID: PMC10017706 DOI: 10.1038/s42003-023-04650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) consist of monocytic (M-) MDSCs and polymorphonuclear (PMN-) MDSCs that contribute to an immunosuppressive environment in tumor-bearing hosts. However, research on the phenotypic and functional heterogeneity of MDSCs in tumor-bearing hosts and across different disease stage is limited. Here we subdivide M-MDSCs based on CD115 expression and report that CD115- M-MDSCs are functionally distinct from CD115+ M-MDSCs. CD115- M-MDSCs increased in bone marrow and blood as tumors progressed. Transcriptome analysis revealed that CD115- M-MDSCs expressed higher levels of neutrophil-related genes. Moreover, isolated CD115- M-MDSCs had higher potential to be differentiated into PMN-MDSCs compared with CD115+ M-MDSCs. Of note, CD115- M-MDSCs were able to differentiate into both olfactomedin 4 (OLFM4)hi and OLFM4lo PMN-MDSCs, whereas CD115+ M-MDSCs differentiated into a smaller proportion of OLFM4lo PMN-MDSCs. In vivo, M-MDSC to PMN-MDSC differentiation occurred most frequently in bone marrow while M-MDSCs preferentially differentiated into tumor-associated macrophages in the tumor mass. Our study reveals the presence of previously unrecognized subtypes of CD115- M-MDSCs in tumor-bearing hosts and demonstrates their cellular plasticity during tumorigenesis.
Collapse
Affiliation(s)
- Yunyun Zou
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Seung-Yong Seong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea.
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Huo R, Wang M, Wei X, Qiu Y. Research Progress on Anti-Inflammatory Mechanisms of Black Ginseng. Chem Biodivers 2023; 20:e202200846. [PMID: 36789670 DOI: 10.1002/cbdv.202200846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
In recent years, black ginseng, a new type of processed ginseng product, has attracted the attention of scholars globally. Ginsenoside and ginseng polysaccharide, the main active substances of black ginseng, have been shown to carry curative effects for many diseases. This article focuses on the mechanism of their action in anti-inflammatory response, which is mainly divided into three aspects: activation of immune cells to exert immune regulatory response; participation in inflammatory response-related pathways and regulation of the expression level of inflammatory factors; effect on the metabolic activity of intestinal flora. This study identifies active anti-inflammatory components and an action mechanism of black ginseng showing multi-component, multi-target, and multi-channel characteristics, providing ideas and a basis for a follow-up in-depth study of its specific mechanism.
Collapse
Affiliation(s)
- Ran Huo
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengyuan Wang
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xu Wei
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ye Qiu
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
8
|
Vanmeerbeek I, Govaerts J, Laureano RS, Sprooten J, Naulaerts S, Borras DM, Laoui D, Mazzone M, Van Ginderachter JA, Garg AD. The Interface of Tumour-Associated Macrophages with Dying Cancer Cells in Immuno-Oncology. Cells 2022; 11:3890. [PMID: 36497148 PMCID: PMC9741298 DOI: 10.3390/cells11233890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Tumour-associated macrophages (TAMs) are essential players in the tumour microenvironment (TME) and modulate various pro-tumorigenic functions such as immunosuppression, angiogenesis, cancer cell proliferation, invasion and metastasis, along with resistance to anti-cancer therapies. TAMs also mediate important anti-tumour functions and can clear dying cancer cells via efferocytosis. Thus, not surprisingly, TAMs exhibit heterogeneous activities and functional plasticity depending on the type and context of cancer cell death that they are faced with. This ultimately governs both the pro-tumorigenic and anti-tumorigenic activity of TAMs, making the interface between TAMs and dying cancer cells very important for modulating cancer growth and the efficacy of chemo-radiotherapy or immunotherapy. In this review, we discuss the interface of TAMs with cancer cell death from the perspectives of cell death pathways, TME-driven variations, TAM heterogeneity and cell-death-inducing anti-cancer therapies. We believe that a better understanding of how dying cancer cells influence TAMs can lead to improved combinatorial anti-cancer therapies, especially in combination with TAM-targeting immunotherapies.
Collapse
Affiliation(s)
- Isaure Vanmeerbeek
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Daniel M. Borras
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Damya Laoui
- Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, 1050 Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumour Inflammation and Angiogenesis, VIB Center for Cancer Biology, 3000 Leuven, Belgium
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jo A. Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050 Brussels, Belgium
| | - Abhishek D. Garg
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Luo Z, Luo Y, Liang X, Lyu Q, Meng F, Chen X, Wang Y, Fang W, Li A, Zhou D. Alantolactone-Loaded Pegylated Prodrug Nanocarriers for Synergistic Treatment of Cisplatin-Resistant Ovarian Cancer via Reactivating Mitochondrial Apoptotic Pathway. ACS Biomater Sci Eng 2022; 8:2526-2536. [PMID: 35612599 DOI: 10.1021/acsbiomaterials.2c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ovarian cancer (OV) seriously damages women's health because of refractory OV and the development of platinum (Pt) resistance. New treatment strategies are urgently needed to deal with the treatment of cisplatin-resistant OV. Here, a reduction-sensitive pegylated Pt(IV) prodrug was synthesized by amidation of methoxy polyethylene glycol amine (PEG750-NH2) with monocarboxylic Pt(IV) prodrug (Pt(IV)-COOH). Then alantolactone (AL) loaded PEG-Pt(IV) nanocarriers (NP(Pt)@AL) were prepared. In the cisplatin-resistant model of OV, cancer cells actively ingest NP(Pt)@AL through endocytosis, and AL and Pt(II) were disintegrated and released under high intracellular reductant condition. The activity of thioredoxin reductase 1 (TrxR1) inhibited by AL and the adducts of Pt(II) with mitochondrial DNA (mDNA) can costimulate reactive oxygen species (ROS) and reactivate the mitochondrial pathway of apoptosis. Meanwhile, Pt(II) binds with nuclear DNA (nDNA) to jointly promote cell apoptosis. Both in vitro and in vivo results demonstrated that NP(Pt)@AL could effectively reverse the drug resistance and displayed excellent synergistic therapeutic efficacy on platinum-resistant OV with high safety. Therefore, reactivation of the mitochondrial pathway of apoptosis would be a potential strategy to improve the therapeutic effect of Pt-based chemotherapy and even reverse drug resistance.
Collapse
Affiliation(s)
- Zhijian Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, People's Republic of China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yantao Luo
- Huidong County Maternal and Child Health Service Center, Huizhou 516300, People's Republic of China
| | - Xiaoling Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Qingyang Lyu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Fanliang Meng
- The Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xuncai Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yupeng Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, People's Republic of China
| | - Aimin Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, People's Republic of China
| | - Dongfang Zhou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, People's Republic of China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|
10
|
Blocking iASPP/Nrf2/M-CSF axis improves anti-cancer effect of chemotherapy-induced senescence by attenuating M2 polarization. Cell Death Dis 2022; 13:166. [PMID: 35190529 PMCID: PMC8861031 DOI: 10.1038/s41419-022-04611-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 01/10/2023]
Abstract
The complex interaction between cancer cells and the immune microenvironment is a central regulator of tumor growth and the treatment response. Chemotherapy-induced senescence is accompanied by the senescence-associated secretion phenotype (SASP). However, the mechanisms underlying the regulation of the SASP remain the most poorly understood element of senescence. Here, we show that nuclear erythroid factor 2-like factor 2 (Nrf2), a master antioxidative transcription factor, accumulates upon doxorubicin-induced senescence. This is due to the increased cytoplasmic Inhibitor of Apoptosis Stimulating Protein of P53, iASPP, which binds with Keap1, interrupting Keap1/Nrf2 interaction and promoting Nrf2 stabilization and activation. Activated Nrf2 transactivates a novel target gene of SASP factor, macrophage colony-stimulating factor (M-CSF), which subsequently acts on macrophages and induces polarization from M1 to M2 via a paracrine mechanism. Genetic inhibition of iASPP-Nrf2 suppresses the growth of apoptosis-resistant xenografts, with further analysis revealing that M-CSF/M-CSFR-regulated macrophage polarization is critical for the functional outcomes delineated above. Overall, our data uncover a novel function of iASPP-Nrf2 in skewing the immune microenvironment under treatment-induced senescence. Targeting the iASPP-Nrf2 axis could be a powerful strategy for the implementation of new chemotherapy-based therapeutic opportunities.
Collapse
|
11
|
Barca C, Foray C, Hermann S, Herrlinger U, Remory I, Laoui D, Schäfers M, Grauer OM, Zinnhardt B, Jacobs AH. The Colony Stimulating Factor-1 Receptor (CSF-1R)-Mediated Regulation of Microglia/Macrophages as a Target for Neurological Disorders (Glioma, Stroke). Front Immunol 2021; 12:787307. [PMID: 34950148 PMCID: PMC8688767 DOI: 10.3389/fimmu.2021.787307] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Immunomodulatory therapies have fueled interest in targeting microglial cells as part of the innate immune response after infection or injury. In this context, the colony-stimulating factor 1 (CSF-1) and its receptor (CSF-1R) have gained attention in various neurological conditions to deplete and reprogram the microglia/macrophages compartment. Published data in physiological conditions support the use of small-molecule inhibitors to study microglia/macrophages dynamics under inflammatory conditions and as a therapeutic strategy in pathologies where those cells support disease progression. However, preclinical and clinical data highlighted that the complexity of the spatiotemporal inflammatory response could limit their efficiency due to compensatory mechanisms, ultimately leading to therapy resistance. We review the current state-of-art in the field of CSF-1R inhibition in glioma and stroke and provide an overview of the fundamentals, ongoing research, potential developments of this promising therapeutic strategy and further application toward molecular imaging.
Collapse
Affiliation(s)
- Cristina Barca
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Claudia Foray
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neuro-Oncology, Department of Neurology, University Hospital Bonn, Bonn, Germany.,Centre of Integrated Oncology, University Hospital Bonn, Bonn, Germany
| | - Isabel Remory
- In vivo Cellular and Molecular Imaging laboratory (ICMI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Oliver M Grauer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Biomarkers & Translational Technologies (BTT), Pharma Research & Early Development (pRED), F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Centre of Integrated Oncology, University Hospital Bonn, Bonn, Germany.,Department of Geriatrics and Neurology, Johanniter Hospital, Bonn, Germany
| |
Collapse
|
12
|
Cuevas VD, Simón-Fuentes M, Orta-Zavalza E, Samaniego R, Sánchez-Mateos P, Escribese M, Cimas FJ, Bustos M, Pérez-Diego M, Ocaña A, Domínguez-Soto Á, Vega MA, Corbí ÁL. The Gene Signature of Activated M-CSF-Primed Human Monocyte-Derived Macrophages Is IL-10-Dependent. J Innate Immun 2021; 14:243-256. [PMID: 34670213 DOI: 10.1159/000519305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
During inflammatory responses, monocytes are recruited into inflamed tissues, where they become monocyte-derived macrophages and acquire pro-inflammatory and tissue-damaging effects in response to the surrounding environment. In fact, monocyte-derived macrophage subsets are major pathogenic cells in inflammatory pathologies. Strikingly, the transcriptome of pathogenic monocyte-derived macrophage subsets resembles the gene profile of macrophage colony-stimulating factor (M-CSF)-primed monocyte-derived human macrophages (M-MØ). As M-MØ display a characteristic cytokine profile after activation (IL10high TNFlow IL23low IL6low), we sought to determine the transcriptional signature of M-MØ upon exposure to pathogenic stimuli. Activation of M-MØ led to the acquisition of a distinctive transcriptional profile characterized by the induction of a group of genes (Gene set 1) highly expressed by pathogenic monocyte-derived macrophages in COVID-19 and whose presence in tumor-associated macrophages (TAM) correlates with the expression of macrophage-specific markers (CD163, SPI1) and IL10. Indeed, Gene set 1 expression was primarily dependent on ERK/p38 and STAT3 activation, and transcriptional analysis and neutralization experiments revealed that IL-10 is not only required for the expression of a subset of genes within Gene set 1 but also significantly contributes to the idiosyncratic gene signature of activated M-MØ. Our results indicate that activation of M-CSF-dependent monocyte-derived macrophages induces a distinctive gene expression profile, which is partially dependent on IL-10, and identifies a gene set potentially helpful for macrophage-centered therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Rafael Samaniego
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Laboratorio de Inmuno-Oncología, Madrid, Spain
| | - Paloma Sánchez-Mateos
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Laboratorio de Inmuno-Oncología, Madrid, Spain
| | - María Escribese
- Institute for Applied Molecular Medicine, School of Medicine, Universidad CEU San Pablo, Madrid, Spain
| | - Francisco J Cimas
- Instituto de Investigación Sanitaria (IdISSC) and CIBERONC, Medical Oncology Department, Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Madrid, Spain
| | - Matilde Bustos
- Institute of Biomedicine in Seville (IBiS), Campus del Hospital "Virgen del Rocío", Sevilla, Spain
| | | | - Alberto Ocaña
- Instituto de Investigación Sanitaria (IdISSC) and CIBERONC, Medical Oncology Department, Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Madrid, Spain
| | | | - Miguel A Vega
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Ángel L Corbí
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|
13
|
Zhang M, Chen X, Chen H, Zhou M, Liu Y, Hou Y, Nie M, Liu X. Identification and validation of potential novel biomarkers for oral squamous cell carcinoma. Bioengineered 2021; 12:8845-8862. [PMID: 34606406 PMCID: PMC8806987 DOI: 10.1080/21655979.2021.1987089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Our study aimed to explore potential new diagnostic biomarkers in patients with oral squamous cell carcinoma (OSCC) to find new target molecules involved in the progression of OSCC. Potential novel biomarkers of OSCC were identified using a protein microarray assay. Compared with the healthy control group, there were five proteins (I309, GDF15, AXL, MMP3, and CTACK) in the serum of in situ oral cancer group. However, there were four differentially expressed proteins (MCSF, I309, MMP3, and CTACK) in the serum of the OSCC group. Receiver operating characteristic (ROC) curve analysis results suggested that these six proteins (I309, GDF15, AXL, MMP3, CTACK, and MCSF) had diagnostic value for OSCC. Based on The Cancer Genome Atlas (TCGA) database, we found that only GDF15 expression was associated with the prognosis of OSCC. Subsequently, we verified the expression levels of six proteins in HSC-3 and HaCaT cells, and the results showed that the level of these six proteins was significantly higher in HSC-3 cells than in normal HaCaT cells. Similarly, in the OSCC nude mouse model, the expression levels of these proteins were significantly upregulated in OSCC tumor tissue compared to the normal tissue. GDF15, MMP3, AXL, MCSF, I309, and CTACK may be used as biomarkers for OSCC diagnosis and provide a novel study direction for the treatment of OSCC.
Collapse
Affiliation(s)
- Mengxue Zhang
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao Chen
- Department of Stomatology Technology, School of Medical Technology, Sichuan College of Traditional Medcine, Mianyang, China.,Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, China
| | - He Chen
- Department of Oral and Maxillofacial Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Minyue Zhou
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Yaoqiang Liu
- Department of Oral and Maxillofacial Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yali Hou
- Department of Oral Pathology, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology, Shijiazhuang, China
| | - Minhai Nie
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Xuqian Liu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
14
|
de Goede KE, Verberk SGS, Baardman J, Harber KJ, van Kooyk Y, de Winther MPJ, Schetters STT, Van den Bossche J. Myeloid-Specific Acly Deletion Alters Macrophage Phenotype In Vitro and In Vivo without Affecting Tumor Growth. Cancers (Basel) 2021; 13:cancers13123054. [PMID: 34205266 PMCID: PMC8235155 DOI: 10.3390/cancers13123054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer cells rely on ATP-citrate lyase (Acly)-derived acetyl-CoA for lipid biogenesis and proliferation, marking Acly as a promising therapeutic target. However, inhibitors may have side effects on tumor-associated macrophages (TAMs). TAMs are innate immune cells abundant in the tumor microenvironment (TME) and play central roles in tumorigenesis, progression and therapy response. Since macrophage Acly deletion was previously shown to elicit macrophages with increased pro- and decreased anti-inflammatory responses in vitro, we hypothesized that Acly targeting may elicit anti-tumor responses in macrophages, whilst inhibiting cancer cell proliferation. Here, we used a myeloid-specific knockout model to validate that absence of Acly decreases IL-4-induced macrophage activation. Using two distinct tumor models, we demonstrate that Acly deletion slightly alters tumor immune composition and TAM phenotype in a tumor type-dependent manner without affecting tumor growth. Together, our results indicate that targeting Acly in macrophages does not have detrimental effects on myeloid cells.
Collapse
Affiliation(s)
- Kyra E. de Goede
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (K.E.d.G.); (S.G.S.V.); (K.J.H.); (Y.v.K.); (S.T.T.S.)
| | - Sanne G. S. Verberk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (K.E.d.G.); (S.G.S.V.); (K.J.H.); (Y.v.K.); (S.T.T.S.)
| | - Jeroen Baardman
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.B.); (M.P.J.d.W.)
| | - Karl J. Harber
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (K.E.d.G.); (S.G.S.V.); (K.J.H.); (Y.v.K.); (S.T.T.S.)
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.B.); (M.P.J.d.W.)
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (K.E.d.G.); (S.G.S.V.); (K.J.H.); (Y.v.K.); (S.T.T.S.)
| | - Menno P. J. de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.B.); (M.P.J.d.W.)
| | - Sjoerd T. T. Schetters
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (K.E.d.G.); (S.G.S.V.); (K.J.H.); (Y.v.K.); (S.T.T.S.)
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (K.E.d.G.); (S.G.S.V.); (K.J.H.); (Y.v.K.); (S.T.T.S.)
- Correspondence:
| |
Collapse
|
15
|
Samain R, Brunel A, Douché T, Fanjul M, Cassant-Sourdy S, Rochotte J, Cros J, Neuzillet C, Raffenne J, Duluc C, Perraud A, Nigri J, Gigoux V, Bieche I, Ponzo M, Carpentier G, Cascone I, Tomasini R, Schmid HA, Mathonnet M, Nicolle R, Bousquet MP, Martineau Y, Pyronnet S, Jean C, Bousquet C. Pharmacologic Normalization of Pancreatic Cancer-Associated Fibroblast Secretome Impairs Prometastatic Cross-Talk With Macrophages. Cell Mol Gastroenterol Hepatol 2021; 11:1405-1436. [PMID: 33482394 PMCID: PMC8024982 DOI: 10.1016/j.jcmgh.2021.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Cancer-associated fibroblasts (CAFs) from pancreatic adenocarcinoma (PDA) present high protein synthesis rates. CAFs express the G-protein-coupled somatostatin receptor sst1. The sst1 agonist SOM230 blocks CAF protumoral features in vitro and in immunocompromised mice. We have explored here the therapeutic potential of SOM230, and underlying mechanisms, in immunocompetent models of murine PDA mimicking the heavy fibrotic and immunosuppressive stroma observed in patient tumors. METHODS Large-scale mass spectrometry analyses were performed on media conditioned from 9 patient PDA-derived CAF primary cultures. Spontaneous transgenic and experimental (orthotopic co-graft of tumor cells plus CAFs) PDA-bearing mice were longitudinally ultrasound-monitored for tumor and metastatic progression. Histopathology and flow cytometry analyses were performed on primary tumors and metastases. Stromal signatures were functionally validated through bioinformatics using several published, and 1 original, PDA database. RESULTS Proteomics on the CAF secretome showed that SOM230 controls stromal activities including inflammatory responses. Among the identified secreted proteins, we validated that colony-stimulating factor 1 (CSF-1) (a macrophage growth factor) was reduced by SOM230 in the tumor and plasma of PDA-harboring mice, alongside intratumor stromal normalization (reduced CAF and macrophage activities), and dramatic metastasis reduction. In transgenic mice, these SOM230 benefits alleviate the chemotherapy-induced (gemcitabine) immunosuppressive stroma reshaping. Mechanistically, SOM230 acts in vivo on CAFs through sst1 to disrupt prometastatic CAF production of CSF-1 and cross-talk with macrophages. We found that in patients, stromal CSF-1 was associated with aggressive PDA forms. CONCLUSIONS We propose SOM230 as an antimetastatic therapy in PDA for its capacity to remodel the fibrotic and immunosuppressive myeloid stroma. This pharmacotherapy should benefit PDA patients treated with chemotherapies.
Collapse
Affiliation(s)
- Rémi Samain
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Alexia Brunel
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Thibault Douché
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Marjorie Fanjul
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Stéphanie Cassant-Sourdy
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Julia Rochotte
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Jérôme Cros
- Department of Pathology, Beaujon-Bichat University Hospital–Paris Diderot University, Clichy, France
| | - Cindy Neuzillet
- Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University, Saint Cloud, France
| | - Jérôme Raffenne
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Camille Duluc
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Aurélie Perraud
- Equipe d'Accueil EA 3842 Laboratory, Medicine and Pharmacy Faculties, University of Limoges, Limoges, France
| | - Jérémy Nigri
- INSERM U1068/UMR 7258 CNRS, Cancer Research Center of Marseille, Marseille, France
| | - Véronique Gigoux
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Ivan Bieche
- Department of Genetics, Institut Curie, Paris Descartes University, Paris, France
| | - Matteo Ponzo
- Growth, Reparation and Tissue Regeneration Laboratory, Equipe de Recherche Labellisée ERL-CNRS 9215, University of Paris-Est, Créteil, France
| | - Gilles Carpentier
- Growth, Reparation and Tissue Regeneration Laboratory, Equipe de Recherche Labellisée ERL-CNRS 9215, University of Paris-Est, Créteil, France
| | - Ilaria Cascone
- Growth, Reparation and Tissue Regeneration Laboratory, Equipe de Recherche Labellisée ERL-CNRS 9215, University of Paris-Est, Créteil, France
| | - Richard Tomasini
- INSERM U1068/UMR 7258 CNRS, Cancer Research Center of Marseille, Marseille, France
| | | | - Muriel Mathonnet
- Equipe d'Accueil EA 3842 Laboratory, Medicine and Pharmacy Faculties, University of Limoges, Limoges, France
| | - Rémy Nicolle
- Programme Cartes d’Identité des Tumeurs, Ligue Nationale Contre Le Cancer, Paris, France
| | - Marie-Pierre Bousquet
- Institute for Pharmacology and Structural Biology, University of Toulouse, Toulouse, France
| | - Yvan Martineau
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Stéphane Pyronnet
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Christine Jean
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France
| | - Corinne Bousquet
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM Unité Mixte de Recherche UMR-1037, CNRS Equipe de Recherche Labellisée ERL5294, Equipe de Recherche Labellisée "Ligue Contre le Cancer" & "LabEx Toucan", Toulouse, France,Correspondence Address correspondence to: Corinne Bousquet, VMD, PhD, INSERM U1037, Cancer Research Center of Toulouse, 2 Avenue Hubert Curien, CS53717, 31037 Toulouse Cedex 1, France. fax: (33) (0) 56131-9752.
| |
Collapse
|
16
|
Yang Y, Yang Y, Yang J, Zhao X, Wei X. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. Front Cell Dev Biol 2020; 8:758. [PMID: 32850861 PMCID: PMC7431690 DOI: 10.3389/fcell.2020.00758] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is one of the leading causes of death in patients with gynecological malignancy. Despite optimal cytoreductive surgery and platinum-based chemotherapy, ovarian cancer disseminates and relapses frequently, with poor prognosis. Hence, it is urgent to find new targeted therapies for ovarian cancer. Recently, the tumor microenvironment has been reported to play a vital role in the tumorigenesis of ovarian cancer, especially with discoveries from genome-, transcriptome- and proteome-wide studies; thus tumor microenvironment may present potential therapeutic target for ovarian cancer. Here, we review the interactions between the tumor microenvironment and ovarian cancer and various therapies targeting the tumor environment.
Collapse
Affiliation(s)
- Yanfei Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
The Protective Effect of Low Dose of Lipopolysaccharide Pretreatment on Endotoxin-Induced Uveitis in Rats Is Associated with Downregulation of CSF-1 and Upregulation of LRR-1. J Immunol Res 2020; 2020:9314756. [PMID: 32671118 PMCID: PMC7350171 DOI: 10.1155/2020/9314756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose To observe the effect of low dose of lipopolysaccharide (LPS) pretreatment on the expression of CSF-1 and LRR-1 in rats with endotoxin-induced uveitis (EIU), and to explore the possible role of TLR4. Method EIU was induced by a single subcutaneous injection of 200 μg LPS. For the endotoxin tolerance group, the induction of EIU was preceded by a daily subcutaneous injection of 0.1 mg/kg LPS for five days. Clinical scores were graded at 24 h after EIU under a slit lamp microscope. HE stain was performed to observe the histopathology. The concentrations of IL-17, INF-γ, and IL-6 in aqueous humor were quantified with enzyme-linked immunosorbent assay. Real-time PCR, Western blot, and immunofluorescence analysis were used to determine the expression of NF-κB P65 and the activation of CSF-1, LRR-1. Results : Low dose of LPS pretreatment produced a suppressive effect by significantly reducing the inflammatory reaction of anterior segment as measured by slit lamp and histopathology. It also significantly reduced the concentrations of IL-17, INF-γ, and IL-6 in aqueous humor and the expression of CSF-1 and NF-κB P65, while increased the expression of LRR-1 compared to the EIU group. Conclusions Low dose of LPS pretreatment can ameliorate endotoxin-induced uveitis in rats. This protection may be associated with upregulation of LRR-1 and downregulation of CSF-1, which is regulated by TLR4 signaling pathway.
Collapse
|
18
|
Mohammed A, Alghetaa H, Sultan M, Singh NP, Nagarkatti P, Nagarkatti M. Administration of Δ9-Tetrahydrocannabinol (THC) Post-Staphylococcal Enterotoxin B Exposure Protects Mice From Acute Respiratory Distress Syndrome and Toxicity. Front Pharmacol 2020; 11:893. [PMID: 32612530 PMCID: PMC7308536 DOI: 10.3389/fphar.2020.00893] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a life-threatening complication that can ensue following Staphylococcus aureus infection. The enterotoxin produced by these bacteria (SEB) acts as a superantigen thereby activating a large proportion of T cells leading to cytokine storm and severe lung injury. Δ9Tetrahydrocannabinol (THC), a psychoactive ingredient found in Cannabis sativa, has been shown to act as a potent anti-inflammatory agent. In the current study, we investigated the effect of THC treatment on SEB-induced ARDS in mice. While exposure to SEB resulted in acute mortality, treatment with THC led to 100% survival of mice. THC treatment significantly suppressed the inflammatory cytokines, IFN-γ and TNF-α. Additionally, THC elevated the induction of regulatory T cells (Tregs) and their associated cytokines, IL-10 and TGF-β. Moreover, THC caused induction of Myeloid-Derived Suppressor Cells (MDSCs). THC acted through CB2 receptor as pharmacological inhibitor of CB2 receptors blocked the anti-inflammatory effects. THC-treated mice showed significant alterations in the expression of miRNA (miRs) in the lung-infiltrated mononuclear cells (MNCs). Specifically, THC caused downregulation of let7a-5p which targeted SOCS1 and downregulation of miR-34-5p which caused increased expression of FoxP3, NOS1, and CSF1R. Together, these data suggested that THC-mediated alterations in miR expression in the lungs may play a critical role in the induction of immunosuppressive Tregs and MDSCs as well as suppression of cytokine storm leading to attenuation of SEB-mediated lung injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
19
|
Li X, Kong S, Cao Y. miR-1254 inhibits progression of glioma in vivo and in vitro by targeting CSF-1. J Cell Mol Med 2020; 24:3128-3138. [PMID: 31994318 PMCID: PMC7077535 DOI: 10.1111/jcmm.14981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
The role of miRNAs (microRNAs) has been implicated in glioma initiation and progression, although the inherent biochemical mechanisms still remain to be unravelled. This study strived to evaluate the association between CSF-1 and miR-1254 and their effect on advancement of glioma cells. The levels of miR-1254 in glioma cells and tissues were determined by real-time RT-PCR. Proliferation, apoptosis and cell cycle arrest, invasion and migration, were assessed by CCK-8 assay, colony formation assay, flow cytometry, transwell assay and wound-healing assay, respectively. The targeted relationship between miR-1254 and CSF-1 was confirmed by dual-luciferase reporter assay. The effects of CSF-1 on cellular functions were also assessed. The in vivo effect of miR-1254 on the formation of a tumour was explored by using the mouse xenograft model. We found in both glioma tissues and glioma cells, the down-regulated expressions of miR-1254 while that of CSF-1 was abnormally higher than normal level. The target relationship between CSF-1 and miR-1254 was validated by dual-luciferase reporter assay. The CSF-1 down-regulation or miR-1254 overexpression impeded the invasion, proliferation and migratory ability of U251 and U87 glioma cells, concurrently occluded the cell cycle and induced cell apoptosis. Moreover, in vivo tumour development was repressed due to miR-1254 overexpression. Thus, CSF-1 is targeted directly by miR-1254, and the miR-1254/CSF-1 axis may be a potential diagnostic target for malignant glioma.
Collapse
Affiliation(s)
- Xin Li
- Department of NeurosurgeryThe First People's Hospital of ShenyangShenyangLiaoningChina
| | - Shiqi Kong
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| | - Yingxiao Cao
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| |
Collapse
|
20
|
Kishimoto T, Fujimoto N, Ebara T, Omori T, Oguri T, Niimi A, Yokoyama T, Kato M, Usami I, Nishio M, Yoshikawa K, Tokuyama T, Tamura M, Yokoyama Y, Tsuboi K, Matsuo Y, Xu J, Takahashi S, Abdelgied M, Alexander WT, Alexander DB, Tsuda H. Serum levels of the chemokine CCL2 are elevated in malignant pleural mesothelioma patients. BMC Cancer 2019; 19:1204. [PMID: 31823764 PMCID: PMC6905076 DOI: 10.1186/s12885-019-6419-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a debilitating disease of the pleural cavity. It is primarily associated with previous inhalation of asbestos fibers. These fibers initiate an oxidant coupled inflammatory response. Repeated exposure to asbestos fibers results in a prolonged inflammatory response and cycles of tissue damage and repair. The inflammation-associated cycles of tissue damage and repair are intimately involved in the development of asbestos-associated cancers. Macrophages are a key component of asbestos-associated inflammation and play essential roles in the etiology of a variety of cancers. Macrophages are also a source of C-C motif chemokine ligand 2 (CCL2), and a variety of tumor-types express CCL2. High levels of CCL2 are present in the pleural effusions of mesothelioma patients, however, CCL2 has not been examined in the serum of mesothelioma patients. METHODS The present study was carried out with 50 MPM patients and 356 subjects who were possibly exposed to asbestos but did not have disease symptoms and 41 healthy volunteers without a history of exposure to asbestos. The levels of CCL2 in the serum of the study participants was determined using ELISA. RESULTS Levels of CCL2 were significantly elevated in the serum of patients with advanced MPM. CONCLUSIONS Our findings are consistent with the premise that the CCL2/CCR2 axis and myeloid-derived cells play an important role in MPM and disease progression. Therapies are being developed that target CCL2/CCR2 and tumor resident myeloid cells, and clinical trials are being pursued that use these therapies as part of the treatment regimen. The results of trials with patients with a similar serum CCL2 pattern as MPM patients will have important implications for the treatment of MPM.
Collapse
Affiliation(s)
- Takumi Kishimoto
- Japan Organization of Occupational Health and Safety, Research Center for Asbestos-related Diseases, Okayama Rosai Hospital, Okayama, Japan
| | - Nobukazu Fujimoto
- Japan Organization of Occupational Health and Safety, Research Center for Asbestos-related Diseases, Okayama Rosai Hospital, Okayama, Japan
| | - Takeshi Ebara
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toyonori Omori
- Department of Healthcare Policy and Management, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takako Yokoyama
- Japan Organization of Occupational Health and Safety, Department of Respiratory Medicine, Asahi Rosai Hospital, Owariasahi, Japan
| | - Munehiro Kato
- Japan Organization of Occupational Health and Safety, Department of Respiratory Medicine, Asahi Rosai Hospital, Owariasahi, Japan
| | - Ikuji Usami
- Japan Organization of Occupational Health and Safety, Department of Respiratory Medicine, Asahi Rosai Hospital, Owariasahi, Japan
| | - Masayuki Nishio
- Department of Respiratory Medicine, Daido Hospital, Nagoya, Japan
| | - Kosho Yoshikawa
- Department of Respiratory Medicine, Daido Hospital, Nagoya, Japan
| | - Takeshi Tokuyama
- Department of Internal Medicine, Saiseikai Chuwa Hospital, Sakurai, Nara, Japan
| | - Mouka Tamura
- Department of Internal Medicine, National Hospital Organization Nara Medical Center, Nara, Japan
| | - Yoshifumi Yokoyama
- Department of Medicine and Physical Medicine and Rehabilitation, Nagoya City Koseiin Medical Welfare Center, Nagoya, Japan
| | - Ken Tsuboi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jiegou Xu
- Department of Immunology, College of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Nanotoxicology Project Lab, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mohamed Abdelgied
- Nanotoxicology Project Lab, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya, 467-8603, Japan
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - William T Alexander
- Nanotoxicology Project Lab, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya, 467-8603, Japan
| | - David B Alexander
- Nanotoxicology Project Lab, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Hiroyuki Tsuda
- Nanotoxicology Project Lab, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|
21
|
Zhang Q, Liu JH, Liu JL, Qi CT, Yan L, Chen Y, Yu Q. Activation and function of receptor tyrosine kinases in human clear cell renal cell carcinomas. BMC Cancer 2019; 19:1044. [PMID: 31690270 PMCID: PMC6833303 DOI: 10.1186/s12885-019-6159-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background The receptor tyrosine kinases (RTKs) play critical roles in the development of cancers. Clear cell renal cell carcinoma (ccRCC) accounts for 75% of the RCC. The previous studies on the RTKs in ccRCCs mainly focused on their gene expressions. The activation and function of the RTKs in ccRCC have not been fully investigated. Methods In the present study, we analyzed the phosphorylation patterns of RTKs in human ccRCC patient samples, human ccRCC and papillary RCC cell lines, and other kidney tumor samples using human phospho-RTK arrays. We further established ccRCC patient-derived xenograft models in nude mice and assessed the effects of RTKIs (RTK Inhibitors) on the growth of these cancer cells. Immunofluorescence staining was used to detect the localization of keratin, vimentin and PDGFRβ in ccRCCs. Results We found that the RTK phosphorylation patterns of the ccRCC samples were all very similar, but different from that of the cell lines, other kidney tumor samples, as well as the adjacent normal tissues. 9 RTKs, EGFR1–3, Insulin R, PDGFRβ, VEGFR1, VEGFR2, HGFR and M-CSFR were found to be phosphorylated in the ccRCC samples. The adjacent normal tissues, on the other hand, had predominantly only two of the 4 EGFR family members, EGFR and ErbB4, phosphorylated. What’s more, the RTK phosphorylation pattern of the xenograft, however, was different from that of the primary tissue samples. Treatment of the xenograft nude mice with corresponding RTK inhibitors effectively inhibited the Erk1/2 signaling pathway as well as the growth of the tumors. In addition, histological staining of the cancer samples revealed that most of the PDGFRβ expressing cells were localized in the vimentin-positive periepithelial stroma. Conclusions Overall, we have identified a set of RTKs that are characteristically phosphorylated in ccRCCs. The phosphorylation of RTKs in ccRCCs were determined by the growing environments. These phosphorylated/activated RTKs will guide targeting drugs development of more effective therapies in ccRCCs. The synergistical inhibition of RTKIs combination on the ccRCC suggest a novel strategy to use a combination of RTKIs to treat ccRCCs.
Collapse
Affiliation(s)
- Qing Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Room 2-224, Shanghai, 201203, China
| | - Jian-He Liu
- The Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, China
| | - Jing-Li Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Room 2-224, Shanghai, 201203, China
| | - Chun-Ting Qi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Room 2-224, Shanghai, 201203, China
| | - Lei Yan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Room 2-224, Shanghai, 201203, China
| | - Yu Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Room 2-224, Shanghai, 201203, China
| | - Qiang Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Room 2-224, Shanghai, 201203, China.
| |
Collapse
|
22
|
Kondratova M, Czerwinska U, Sompairac N, Amigorena SD, Soumelis V, Barillot E, Zinovyev A, Kuperstein I. A multiscale signalling network map of innate immune response in cancer reveals cell heterogeneity signatures. Nat Commun 2019; 10:4808. [PMID: 31641119 PMCID: PMC6805895 DOI: 10.1038/s41467-019-12270-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
The lack of integrated resources depicting the complexity of the innate immune response in cancer represents a bottleneck for high-throughput data interpretation. To address this challenge, we perform a systematic manual literature mining of molecular mechanisms governing the innate immune response in cancer and represent it as a signalling network map. The cell-type specific signalling maps of macrophages, dendritic cells, myeloid-derived suppressor cells and natural killers are constructed and integrated into a comprehensive meta map of the innate immune response in cancer. The meta-map contains 1466 chemical species as nodes connected by 1084 biochemical reactions, and it is supported by information from 820 articles. The resource helps to interpret single cell RNA-Seq data from macrophages and natural killer cells in metastatic melanoma that reveal different anti- or pro-tumor sub-populations within each cell type. Here, we report a new open source analytic platform that supports data visualisation and interpretation of tumour microenvironment activity in cancer. The complexity of the innate immune response to cancer makes interpretation of large data sets challenging. Here, the authors provide an integrated multi-scale map of signalling networks representing the different immune cells and their interactions and show its utility for data interpretation.
Collapse
Affiliation(s)
- Maria Kondratova
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France
| | - Urszula Czerwinska
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France.,Université Paris Descartes, Centre de Recherches Interdisciplinaires, Paris, France
| | - Nicolas Sompairac
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France.,Université Paris Descartes, Centre de Recherches Interdisciplinaires, Paris, France
| | | | - Vassili Soumelis
- Institut Curie, PSL Research University, Inserm, U932, 75005, Paris, France
| | - Emmanuel Barillot
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France
| | - Inna Kuperstein
- Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, 75005, Paris, France.
| |
Collapse
|
23
|
Abstract
This Special Issue comprises ten reviews that highlight the connection between inflammation and cancer; from immune-cancer cell crosstalk to the current targets in cancer immunotherapy. We hope you find these reviews interesting and informative and we thank the authors for these excellent contributions.
Collapse
Affiliation(s)
- Alberto Mantovani
- Humanitas Clinical and Research Center, Milan, Italy.,Humanitas University, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, UK
| |
Collapse
|
24
|
Preclinical and Clinical Therapeutic Strategies Affecting Tumor-Associated Macrophages in Hepatocellular Carcinoma. J Immunol Res 2018; 2018:7819520. [PMID: 30410942 PMCID: PMC6206557 DOI: 10.1155/2018/7819520] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/07/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) most often develops in patients with underlying liver disease characterized by chronic nonresolving inflammation. Tumor-associated macrophages (TAMs) are one of the most abundant immune cell populations within the tumoral microenvironment. As key actors of cancer-related inflammation, they promote tumor growth by suppression of effective anticancer immunity, stimulation of angiogenesis, and tissue remodeling. Therefore, they have become an attractive and promising target for immunotherapy. The heterogeneity of TAM subtypes and their origin and dynamic phenotype during the initiation and progression of HCC has been partially unraveled and forms the base for the development of therapeutic agents. Current approaches are aimed at decreasing the population of TAMs by depleting macrophages present in the tumor, blocking the recruitment of bone marrow-derived monocytes, and/or functionally reprogramming TAMs to antitumoral behavior. In this review, the preclinical evolution and hitherto clinical trials for TAM-targeted therapy in HCC will be highlighted.
Collapse
|