1
|
Milićević J, Petrović S, Tošić S, Vrecl M, Arsić B. Recent Computer-Aided Studies on Herbicides: A Short Review. Chem Biodivers 2024; 21:e202400531. [PMID: 38948948 DOI: 10.1002/cbdv.202400531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Current industrial herbicides have a negative impact on the environment and have widespread resistance, so computational studies on their properties, elimination, and overcoming resistance can be helpful. On the other hand, developing new herbicides, especially bioherbicides, is slow and costly. Therefore, computational studies that guide the design and search for new herbicides that exist in various plant sources, can alleviate the pain associated with the many obstacles. This review summarizes for the first time the most recent studies on both aspects of herbicides over 10 years.
Collapse
Affiliation(s)
- Jelena Milićević
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11351, Vinča, Belgrade, Republic of Serbia
| | - Stefan Petrović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106, Niš, Republic of Serbia
| | - Snežana Tošić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106, Niš, Republic of Serbia
| | - Milka Vrecl
- Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, 1000, Ljubljana, Slovenia
| | - Biljana Arsić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18106, Niš, Republic of Serbia
| |
Collapse
|
2
|
Wang Q, Zhang W, Gan X. Design, Synthesis, and Herbicidal Activity of Natural Naphthoquinone Derivatives Containing Diaryl Ether Structures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17200-17209. [PMID: 39075938 DOI: 10.1021/acs.jafc.4c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Photosynthesis system II (PS II) is an important target for the development of bioherbicides. In this study, a series of natural naphthoquinone derivatives containing diaryl ether were designed and synthesized based on the binding model of lawsone and PS II D1. Bioassays exhibited that most compounds had more than 80% inhibition of Portulaca oleracea and Echinochloa crusgalli roots at a dose of 100 μg/mL and compounds B4, B5, and C3 exhibited superior herbicidal activities against dicotyledonous and monocotyledon weeds to commercial atrazine. In particular, compound B5 exhibited excellent herbicidal activity at a dosage of 150 g a.i./ha. In addition, compared with atrazine, compound B5 causes less damage to crops. Molecular docking studies revealed that compound B5 effectively interacted with Pisum sativum PS II D1 via diverse interaction models, such as π-π stacking and hydrogen bonds. Molecular dynamics simulation studies and chlorophyll fluorescence measurements revealed that compound B5 acted on PS II. This is the first report of natural naphthoquinone derivatives targeting PS II and compound B5 may be a candidate molecule for the development of new herbicides targeting PS II.
Collapse
Affiliation(s)
- Qingqing Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Zhang W, Zhang J, Yan C, Gan X. Discovery of Novel N-Phenyltriazinone Derivatives Containing Oxime Ether or Oxime Ester Moieties as Promising Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12946-12955. [PMID: 38809794 DOI: 10.1021/acs.jafc.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is one of the most important targets for the discovery of green herbicides. In order to find novel PPO inhibitors with a higher herbicidal activity, a series of novel N-phenyltriazinone derivatives containing oxime ether and oxime ester groups were designed and synthesized based on the strategy of pharmacophore and scaffold hopping. Bioassay results revealed that some compounds showed herbicidal activities; especially, compound B16 exhibited broad-spectrum and excellent 100% herbicidal effects to Echinochloa crusgalli, Digitaria sanguinalis, Setaria faberii, Abutilon juncea, Amaranthus retroflexus, and Portulaca oleracea at a concentration of 37.5 g a.i./ha, which were comparable to trifludimoxazin. Nicotiana tabacum PPO (NtPPO) enzyme inhibitory assay indicated that B16 showed an excellent enzyme inhibitory activity with a value of 32.14 nM, which was similar to that of trifludimoxazin (31.33 nM). Meanwhile, compound B16 revealed more safety for crops (rice, maize, wheat, peanut, soybean, and cotton) than trifludimoxazin at a dose of 150 g a.i./ha. Moreover, molecular docking and molecular dynamics simulation further showed that B16 has a very strong and stable binding to NtPPO. It indicated that B16 can be used as a potential PPO inhibitor and herbicide candidate for application in the field.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiahui Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Chaohui Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Leng XY, Pang QF, Ma YF, Ye BW, Ye F, Fu Y. Integrated Virtual Screening and Validation toward Potential HPPD Inhibition Herbicide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4587-4595. [PMID: 38408430 DOI: 10.1021/acs.jafc.3c06312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) is one of the most widely studied herbicide targets and has gained significant attention. To identify potential effective HPPD inhibitors, a rational multistep virtual screening workflow was built, which included CBP models (based on the receptor-ligand interactions in the crystal complex), Hypogen models with activity prediction ability (according to the derivation of structure-activity relationships from a set of molecules with reported activity values), and a consensus docking procedure (consisting of LibDock, Glide, and CDOCKER). About 1 million molecules containing diketone or β-keto-enol substructures were filtered by Lipinski's rules, CBP model, and Hypogen model. A total of 12 compounds with similar docking postures were generated by consensus docking. Eventually, four molecules were screened based on the specific binding pattern and affinity of the HPPD inhibitor. The biological evaluation in vivo displayed that compounds III-1 and III-2 exhibited comparable herbicidal activity to isoxaflutole and possessed superior safety on various crops (wheat, rice, sorghum, and maize). The ADMET prediction (absorption, distribution, metabolism, excretion, and toxicity) showed that compound III possessed relatively good toxicological results. This work provides a theoretical basis and valuable reference for the virtual screening and molecular design of novel HPPD inhibition herbicides.
Collapse
Affiliation(s)
- Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Qi-Fan Pang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yi-Fan Ma
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bo-Wen Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Cai ZM, Huang GY, Dong J, Chen LJ, Ye BQ, Lin HY, Wang DW, Yang GF. Discovery of Tetrazolamide-benzimidazol-2-ones as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3884-3893. [PMID: 38375801 DOI: 10.1021/acs.jafc.3c06798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is one of the most valuable herbicide targets due to its unique biological functions. In search of HPPD inhibitors with promising biological performance, we designed and synthesized a series of novel tetrazolamide-benzimidazol-2-ones using a structure-based drug design strategy. Among the synthesized compounds, 1-(2-chlorobenzyl)-3-methyl-N-(1-methyl-1H-tetrazol-5-yl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-4-carboxamide, 25, IC50 = 10 nM, was identified to be the most outstanding HPPD inhibitor, which showed more than 36-fold increased Arabidopsis thaliana HPPD (AtHPPD) inhibition potency than mesotrione (IC50 = 363 nM). Our AtHPPD-25 complex indicated that one nitrogen atom on the tetrazole ring and the oxygen atom on the amide group formed a classical bidentate chelation interaction with the metal ion, the benzimidazol-2-one ring created a tight π-π stacking interaction with Phe381 and Phe424, and some hydrophobic interactions were also found between the ortho-Cl-benzyl group and surrounding residues. Compound 32 showed more than 80% inhibition against all four tested weeds at 150 g ai/ha by the postemergence application. Our results indicated that the tetrazolamide-benzimidazol-2-one scaffold may be a new lead structure for herbicide discovery.
Collapse
Affiliation(s)
- Zhuo-Mei Cai
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Yi Huang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jin Dong
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Li-Jun Chen
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Bao-Qing Ye
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hong-Yan Lin
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Da-Wei Wang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
6
|
Zhao Y, Ye F, Fu Y. Herbicide Safeners: From Molecular Structure Design to Safener Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2451-2466. [PMID: 38276871 DOI: 10.1021/acs.jafc.3c08923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Herbicide safeners, highly effective antidotes, find widespread application in fields for alleviating the phytotoxicity of herbicides to crops. Designing new herbicide safeners remains a notable issue in pesticide research. This review focuses on discussing and summarizing the structure-activity relationships, molecular structures, physicochemical properties, and molecular docking of herbicide safeners in order to explore how different structures affect the safener activities of target compounds. It also provides insights into the application prospects of computer-aided drug design for designing and synthesizing new safeners in the future.
Collapse
Affiliation(s)
- Yaning Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Yu XH, Dong J, Fan CP, Chen MX, Li M, Zheng BF, Hu YF, Lin HY, Yang GF. Discovery and Development of 4-Hydroxyphenylpyruvate Dioxygenase as a Novel Crop Fungicide Target. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19396-19407. [PMID: 38035573 DOI: 10.1021/acs.jafc.3c05260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Plant pathogenic fungi pose a significant threat to crop yields and quality, and the emergence of fungicide resistance has further exacerbated the problem in agriculture. Therefore, there is an urgent need for efficient and environmentally friendly fungicides. In this study, we investigated the antifungal activity of (+)-Usnic acid and its inhibitory effect on crop pathogenic fungal 4-hydroxyphenylpyruvate dioxygenases (HPPDs) and determined the structure of Zymoseptoria tritici HPPD (ZtHPPD)-(+)-Usnic acid complex. Thus, the antifungal target of (+)-Usnic acid and its inhibitory basis toward HPPD were uncovered. Additionally, we discovered a potential lead fungicide possessing a novel scaffold that displayed remarkable antifungal activities. Furthermore, our molecular docking analysis revealed the unique binding mode of this compound with ZtHPPD, explaining its high inhibitory effect. We concluded that HPPD represents a promising target for the control of phytopathogenic fungi, and the new compound serves as a novel starting point for the development of fungicides and dual-purpose pesticides.
Collapse
Affiliation(s)
- Xin-He Yu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Jin Dong
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Cheng-Peng Fan
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Meng-Xi Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Min Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Bai-Feng Zheng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Ya-Fang Hu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Hong-Yan Lin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
8
|
Júnior MA, Silva LC, Rocha OB, Oliveira AA, Portis IG, Alonso A, Alonso L, Silva KS, Gomes MN, Andrade CH, Soares CM, Pereira M. Proteomic identification of metabolic changes in Paracoccidioides brasiliensis induced by a nitroheteroarylchalcone. Future Microbiol 2023; 18:1077-1093. [PMID: 37424510 DOI: 10.2217/fmb-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Aim: To access the metabolic changes caused by a chalcone derivative (LabMol-75) through a proteomic approach. Methods: Proteomic analysis was performed after 9 h of Paracoccidioides brasiliensis yeast (Pb18) cell incubation with the LabMol-75 at MIC. The proteomic findings were validated through in vitro and in silico assays. Results: Exposure to the compound led to the downregulation of proteins associated with glycolysis and gluconeogenesis, β-oxidation, the citrate cycle and the electron transport chain. Conclusion: LabMol-75 caused an energetic imbalance in the fungus metabolism and deep oxidative stress. Additionally, the in silico molecular docking approach pointed to this molecule as a putative competitive inhibitor of DHPS.
Collapse
Affiliation(s)
- Marcos Abc Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lívia C Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Olivia B Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Amanda A Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Igor G Portis
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Antonio Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lais Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Kleber Sf Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Marcelo N Gomes
- InsiChem, Goiás State University, Anápolis, Goiás, Brazil
- Faculdade Metropolitana de Anápolis, Anápolis, Goiás, Brazil
| | - Carolina H Andrade
- Laboratory for Molecular Modeling & Drug Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Célia Ma Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
9
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
10
|
Jiang ZB, Gao S, Hu W, Sheng BR, Shi J, Ye F, Fu Y. Design, synthesis and biological activity of novel triketone herbicides containing natural product fragments. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105493. [PMID: 37532319 DOI: 10.1016/j.pestbp.2023.105493] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 08/04/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) belongs to the non-heme Fe2+ - containing enzyme family and is an important enzyme in tyrosine decomposition. HPPD is crucial to the discovery of novel bleaching herbicides. To develop novel HPPD inhibitor herbicides containing the β-triketone motif, a series of 4-hydroxyl-3-(substituted aryl)-pyran-2-one derivatives were designed using the active fragment splicing method. The title compounds were synthesized and characterized through infrared spectroscopy (IR), 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), and high-resolution mass spectrometry (HRMS). The X-ray diffraction method determined the single crystal structure of I-17. Preliminary bioassay data revealed that several novel compounds, especially I-12 and II-3, showed excellent herbicidal activity against broadleaf and monocotyledonous weeds at a dose of 150 g ai/ha. The results of crop selectivity and carotenoids determination indicated that compound I-12 is more suitable for wheat and cotton fields than mesotrione. Additionally, compound II-3 is safer for soybeans and peanuts than mesotrione. The inhibitory activity of Arabidopsis thaliana HPPD (AtHPPD) verified that compound II-3 showed the most activity with an IC50 value of 0.248 μM, which was superior to that of mesotrione (0.283 μM) in vitro. The binding mode of compound II-3 and AtHPPD was confirmed through molecular docking and molecular dynamics simulations. This study provides insights into the future development of natural and efficient herbicides.
Collapse
Affiliation(s)
- Zi-Bin Jiang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Wei Hu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bo-Ren Sheng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Juan Shi
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
11
|
Lian L, Wang H, Zhang F, Liu W, Lu X, Jin T, Wang J, Gan X, Song B. Cypyrafluone, a 4-Hydroxyphenylpyruvate Dioxygenase Inhibitor to Control Weed in Wheat Fields. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37262424 DOI: 10.1021/acs.jafc.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
As a bleaching herbicide, cypyrafluone was applied postemergence in wheat fields for annual weed control; especially, this herbicide possesses high efficacy against cool-season grass weed species such as Alopecurus aequalis and Alopecurus japonicus. In this study, the target of action of cypyrafluone on 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibition was confirmed. This herbicide caused severe foliar whitening symptoms at 5-7 days after treatment (DAT) and death of the whole plant within 10 DAT. Significant increases in phytoene content and significant decreases in kinds of carotenoid and chlorophyll pigments were observed. The content of chlorophyll pigments in cypyrafluone-treated Spirodela polyrhiza decreased upon the addition of homogentisic acid (HGA), which indicated that cypyrafluone prevents the HGA production, possibly by inhibiting the catalytic activity of 4-HPPD. Indeed, cypyrafluone strongly inhibited the catalytic activity of Arabidopsis thaliana HPPD produced by Escherichia coli, which was approximately 2 times less effective than mesotrione. In addition, overexpression of Oryza sativa HPPD in rice and A. thaliana both conferred a high tolerance level to cypyrafluone on them. Molecular docking found that cypyrafluone bonded well to the active site of the HPPD and formed a bidentate coordination interaction with the Fe2+ atom, with distances of 2.6 and 2.7 Å between oxygen atoms and the Fe2+ atom and a binding energy of -8.0 kcal mol-1.
Collapse
Affiliation(s)
- Lei Lian
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
- Qingdao Kingagroot Compounds Co. Ltd., Qingdao 266000, Shandong, PR China
| | - Hengzhi Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Fengwen Zhang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Weitang Liu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Xingtao Lu
- Qingdao Kingagroot Compounds Co. Ltd., Qingdao 266000, Shandong, PR China
| | - Tao Jin
- Qingdao Kingagroot Compounds Co. Ltd., Qingdao 266000, Shandong, PR China
| | - Jinxin Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Xiuhai Gan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
12
|
Leng XY, Gao S, Ma YF, Zhao LX, Wang M, Ye F, Fu Y. Discovery of novel HPPD inhibitors: Virtual screening, molecular design, structure modification and biological evaluation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105390. [PMID: 37105629 DOI: 10.1016/j.pestbp.2023.105390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD, a Fe(II)/α-ketoglutarate dependent oxygenases), is a popular herbicide target. In this work, two pharmacophore models based on common molecular characteristics (HipHop) and receptor-ligand complex (CBP) were generated for virtual screening for HPPD inhibitors. About 1,000,000 molecules containing diketone structure from PubChem were filtered by Lipinski's rules to build a 3D database. Then the database was screened through combining HipHop model, CBP model, ADMET (absorption, distribution, metabolism, excretion and toxicity) prediction and molecular docking. Subsequently, based on the specific binding mode and affinity of HPPD inhibitors, 4 molecules with high -CDOCKER energy, good aqueous solubility and human safety predicative properties values were screened. From the screening results and combined with previous work, three novel HPPD inhibitors were designed and synthesized through fragment splicing and bioisosterism strategies. Compound IV-a exhibited similar inhibition of Arabidopsis thaliana HPPD (AtHPPD) and herbicidal activity as mesotrione. Crop selectivity showed that compound IV-a had better crop safety than mesotrione. Comparing the molecular properties, ADMET and molecular docking studies indicated that compounds IV-a exhibited better properties than mesotrione, which could be further modified as novel HPPD inhibitor herbicides.
Collapse
Affiliation(s)
- Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yi-Fan Ma
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Meng Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
13
|
Nan JX, Dong J, Cao JQ, Huang GY, Shi XX, Wei XF, Chen Q, Lin HY, Yang GF. Structure-Based Design of 4-Hydroxyphenylpyruvate Dioxygenase Inhibitor as a Potential Herbicide for Cotton Fields. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5783-5795. [PMID: 36977356 DOI: 10.1021/acs.jafc.2c08448] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is one of the most promising herbicide targets for the development of agricultural chemicals owing to its unique mechanism of action in plants. We previously reported on the co-crystal structure of Arabidopsis thaliana (At) HPPD complexed with methylbenquitrione (MBQ), an inhibitor of HPPD that we previously discovered. Based on this crystal structure, and in an attempt to discover even more effective HPPD-inhibiting herbicides, we designed a family of triketone-quinazoline-2,4-dione derivatives featuring a phenylalkyl group through increasing the interaction between the substituent at the R1 position and the amino acid residues at the active site entrance of AtHPPD. Among the derivatives, 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-(1-phenylethyl)quinazoline-2,4(1H,3H)-dione (23) was identified as a promising compound. The co-crystal structure of compound 23 with AtHPPD revealed that hydrophobic interactions with Phe392 and Met335, and effective blocking of the conformational deflection of Gln293, as compared with that of the lead compound MBQ, afforded a molecular basis for structural modification. 3-(1-(3-Fluorophenyl)ethyl)-6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethylquinazoline-2,4(1H,3H)-dione (31) was confirmed to be the best subnanomolar-range AtHPPD inhibitor (IC50 = 39 nM), making it approximately seven times more potent than MBQ. In addition, the greenhouse experiment showed favorable herbicidal potency for compound 23 with a broad spectrum and acceptable crop selectivity against cotton at the dosage of 30-120 g ai/ha. Thus, compound 23 possessed a promising prospect as a novel HPPD-inhibiting herbicide candidate for cotton fields.
Collapse
Affiliation(s)
- Jia-Xu Nan
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Jin Dong
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Jun-Qiao Cao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Yi Huang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Xing-Xing Shi
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Xue-Fang Wei
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Qiong Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Hong-Yan Lin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
14
|
Yang D, Wang YE, Chen M, Liu H, Huo J, Zhang J. Discovery of Bis-5-cyclopropylisoxazole-4-carboxamides as Novel Potential 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5136-5142. [PMID: 36972477 DOI: 10.1021/acs.jafc.2c08912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27; HPPD) represents a potential target for novel herbicide development. To discover the more promising HPPD inhibitor, we designed and synthesized a series of bis-5-cyclopropylisoxazole-4-carboxamides with different linkers using a multitarget pesticide design strategy. Among them, compounds b9 and b10 displayed excellent herbicidal activities versus Digitaria sanguinalis (DS) and Amaranthus retroflexus (AR) with the inhibition of about 90% at the concentration of 100 mg/L in vitro, which was better than that of isoxaflutole (IFT). Furthermore, compounds b9 and b10 displayed the best inhibitory effect versus DS and AR with the inhibition of about 90 and 85% at 90 g (ai)/ha in the greenhouse, respectively. The structure-activity relationship study showed that the flexible linker (6 carbon atoms) is responsible for increasing their herbicidal activity. The molecular docking analyses showed that compounds b9 and b10 could more closely bind to the active site of HPPD and thus exhibited a better inhibitory effect. Altogether, these results indicated that compounds b9 and b10 could be used as potential herbicide candidates targeting HPPD.
Collapse
Affiliation(s)
- Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Miaomiao Chen
- Scientific Rescearch Academy, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Haiyan Liu
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
15
|
Lin HY, Dong J, Dong J, Yang WC, Yang GF. Insights into 4-hydroxyphenylpyruvate dioxygenase-inhibitor interactions from comparative structural biology. Trends Biochem Sci 2023; 48:568-584. [PMID: 36959016 DOI: 10.1016/j.tibs.2023.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays a key role in tyrosine metabolism and has been identified as a promising target for herbicide and drug discovery. The structures of HPPD complexed with different types of inhibitors have been determined previously. We summarize the structures of HPPD complexed with structurally diverse molecules, including inhibitors, natural products, substrates, and catalytic intermediates; from these structures, the detailed inhibitory mechanisms of different inhibitors were analyzed and compared, and the key structural factors determining the slow-binding behavior of inhibitors were identified. Further, we propose four subpockets that accommodate different inhibitor substructures. We believe that these analyses will facilitate in-depth understanding of the enzymatic reaction mechanism and enable the design of new inhibitors with higher potency and selectivity.
Collapse
Affiliation(s)
- Hong-Yan Lin
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Jin Dong
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Jiangqing Dong
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Wen-Chao Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
16
|
Zeng H, Zhang W, Wang Z, Gan X. Discovery of Novel Pyrazole Derivatives with Improved Crop Safety as 4-Hydroxyphenylpyruvate Dioxygenase-Targeted Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3950-3959. [PMID: 36848139 DOI: 10.1021/acs.jafc.2c07551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As one of the essential herbicide targets, 4-hydroxyphenylpyruvate dioxygenase (HPPD) has recently been typically used to produce potent new herbicides. In continuation with the previous work, several pyrazole derivatives comprising a benzoyl scaffold were designed and synthesized, and their inhibitory effects on Arabidopsis thaliana hydroxyphenylpyruvate dioxygenase (AtHPPD) and herbicidal activities were comprehensively evaluated in this study. Compound Z9 showed top-rank inhibitory activity to AtHPPD with an half-maximal inhibitory concentration (IC50) value of 0.05 μM, which was superior to topramezone (1.33 μM) and mesotrione (1.76 μM). Compound Z21 exhibited superior preemergence inhibitory activity against Echinochloa crusgalli, with stem and root inhibition rates of 44.3 and 69.6%, respectively, compared to topramezone (16.0 and 53.0%) and mesotrione (12.8 and 41.7%). Compounds Z5, Z15, Z20, and Z21 showed excellent postemergence herbicidal activities at a dosage of 150 g ai/ha, along with distinct bleaching symptoms and higher crop safety than topramezone and mesotrione, and they all were safe for maize, cotton, and wheat with injury rates of 0 or 10%. In addition, the molecular docking analysis also revealed that these compounds formed hydrophobic π-π interactions with Phe360 and Phe403 to AtHPPD. This study suggests that pyrazole derivatives containing a benzoyl scaffold could be used as new HPPD inhibitors to develop pre- and postemergence herbicides and be applied to additional crop fields.
Collapse
Affiliation(s)
- Huanan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengxing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
17
|
Jiang D, Ye Z, Hsieh CY, Yang Z, Zhang X, Kang Y, Du H, Wu Z, Wang J, Zeng Y, Zhang H, Wang X, Wang M, Yao X, Zhang S, Wu J, Hou T. MetalProGNet: a structure-based deep graph model for metalloprotein-ligand interaction predictions. Chem Sci 2023; 14:2054-2069. [PMID: 36845922 PMCID: PMC9945430 DOI: 10.1039/d2sc06576b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Metalloproteins play indispensable roles in various biological processes ranging from reaction catalysis to free radical scavenging, and they are also pertinent to numerous pathologies including cancer, HIV infection, neurodegeneration, and inflammation. Discovery of high-affinity ligands for metalloproteins powers the treatment of these pathologies. Extensive efforts have been made to develop in silico approaches, such as molecular docking and machine learning (ML)-based models, for fast identification of ligands binding to heterogeneous proteins, but few of them have exclusively concentrated on metalloproteins. In this study, we first compiled the largest metalloprotein-ligand complex dataset containing 3079 high-quality structures, and systematically evaluated the scoring and docking powers of three competitive docking tools (i.e., PLANTS, AutoDock Vina and Glide SP) for metalloproteins. Then, a structure-based deep graph model called MetalProGNet was developed to predict metalloprotein-ligand interactions. In the model, the coordination interactions between metal ions and protein atoms and the interactions between metal ions and ligand atoms were explicitly modelled through graph convolution. The binding features were then predicted by the informative molecular binding vector learned from a noncovalent atom-atom interaction network. The evaluation on the internal metalloprotein test set, the independent ChEMBL dataset towards 22 different metalloproteins and the virtual screening dataset indicated that MetalProGNet outperformed various baselines. Finally, a noncovalent atom-atom interaction masking technique was employed to interpret MetalProGNet, and the learned knowledge accords with our understanding of physics.
Collapse
Affiliation(s)
- Dejun Jiang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China .,Tencent Quantum Laboratory, Tencent Shenzhen 518057 Guangdong China .,College of Computer Science and Technology, Zhejiang University Hangzhou 310006 Zhejiang China
| | - Zhaofeng Ye
- Tencent Quantum Laboratory, Tencent Shenzhen 518057 Guangdong China
| | - Chang-Yu Hsieh
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Ziyi Yang
- Tencent Quantum Laboratory, Tencent Shenzhen 518057 Guangdong China
| | - Xujun Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Hongyan Du
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Zhenxing Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Jike Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Yundian Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Haotian Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Xiaorui Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and TechnologyMacao
| | - Mingyang Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and TechnologyMacao
| | - Shengyu Zhang
- Tencent Quantum Laboratory, Tencent Shenzhen 518057 Guangdong China
| | - Jian Wu
- College of Computer Science and Technology, Zhejiang University Hangzhou 310006 Zhejiang China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| |
Collapse
|
18
|
Dong J, Dong J, Yu XH, Yan YC, Nan JX, Ye BQ, Yang WC, Lin HY, Yang GF. Discovery of Subnanomolar Inhibitors of 4-Hydroxyphenylpyruvate Dioxygenase via Structure-Based Rational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1170-1177. [PMID: 36599124 DOI: 10.1021/acs.jafc.2c06727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High-potency 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are usually featured by time-dependent inhibition. However, the molecular mechanism underlying time-dependent inhibition by HPPD inhibitors has not been fully elucidated. Here, based on the determination of the HPPD binding mode of natural products, the π-π sandwich stacking interaction was found to be a critical element determining time-dependent inhibition. This result implied that, for the time-dependent inhibitors, strengthening the π-π sandwich stacking interaction might improve their inhibitory efficacy. Consequently, modification with one methyl group on the bicyclic ring of quinazolindione inhibitors was achieved, thereby strengthening the stacking interaction and significantly improving the inhibitory efficacy. Further introduction of bulkier hydrophobic substituents with higher flexibility resulted in a series of HPPD inhibitors with outstanding subnanomolar potency. Exploration of the time-dependent inhibition mechanism and molecular design based on the exploration results are very successful cases of structure-based rational design and provide a guiding reference for future development of HPPD inhibitors.
Collapse
Affiliation(s)
- Jin Dong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jiangqing Dong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xin-He Yu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yao-Chao Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jia-Xu Nan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Bao-Qin Ye
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
19
|
Fu YX, Zhang ZY, Guo WY, Dai YJ, Wang ZY, Yang WC, Yang GF. In vivo fluorescent screening for HPPD-targeted herbicide discovery. PEST MANAGEMENT SCIENCE 2022; 78:4947-4955. [PMID: 36054619 DOI: 10.1002/ps.7117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND 4-Hydroxyphenylpyruvate dioxygenase (HPPD), playing a critical role in vitamin E and plastoquinone biosynthesis in plants, has been recognized as one of the most important targets for herbicide discovery for over 30 years. Structure-based rational design of HPPD inhibitors has received more and more research interest. However, a critical challenge in the discovery of new HPPD inhibitors is the common inconsistency between molecular-level HPPD-based bioevaluation and the weed control efficiency in fields, due to the unpredictable biological processes of absorption, distribution, metabolism, and excretion. RESULTS In this study, we developed a fluorescent-sensing platform of efficient in vivo screening for HPPD-targeted herbicide discovery. The refined sensor has good capability of in situ real-time fluorescence imaging of HPPD in living cells and zebrafish. More importantly, it enabled the direct visible monitoring of HPPD inhibition in plants in a real-time manner. CONCLUSION We developed a highly efficient in vivo fluorescent screening method for HPPD-targeted herbicide discovery. This discovery not only offers a promising tool to advance HPPD-targeted herbicide discovery, but it also demonstrates a general path to develop the highly efficient, target-based, in vivo screening for pesticide discovery. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Zi-Ye Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Wu-Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Yi-Jie Dai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Zheng-Yu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
20
|
Chotpatiwetchkul W, Chotsaeng N, Laosinwattana C, Charoenying P. Structure-Activity Relationship Study of Xanthoxyline and Related Small Methyl Ketone Herbicides. ACS OMEGA 2022; 7:29002-29012. [PMID: 36033657 PMCID: PMC9404509 DOI: 10.1021/acsomega.2c02704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/29/2022] [Indexed: 05/26/2023]
Abstract
Xanthoxyline (1), a small natural methyl ketone, was previously reported as a plant growth inhibitor. In this research, related methyl ketones bearing electron-donating and electron-withdrawing groups, together with heteroaromatics, were investigated against seed germination and seedling growth of Chinese amaranth (Amaranthus tricolor L.) and barnyard grass [Echinochloa crus-galli (L.) Beauv]. The structure-activity relationships (SARs) of methyl ketone herbicides were clarified, and which types and positions of substituents were crucially important for activity were also clarified. Indole derivatives, namely, 3-acetylindole (43) and 3-acetyl-7-azaindole (44) were found to be the most active methyl ketones that highly suppressed plant growth at low concentrations. The molecular docking on the 4-hydroxyphenylpyruvate dioxygenase (HPPD) enzyme indicated that carbonyl, aromatic, and azaindole were key interactions of HPPD inhibitors. This finding would be useful for the development of small ketone herbicides.
Collapse
Affiliation(s)
- Warot Chotpatiwetchkul
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Nawasit Chotsaeng
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
- Integrated
Applied Chemistry Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Chamroon Laosinwattana
- Department
of Plant Production Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Patchanee Charoenying
- Department
of Chemistry, School of Science, King Mongkut’s
Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
21
|
Wang Y, Xiong Y, Garcia EAL, Wang Y, Butch CJ. Drug Chemical Space as a Guide for New Herbicide Development: A Cheminformatic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9625-9636. [PMID: 35915870 DOI: 10.1021/acs.jafc.2c01425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Herbicides are critical resources for meeting agricultural demand. While similar in structure and function to pharmaceuticals, the development of new herbicidal mechanisms of action and new scaffolds against known mechanisms of action has been much slower than in pharmaceutical sciences. We hypothesized that this may be due in part to a relative undersampling of possible herbicidal chemistries and set out to test whether this difference in sampling existed and whether increasing the diversity of possible herbicidal chemistries would be likely to result in more efficacious herbicides. To conduct this work, we first identified databases of commercially available herbicides and clinically approved pharmaceuticals. Using these databases, we created a two-dimensional embedding of the chemical, which provides a qualitative visualization of the degree to which each chemotype is distributed within the combined chemical space and shows a moderate degree of overlap between the two sets. Next, we trained several machine learning models to classify herbicides versus drugs based on physicochemical characteristics. The most accurate of these models has an accuracy of 93% with the key differentiating characteristics being the number of polar hydrogens, number of amide bonds, LogP, and polar surface area. We then used several types of scaffold decomposition to quantitatively evaluate the chemical diversity of each molecular family and showed herbicides to have considerably fewer unique structural fragments. Finally, we used molecular docking as an in silico evaluation of further structural diversification in herbicide development. To this end, we identified herbicides with well-characterized binding sites and modified those scaffolds based on similar structural subunits from the drug dataset not present in any commercial herbicide while using the machine-learned model to ensure that required herbicide properties were maintained. Redocking the original and modified scaffolds of several herbicides showed that even this simple design strategy is capable of yielding new molecules with higher predicted affinity for the target enzymes. Overall, we show that herbicides are distinct from drugs based on physicochemical properties but less diverse in their chemistry in a way not governed by these properties. We also demonstrate in silico that increasing the diversity of herbicide scaffolds has the potential to increase potency, potentially reducing the amount needed in agricultural practice.
Collapse
Affiliation(s)
- Yisheng Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Youjin Xiong
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | | | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Christopher J Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Blue Marble Space Institute for Science, Seattle, Washington 98104, United States
| |
Collapse
|
22
|
Martins FA, Daré JK, Freitas MP. Computer-Assisted Proposition of Promising Aryloxyacetic Acid Derivatives as HPPD Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8986-8993. [PMID: 35848390 DOI: 10.1021/acs.jafc.2c02954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of aryloxyacetic acid derivatives have demonstrated promising herbicidal performance by inhibition of the hydroxyphenylpyruvate deoxygenase (HPPD) enzyme. We hereby applied quantitative structure-activity relationship (QSAR) and docking strategies to model and chemically understand the bioactivities of these compounds and subsequently propose unprecedented analogues aiming at improving the herbicidal and environmental properties. Bulky halogens at the 2-, 3-, 4-, and 6-positions of an aromatic ring, CF3 in 4-position, and the 2-NO2 group in a phenyl ring appear to favor the HPPD inhibition. At the same time, Me and OMe substituents contribute to decreasing the pKi values. Accordingly, a few compounds were proposed and the candidate with 2,4,6-triBr substituents demonstrated an estimated pKi similar to those of the best library compounds. This finding was corroborated by the docking scores of the ligand-enzyme interactions. In addition, the high calculated lipophilicity of some proposed agrochemicals suggests that they should have low soil mobility and, therefore, are not prone to easily leach out and reach groundwater, despite causing other ecological issues.
Collapse
Affiliation(s)
- Francisco Antonio Martins
- Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, 37200-900 Lavras, MG, Brazil
| | - Joyce K Daré
- Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, 37200-900 Lavras, MG, Brazil
| | - Matheus P Freitas
- Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, 37200-900 Lavras, MG, Brazil
| |
Collapse
|
23
|
Phytochemical Profile and Herbicidal (Phytotoxic), Antioxidants Potential of Essential Oils from Calycolpus goetheanus (Myrtaceae) Specimens, and in Silico Study. Molecules 2022; 27:molecules27154678. [PMID: 35897853 PMCID: PMC9331371 DOI: 10.3390/molecules27154678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
The essential oil (EO) of Calycolpus goetheanus (Myrtaceae) specimens (A, B, and C) were obtained through hydrodistillation. The analysis of the chemical composition of the EOs was by gas chromatography coupled with mass spectrometry CG-MS, and gas chromatography coupled with a flame ionization detector CG-FID. The phytotoxic activity of those EOs was evaluated against two weed species from common pasture areas in the Amazon region: Mimosa pudica L. and Senna obtusifolia (L.) The antioxidant capacity of the EOs was determined by (DPPH•) and (ABTS•+). Using molecular docking, we evaluated the interaction mode of the major EO compounds with the molecular binding protein 4-hydroxyphenylpyruvate dioxygenase (HPPD). The EO of specimen A was characterized by β-eudesmol (22.83%), (E)-caryophyllene (14.61%), and γ-eudesmol (13.87%), while compounds 1,8-cineole (8.64%), (E)-caryophyllene (5.86%), δ-cadinene (5.78%), and palustrol (4.97%) characterize the chemical profile of specimen B’s EOs, and specimen C had α-cadinol (9.03%), δ-cadinene (8.01%), and (E)-caryophyllene (6.74%) as the majority. The phytotoxic potential of the EOs was observed in the receptor species M. pudica with percentages of inhibition of 30%, and 33.33% for specimens B and C, respectively. The EOs’ antioxidant in DPPH• was 0.79 ± 0.08 and 0.83 ± 0.02 mM for specimens A and B, respectively. In the TEAC, was 0.07 ± 0.02 mM for specimen A and 0.12 ± 0.06 mM for specimen B. In the results of the in silico study, we observed that the van der Waals and hydrophobic interactions of the alkyl and pi-alkyl types were the main interactions responsible for the formation of the receptor–ligand complex.
Collapse
|
24
|
Chen P, Shi M, Liu X, Wang X, Fang M, Guo Z, Wu X, Wang Y. Comparison of the binding interactions of 4-hydroxyphenylpyruvate dioxygenase inhibitor herbicides with humic acid: Insights from multispectroscopic techniques, DFT and 2D-COS-FTIR. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113699. [PMID: 35643030 DOI: 10.1016/j.ecoenv.2022.113699] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor is one of the important herbicides to solve the problem of weed control. With the widespread and continued use of HPPD inhibitor (HPPDi) herbicides, it may inevitably put pressure on the environment. Humic acid (HA) can effectively interact with pesticides through sorption or covalent bond formation and promote the degradation of pesticides, which can reduce the risk of pesticides in the environment. In the present study, the interactions of four HPPDi herbicides (sulcotrione, tembotrione, topramezone and mesotrione) with HA were reported and comparative assessment of the binding using multispectral technology, density functional theory (DFT) calculation and two-dimensional correlation spectroscopy (2D-COS). Time-resolved measurements and the Stern-Volmer constant at different temperature verified that HPPDi can bind with HA through the static quenching mechanism. From the thermodynamic parameters, the interaction force between HA and sulcotrione, tembotrione, topramezone and mesotrione was provided by electrostatic force. DFT, binding constant and three-dimensional (3D) fluorescence peak variation all indicated that the order of the binding ability of the four HPPDi and HA was mesotrione > tembotrione > sulcotrione > topramezone. According to dynamic light scattering (DLS), pH 7 is most conducive to the formation of HA-HPPDi complexes. Fourier transform infrared spectroscopy (FTIR) and 2D-COS showed that HA combined with HPPDi through aromatic C-H, CO and C-X, and the first binding group to HA was almost all CO. Sulcotrione, tembotrione, topramezone and mesotrione quench the endogenous fluorescence of HA by a static quenching mechanism and bind to HA through electrostatic interaction to form a complex. These results provide important insights into the combination of environmental pollutants with HA.
Collapse
Affiliation(s)
- Panpan Chen
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mengchen Shi
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xina Liu
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Wang
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mengling Fang
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Zhuorui Guo
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiangwei Wu
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yi Wang
- Anhui Provincial Key Laboratory of Quality and Safety of Agricultural Products, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
25
|
Shi J, Zhao LX, Wang JY, Ye T, Wang M, Gao S, Ye F, Fu Y. The novel 4-hydroxyphenylpyruvate dioxygenase inhibitors in vivo and in silico approach: 3D-QSAR analysis, molecular docking, bioassay and molecular dynamics. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
26
|
Zeng H, Zhang W, Wang Z, Geng W, Feng G, Gan X. Novel Pyrazole Amides as Potential 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7400-7411. [PMID: 35687877 DOI: 10.1021/acs.jafc.2c02123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an important target for the development of new herbicides. HPPD inhibitors can hinder photosynthesis and induce weed death with bleaching symptoms. To explore the novel skeleton of HPPD inhibitors, a series of novel pyrazole amide derivatives were synthesized and evaluated for their inhibitory effects on Arabidopsis thaliana HPPD (AtHPPD) and herbicidal activities. Some compounds had excellent inhibitory activities against AtHPPD. Among them, compound B5 displayed top-rank inhibitory activity against AtHPPD with an IC50 value of 0.04 μM, which was obviously superior to that of topramezone (IC50 value of 0.11 μM). Furthermore, compounds B2 and B7 had 100% herbicidal activities in Petri dish assays against Portulaca oleracea and Amaranthus tricolor at 100 μg/mL. In particular, compound B7 not only possessed strong AtHPPD inhibitory activity but also exhibited significant preemergence herbicidal activity. However, compound B7 was completely harmless to soybean, cotton, and wheat. In addition, the molecular docking and microscale thermophoresis measurement experiment verified that compounds can bind well with AtHPPD via π-π interactions. The present work provides a new approach for the rational design of more effective HPPD inhibitors, and pyrazole amides could be used as useful substructures for the development of new HPPD inhibitors and preemergence herbicidal agents.
Collapse
Affiliation(s)
- Huanan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengxing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Wang Geng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Gang Feng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
27
|
Governa P, Bernardini G, Braconi D, Manetti F, Santucci A, Petricci E. Survey on the Recent Advances in 4-Hydroxyphenylpyruvate Dioxygenase (HPPD) Inhibition by Diketone and Triketone Derivatives and Congeneric Compounds: Structural Analysis of HPPD/Inhibitor Complexes and Structure-Activity Relationship Considerations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6963-6981. [PMID: 35652597 DOI: 10.1021/acs.jafc.2c02010] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The serendipitous discovery of the HPPD inhibitors from allelopathic plants opened the way for searching new and effective herbicidal agents by application of classical hit-to-lead optimization approaches. A plethora of active and selective compounds were discovered that belong to three major classes of cyclohexane-based triketones, pyrazole-based diketones, and diketonitriles. In addition, to enhance inhibitory constant and herbicidal activity, many efforts were also made to gain broader weed control, crop safety, and eventual agricultural applicability. Moreover, HPPD inhibitors emerged as therapeutic agents for inherited and metabolic human diseases as well as vector-selective insecticides in the control of hematophagous arthropods. Given the large set of experimental data available, structure-activity relationship analysis could be used to derive suggestions for next generation optimized compounds.
Collapse
Affiliation(s)
- Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Daniela Braconi
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Elena Petricci
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
28
|
Yan YC, Wu W, Huang GY, Yang WC, Chen Q, Qu RY, Lin HY, Yang GF. Pharmacophore-Oriented Discovery of Novel 1,2,3-Benzotriazine-4-one Derivatives as Potent 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6644-6657. [PMID: 35618678 DOI: 10.1021/acs.jafc.2c01507] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a functional protein existing in almost all aerobic organisms. In the field of agricultural chemicals, HPPD is acknowledged to be one of the crucial targets for herbicides at present due to its unique bio-function in plants. In the Auto Core Fragment in silico Screening (ACFIS) web server, a potential HPPD inhibitor featuring 1,2,3-benzotriazine-4-one was screened out via a pharmacophore-linked fragment virtual screening (PFVS) method. Molecular simulation studies drove the process of "hit-to-lead" optimization, and a family of 1,2,3-benzotriazine-4-one derivatives was synthesized. Consequently, 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-5-methyl-3-(2-methylbenzyl)benzo[d][1,2,3]triazin-4(3H)-one (15bu) was identified to be the best HPPD inhibitor (IC50 = 36 nM) among the 1,2,3-benzotriazine-4-one derivatives, which had over 8-fold improvement of enzyme inhibition compared with the positive control mesotrione (IC50 = 289 nM). Crystallography information for the AtHPPD-15bu complex revealed several important interactions of the ligand bound upon the target protein, i.e., the bidentate chelating interaction of the triketone motif with the metal ion of AtHPPD, a tight π-π stacking interaction consisting of the1,2,3-benzotriazine-4-one moiety and two benzene rings of Phe-424 and Phe-381, and the polydirectional hydrophobic contacts consisting of the ortho-CH3-benzyl group of the core scaffold and some hydrophobic residues. Furthermore, compound 15bu displayed 100% inhibition against the five species of target weeds at the tested dosage, which was comparable to the weed control of mesotrione. Collectively, the fused 1,2,3-benzotriazine-4-one-triketone hybrid is a promising chemical tool for the development of more potent HPPD inhibitors and provides a valuable lead compound 15bu for herbicide innovation.
Collapse
Affiliation(s)
- Yao-Chao Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wei Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Yi Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
29
|
Wang JY, Gao S, Shi J, Cao HF, Ye T, Yue ML, Ye F, Fu Y. Virtual screening based on pharmacophore model for developing novel HPPD inhibitors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105109. [PMID: 35715048 DOI: 10.1016/j.pestbp.2022.105109] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an important target for herbicide design. A multilayered virtual screening workflow was constructed by combining two pharmacophore models based on ligand and crystal complexes, molecular docking, molecular dynamics (MD), and biological activity determination to identify novel small-molecule inhibitors of HPPD. About 110, 000 compounds of Bailingwei and traditional Chinese medicine databases were screened. Of these, 333 were analyzed through docking experiments. Five compounds were selected by analyzing the binding pattern of inhibitors with amino acid residues in the active pocket. All five compounds could produce stable coordination with cobalt ion, and form favorable π-π interactions. MD simulation demonstrated that Phe381 and Phe424 made large contributions to the strength of binding. The enzyme activity experiment verified that compound-139 displayed excellent potency against AtHPPD (IC50 = 0.742 μM), however, compound-5222 had inhibitory effect on human HPPD (IC50 = 6 nM). Compound-139 exhibited herbicidal activity to some extent on different gramineous weeds. This work provided a strong insight into the design and development of novel HPPD inhibitor using in silico techniques.
Collapse
Affiliation(s)
- Jia-Yu Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Juan Shi
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hai-Feng Cao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Tong Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ming-Li Yue
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
30
|
Chen J, Wang Y, Luo X, Chen Y. Recent research progress and outlook in agricultural chemical discovery based on quinazoline scaffold. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105122. [PMID: 35715060 DOI: 10.1016/j.pestbp.2022.105122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 05/27/2023]
Abstract
The discovery of new scaffolds and targets for pesticides is still a huge challenge facing the sustainable development of modern agriculture. In recent years, quinazoline derivatives have achieved great progress in drug discovery and have attracted great attention. Quinazoline is a unique bicyclic scaffold with a variety of biological activities, which increases the possibilities and flexibility of structural modification, showing enormous appeal in the discovery of new pesticides. Therefore, the agricultural biological activities, structure-activity relationships (SAR), and mechanism of action of quinazoline derivatives in the past decade were reviewed systematically, with emphasis on SAR and mechanism. Then, we prospected the application of the quinazoline scaffold as a special structure in agricultural chemical discovery, hoping to provide new ideas for the rational design and mechanism of novel quinazoline agricultural chemicals in the future.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
31
|
Shi R, Wang B, Stelitano G, Wu X, Shan Y, Wu Y, Wang X, Chiarelli LR, Lu Y, Qiao C. Development of 6-Methanesulfonyl-8-nitrobenzothiazinone Based Antitubercular Agents. ACS Med Chem Lett 2022; 13:593-598. [PMID: 35450361 PMCID: PMC9014434 DOI: 10.1021/acsmedchemlett.1c00652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/04/2022] [Indexed: 11/28/2022] Open
Abstract
The 6-trifluoro substituted 8-nitrobenzothiazinones (BTZs) represent a novel type of antitubercular agents, and their high antimycobacterial activity is related to the inhibition of decaprenylphosphoryl-β-d-ribose 2'-oxidase (DprE1), an enzyme essential for the biosynthesis of mycobacterial cell wall. While extraordinary whole-cell activity was reported for the clinically advanced compound PBTZ169, its poor aqueous solubility signals the potential low bioavailability. To ameliorate the BTZ physiochemical property, a series of 6-methanesulfonyl substituted compounds were designed and prepared, and their antitubercular activity and DprE1 inhibition ability were evaluated. Among these compounds, MsPBTZ169 and compounds 2 and 8 exhibited minimum inhibitory concentrations (MICs) of less than 40 nM; moreover, these compounds displayed increased aqueous solubility and acceptable metabolic stability. Taken together, this study suggested that the 6-methanesulfonyl substituted 8-nitrobenzothiazinone derivatives, in combination with side chain modification, might provide BTZ type antitubercular agents with improved drug-like properties.
Collapse
Affiliation(s)
- Rui Shi
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research, Beijing Chest Hospital, 97 Ma Chang Street, Beijing 101149, P. R. China
| | - Giovanni Stelitano
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Xiaomei Wu
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Yuanyuan Shan
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Yue Wu
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Xin Wang
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| | - Laurent R. Chiarelli
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research, Beijing Chest Hospital, 97 Ma Chang Street, Beijing 101149, P. R. China
| | - Chunhua Qiao
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou 215123, P. R. China
| |
Collapse
|
32
|
Wang Z, Wang H, Li J, Yu J, Lin H, Dong L. Comparison of quintrione and quinclorac on mechanism of action. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105007. [PMID: 35082030 DOI: 10.1016/j.pestbp.2021.105007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Quintrione is a new post-emergence herbicide developed for use in rice; however, the mechanism of action remains unclear. We determined the phytotoxicity of quintrione, and the contributions of hormone levels and lipid peroxidation to phytotoxicity, by comparing them to those induced by quinclorac. We also investigated 4-hydroxyphenylpyruvate dioxygenase (HPPD) activity and carotenoid content following treatment with quintrione by comparing them to those induced by quinclorac and mesotrione. We found that quintrione and quinclorac both inhibited the growth of Echinochloa crusgalli var. zelayensis, but that quinclorac was a little more effective. At 24 h, quintrione and quinclorac significantly increased ethylene production and the contents of abscisic acid (ABA) and indole acetic acid (IAA) compared with the control. No significant differences were observed between quintrione and quinclorac on the three plant hormones. Quintrione and quinclorac also induced the formation of malondialdehyde (MDA), which is associated with lipid peroxidation, with no significant difference between them. Carotenoid content was reduced in E. crusgalli var. zelayensis following treatments with quintrione, quinclorac, and mesotrione. At 120 h, carotenoid contents were significantly higher following the quintrione and quinclorac treatments, in comparison with mesotrione treatment. There were no significant differences between quintrione and quinclorac in the inhibition of HPPD activity, and the effects of both were significantly less than the effect of mesotrione. In summary, E. crusgalli var. zelayensis was susceptible to both quintrione and quinclorac. The mechanism of action of quintrione, like that of quinclorac, was related to levels of plant hormones and lipid peroxidation; however, quintrione was a poor inhibitor of HPPD activity compared to mesotrione.
Collapse
Affiliation(s)
- Zhengbo Wang
- Key Laboratory of Intergrated Pest Management on Crops In East China, Ministry of Agricultural, Nanjing Agricultural University, 210095 Nanjing, China; State &Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, 210095 Nanjing, China
| | - Hao Wang
- Key Laboratory of Intergrated Pest Management on Crops In East China, Ministry of Agricultural, Nanjing Agricultural University, 210095 Nanjing, China; State &Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jun Li
- Key Laboratory of Intergrated Pest Management on Crops In East China, Ministry of Agricultural, Nanjing Agricultural University, 210095 Nanjing, China; State &Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jiaxing Yu
- Key Laboratory of Intergrated Pest Management on Crops In East China, Ministry of Agricultural, Nanjing Agricultural University, 210095 Nanjing, China; State &Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, 210095 Nanjing, China
| | - Hongyan Lin
- College of Chemistry, Chemical Biology Center, Central China Normal University, 430079 Wuhan, China
| | - Liyao Dong
- Key Laboratory of Intergrated Pest Management on Crops In East China, Ministry of Agricultural, Nanjing Agricultural University, 210095 Nanjing, China; State &Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
33
|
Wang H, Liu B, Lei P, Zhu J, Chen L, He Q, He J. Improving the herbicide resistance of 4-hydroxyphenylpyruvate dioxygenase SpHPPD by directed evolution. Enzyme Microb Technol 2021; 154:109964. [PMID: 34902641 DOI: 10.1016/j.enzmictec.2021.109964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
Topramezone, a highly efficient 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitor herbicide, is an ideal target for herbicide-resistant genetic engineering. However, there is still a lack of HPPD gene that is highly resistant to topramezone. In previous studies, we obtained a topramezone-resistant HPPD (SpHPPDm) gene from Sphingobium sp. TPM-19, however, its resistance strength still could not meet the requirements for construction of herbicide-resistant crop. In this study, random mutagenesis (error-prone PCR) was employed to improve the topramezone resistance of SpHPPDm. Two mutants with improved resistance, K-28 (E322R) and K-113 (K249R, G327C), were screened from the random mutation library of SpHPPDm. The catalytic efficiency (kcat/Km) of mutants K-28 and K-113 only slightly decreased by approximately 2%. The half-maximal inhibitory concentration (IC50) of topramezone increased by 58.5% and 195.5% for mutants K-28 and K-113, respectively. Furthermore, mutant K-113 also showed significantly improved resistance to mesotrione and DKN (the active ingredient of isoxaflutole) with the IC50 increasing by 60.3% and 167.5%, respectively; while mutant K-28 only showed increased resistance to mesotrione with IC50 increasing by 77.6%, but reduced resistance to DKN with IC50 declining by 20.9%. Site-directed mutation assays revealed that G327C, but not K249R, contributed to topramezone resistance in mutant K-113. This study provides genetic resources for the genetic engineering of HPPD-inhibitor-resistant crops and a basis for further research on HPPD resistance mechanisms.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Bin Liu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Peng Lei
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jianchun Zhu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Le Chen
- Excellence and innovation center, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.
| | - Qin He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jian He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
34
|
Song HM, Zhao LX, Zhang SQ, Ye T, Fu Y, Ye F. Design, Synthesis, Structure-Activity Relationship, Molecular Docking, and Herbicidal Evaluation of 2-Cinnamoyl-3-Hydroxycyclohex-2-en-1-one Derivatives as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12621-12633. [PMID: 34677970 DOI: 10.1021/acs.jafc.1c04621] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cinnamic acid, isolated from cinnamon bark, is a natural product with excellent bioactivity, and it effectively binds with cyclohexanedione to form novel 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors. According to the active sub-structure combination principle, a series of novel 3-hydroxy-2-cinnamoyl-2-en-1-one derivatives were designed and synthesized. The title compounds were characterized by infrared, 1H NMR, 13C NMR, and HRMS. The in vitro inhibitory activity of AtHPPD verified that compound II-13 showed the most activity with a half-maximal inhibitory concentration (IC50) value of 0.180 μM, which was superior to that of mesotrione (0.206 μM) in vitro. The preliminary herbicidal activity tests demonstrated that some compounds had good herbicidal activity especially compound II-13 at a concentration of 150 g ai/ha. The binding mode of AtHPPD through molecular docking indicated that two oxygens of compounds II-13 formed bidentate interactions with metal ions, and the benzene ring formed π-π accumulation effects with Phe-381 and Phe-424. The results of molecular dynamics simulations showed that compound II-13 exhibited a more stable binding ability with AtHPPD than mesotrione. This study provided insights into the development of natural and efficient herbicides in the future.
Collapse
Affiliation(s)
- Hao-Min Song
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuai-Qi Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Tong Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
35
|
Lin HY, Chen X, Dong J, Yang JF, Xiao H, Ye Y, Li LH, Zhan CG, Yang WC, Yang GF. Rational Redesign of Enzyme via the Combination of Quantum Mechanics/Molecular Mechanics, Molecular Dynamics, and Structural Biology Study. J Am Chem Soc 2021; 143:15674-15687. [PMID: 34542283 DOI: 10.1021/jacs.1c06227] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing demands for efficient and versatile chemical reactions have prompted innovations in enzyme engineering. A major challenge in engineering α-ketoglutarate-dependent oxygenases is to develop a rational strategy which can be widely used for directly evolving the desired mutant to generate new products. Herein, we report a strategy for rational redesign of a model enzyme, 4-hydroxyphenylpyruvate dioxygenase (HPPD), based on quantum mechanics/molecular mechanics (QM/MM) calculation and molecular dynamic simulations. This strategy enriched our understanding of the HPPD catalytic reaction pathway and led to the discovery of a series of HPPD mutants producing hydroxyphenylacetate (HPA) as the alternative product other than the native product homogentisate. The predicted HPPD-Fe(IV)═O-HPA intermediate was further confirmed by the crystal structure of Arabidopsis thaliana HPPD/S267W complexed with HPA. These findings not only provide a good understanding of the structure-function relationship of HPPD but also demonstrate a generally applicable platform for the development of biocatalysts.
Collapse
Affiliation(s)
- Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xi Chen
- College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Jin Dong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Han Xiao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ying Ye
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Lin-Hui Li
- College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
36
|
Functional role of residues involved in substrate binding of human 4-hydroxyphenylpyruvate dioxygenase. Biochem J 2021; 478:2201-2215. [PMID: 34047349 DOI: 10.1042/bcj20210005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
4-Hydroxylphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of 4-hydroxylphenylpyruvate (HPP) to homogentisate, the important step for tyrosine catabolism. Comparison of the structure of human HPPD with the substrate-bound structure of A. thaliana HPPD revealed notably different orientations of the C-terminal helix. This helix performed as a closed conformation in human enzyme. Simulation revealed a different substrate-binding mode in which the carboxyl group of HPP interacted by a H-bond network formed by Gln334, Glu349 (the metal-binding ligand), and Asn363 (in the C-terminal helix). The 4-hydroxyl group of HPP interacted with Gln251 and Gln265. The relative activity and substrate-binding affinity were preserved for the Q334A mutant, implying the alternative role of Asn363 for HPP binding and catalysis. The reduction in kcat/Km of the Asn363 mutants confirmed the critical role in catalysis. Compared to the N363A mutant, the dramatic reduction in the Kd and thermal stability of the N363D mutant implies the side-chain effect in the hinge region rotation of the C-terminal helix. The activity and binding affinity were not recovered by double mutation; however, the 4-hydroxyphenylacetate intermediate formation by the uncoupled reaction of Q334N/N363Q and Q334A/N363D mutants indicated the importance of the H-bond network in the electrophilic reaction. These results highlight the functional role of the H-bond network in a closed conformation of the C-terminal helix to stabilize the bound substrate. The extremely low activity and reduction in Q251E's Kd suggest that interaction coupled with the H-bond network is crucial to locate the substrate for nucleophilic reaction.
Collapse
|
37
|
Wang X, Lin H, Liu J, Zhao X, Chen X, Yang W, Yang G, Zhan CG. The structure of 4-hydroxylphenylpyruvate dioxygenase complexed with 4-hydroxylphenylpyruvic acid reveals an unexpected inhibition mechanism. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Nan JX, Yang JF, Lin HY, Yan YC, Zhou SM, Wei XF, Chen Q, Yang WC, Qu RY, Yang GF. Synthesis and Herbicidal Activity of Triketone-Aminopyridines as Potent p-Hydroxyphenylpyruvate Dioxygenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5734-5745. [PMID: 33999624 DOI: 10.1021/acs.jafc.0c07782] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exploring novel p-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) inhibitors has become one of the most promising research directions in herbicide innovation. On the basis of our tremendous interest in exploiting more powerful HPPD inhibitors, we designed a family of benzyl-containing triketone-aminopyridines via a structure-based drug design (SBDD) strategy and then synthesized them. Among these prepared derivatives, the best active 3-hydroxy-2-(3,5,6-trichloro-4-((4-isopropylbenzyl)amino)picolinoyl)cyclohex-2-en-1-one (23, IC50 = 0.047 μM) exhibited a 5.8-fold enhancement in inhibiting Arabidopsis thaliana (At) HPPD activity over that of commercial mesotrione (IC50 = 0.273 μM). The predicted docking models and calculated energy contributions of the key residues for small molecules suggested that an additional π-π stacking interaction with Phe-392 and hydrophobic contacts with Met-335 and Pro-384 were detected in AtHPPD upon the binding of the best active compound 23 compared with that of the reference mesotrione. Such a molecular mechanism and the resulting binding affinities coincide with the proposed design scheme and experimental values. It is noteworthy that inhibitors 16 (3-hydroxy-2-(3,5,6-trichloro-4-((4-chlorobenzyl)amino)picolinoyl)cyclohex-2-en-1-one), 22 (3-hydroxy-2-(3,5,6-trichloro-4-((4-methylbenzyl)amino)picolinoyl)cyclohex-2-en-1-one), and 23 displayed excellent greenhouse herbicidal effects at 150 g of active ingredient (ai)/ha after postemergence treatment. Furthermore, compound 16 showed superior weed-controlling efficacy against Setaria viridis (S. viridis) versus that of the positive control mesotrione at multiple test dosages (120, 60, and 30 g ai/ha). These findings imply that compound 16, as a novel lead of HPPD inhibitors, possesses great potential for application in specifically combating the malignant weed S. viridis.
Collapse
Affiliation(s)
- Jia-Xu Nan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yao-Chao Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shao-Meng Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xue-Fang Wei
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
39
|
Fu Y, Wang M, Zhao LX, Zhang SQ, Liu YX, Guo YY, Zhang D, Gao S, Ye F. Design, synthesis, herbicidal activity and CoMFA of aryl-formyl piperidinone HPPD inhibitors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104811. [PMID: 33838713 DOI: 10.1016/j.pestbp.2021.104811] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Isoxazole, nicotinic acid and benzoic acid are important components in many natural products and useful synthons to build macrostructures having valuable biological activities. In continuation of our effort to discover 4-hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) inhibitors and search for active fragments from natural products, a series of substituted aryl-formyl piperidinone derivatives with natural product fragments was rationally designed, synthesized and tested for their herbicidal activity. Compound I-9 was considered the most effective candidate with an IC50 value of 0.260 μM. The molecular docking results showed that the triketone group of compound I-9 forms a bidentate complex with a metal ion, and the benzene ring interacted with Phe424 and Phe381 via π-π stacking, which was similar to the mechanisms of mesotrione. The present work indicates that compound I-9 may serve as a potential lead compound for further development of green HPPD inhibitors.
Collapse
Affiliation(s)
- Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Meng Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuai-Qi Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yong-Xuan Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - You-Yuan Guo
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Dong Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
40
|
Wlodawer A. Protein crystallography: alive and well. FEBS J 2021; 288:5786-5787. [PMID: 33759375 DOI: 10.1111/febs.15822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022]
Abstract
The motto of this Virtual Issue of The FEBS Journal is a paraphrase of the statement made in 1897 by Mark Twain, which is usually quoted as 'Reports of my death have been greatly exaggerated'. With the incredible progress in the utilization of cryo-EM for the determination of high-resolution macromolecular structures that led to the award of the Nobel Prize in Chemistry to Jacques Dubochet, Joachim Frank, and Richard Henderson in 2017, it became a common assumption that crystallography was dead. However, as this Virtual Issue should show very clearly, that is emphatically not the case. To put the current relative importance of different technologies of determination of macromolecular structures into perspective, 78% of structures deposited in the Protein Data Bank since January 2020 were still determined by X-ray crystallography. The reasons why that is the case will be clear after reading the papers gathered here.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
41
|
Huang H, Zhang JQ, Liu JM, Wang MM, Shu L, Yan YL, Zhan XH, Wang P, Huan XT, Zhang DY. Discovery of novel benzofuran scaffold as 4-hydroxyphenylpyruvate dioxygenase inhibitors. PEST MANAGEMENT SCIENCE 2021; 77:1409-1421. [PMID: 33128494 DOI: 10.1002/ps.6159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 10/19/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND 4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays an important role in addressing the issue of plant protection research. This study sheds new light on the differences in molecular scaffold from commercialized HPPD inhibitors. RESULTS The compounds A1-A18 and B1-B27 were synthesized for in vitro and greenhouse experiments. The greenhouse experiment data indicated that compounds B14 and B18 displayed excellent herbicidal activity, which was higher compared to that of mesotrione. In vitro testing indicated that the compounds were HPPD inhibitors. Moreover, molecular simulation results show that the compounds B14, B18, and mesotrione shared similar interplay with surrounding residues, which led to a perfect interaction with the active site of Arabidopsis thaliana HPPD. Based on crop selectivity results, compounds B14 and B18 were selected for maize studies (injury≤10%), indicating its potential for weed control in maize fields. CONCLUSION These results showed that the pyrazole-benzofuran structure could be used as possible lead compounds for the development of HPPD inhibitors. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao Huang
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Jian-Qiu Zhang
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Jian-Min Liu
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Man-Man Wang
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Lei Shu
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Yi-le Yan
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Xiao-Hang Zhan
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Ping Wang
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Xue-Ting Huan
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Da-Yong Zhang
- School of Sciences, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
42
|
Li L, Gao S, Yang L, Liu YL, Li P, Ye F, Fu Y. Cobalt (II) complex as a fluorescent sensing platform for the selective and sensitive detection of triketone HPPD inhibitors. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124015. [PMID: 33039827 DOI: 10.1016/j.jhazmat.2020.124015] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/26/2020] [Accepted: 09/12/2020] [Indexed: 05/28/2023]
Abstract
4-Hydroxyphenylpyruvatedioxygenase (HPPD) is a Fe(II)/Co(II)-dependent enzyme which has become one of the most effective herbicide targets. HPPD inhibitors have been developed as efficient herbicides for resistant weed control. Developing a method for efficient and rapid HPPD inhibitors detection is still challenging. N-n-butyl-4-methylhydrazinecarbothioamide-1,8-naphthalimide (NMN) was synthesized and used to detect Co2+ efficiently with the limit of detection (LOD) of 7.82 nM with a turn-on fluorescence. Herein a novel fluorescent complex, NMN‒Co2+ was employed to determine HPPD inhibitors which performed a turn-off effect in the sensing process based on the competitive coordination between the probe and HPPD with Co2+. The LODs for three commercial triketone HPPD inhibitors (mesotrione, tembotrione and NTBC) were 6.60 nM, 7.37 nM and 10.22 nM with good sensitivity and selectivity. Furthermore, the present probe has potentials to quantitatively detect mesotrione and tembotrione in real samples.
Collapse
Affiliation(s)
- Lu Li
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shuang Gao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Liu Yang
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yu-Long Liu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ping Li
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Fei Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Ying Fu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
43
|
Qu RY, Nan JX, Yan YC, Chen Q, Ndikuryayo F, Wei XF, Yang WC, Lin HY, Yang GF. Structure-Guided Discovery of Silicon-Containing Subnanomolar Inhibitor of Hydroxyphenylpyruvate Dioxygenase as a Potential Herbicide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:459-473. [PMID: 33395281 DOI: 10.1021/acs.jafc.0c03844] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) has been recognized as one of the most promising targets in the field of herbicide innovation considering the severity of weed resistance currently. In a persistent effort to develop effective HPPD-inhibiting herbicides, a structure-guided strategy was carried out to perform the structural optimization for triketone-quinazoline-2,4-diones, a novel HPPD inhibitor scaffold first discovered in our lab. Herein, starting from the crystal structure of Arabidopsis thaliana (At)HPPD complexed with 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-(o-tolyl)quinazoline-2,4(1H,3H)-dione (MBQ), three subseries of quinazoline-2,4-dione derivatives were designed and prepared by optimizing the hydrophobic interactions between the side chain of the core structure at the R1 position and the hydrophobic pocket at the active site entrance of AtHPPD. 6-(2-Hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-(3-(trimethylsilyl)prop-2-yn-1-yl)quinazoline-2,4(1H,3H)-dione (60) with the best inhibitory activity against AtHPPD was identified to be the first subnanomolar-range AtHPPD inhibitor (Ki = 0.86 nM), which significantly outperformed that of the lead compound MBQ (Ki = 8.2 nM). Further determination of the crystal structure of AtHPPD in complex with compound 60 (1.85 Å) and the binding energy calculation provided a molecular basis for the understanding of its high efficiency. Additionally, the greenhouse assay indicated that 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-propylquinazoline-2,4(1H,3H)-dione (28) and compound 60 showed acceptable crop safety against peanut and good herbicidal activity with a broad spectrum. Moreover, compound 28 also showed superior selectivity for wheat at the dosage of 120 g ai/ha and favorable herbicidal efficacy toward the gramineous weeds at the dosage of as low as 30 g ai/ha. We believe that compounds 28 and 60 have promising prospects as new herbicide candidates for wheat and peanut fields.
Collapse
Affiliation(s)
- Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jia-Xu Nan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yao-Chao Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ferdinand Ndikuryayo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xue-Fang Wei
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
44
|
Neuckermans J, Lequeue S, Mertens A, Branson S, Schwaneberg U, De Kock J. High-throughput quantification of ochronotic pigment formation in Escherichia coli to evaluate the potency of human 4-hydroxyphenylpyruvate dioxygenase inhibitors in multi-well format. MethodsX 2020; 8:101181. [PMID: 33365261 PMCID: PMC7749435 DOI: 10.1016/j.mex.2020.101181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
4-hydroxyphenylpyruvate dioxygenase (HPD) is a key enzyme in the catabolism of tyrosine and therefore of great importance as a drug target to treat tyrosine-related inherited metabolic disorders (TIMD). Inhibition of this enzyme is therapeutically applied to prevent accumulation of toxic metabolites in TIMD patients. Nowadays an ex-herbicide, nitisinone, is used for this purpose and many more inhibitors are being explored and need to be tested. Here, we describe a colorimetric bacterial whole-cell screening system that allows quantifying the inhibitory effects of new human HPD inhibitors in a high-throughput and robust fashion. For this high-throughput screening (HTS) system we rely on the capability of recombinant E. coli that express human HPD, to generate a brown ochronotic pigment after the addition of tyrosine, whereafter this brown pigment can be quantified in a very specific and sensitive way by spectrophotometric analysis. Altogether, this robust and simple HTS screening system can be described as non-harmful, non-laborious and cost-effective with the aim to identify and evaluate novel therapeutic human HPD inhibitors for the treatment of TIMD.This robust high-throughput screening system enables rapid identification and evaluation of potential inhibitors of human 4-hydroxyphenylpyruvate dioxygenase. Simple and fast colorimetric quantification of the formation of ochronotic pigment.
Collapse
Affiliation(s)
- Jessie Neuckermans
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Sien Lequeue
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Alan Mertens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Steven Branson
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
45
|
Huang H, Wang MM, Shu L, Yan YL, Zhang JQ, Liu JM, Zhan XH, Zhang DY. Discovery of novel arylthioacetic acid derivatives as 4-hydroxyphenylpyruvate dioxygenase inhibitors. PEST MANAGEMENT SCIENCE 2020; 76:4112-4122. [PMID: 32578327 DOI: 10.1002/ps.5967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND 4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays an important role in addressing the issue of plant protection research. In a continuing effort to discover novel HPPD inhibitors, we adopted a bioisosterism strategy to design a series of novel arylthioacetic acid scaffold based on the previously discovered aryloxyacetic acid scaffold. This study sheds new light on the discovery of novel HPPD inhibitors. RESULTS The compounds A1-A30 and B1-B39 were prepared through an efficient synthetic route for in vitro and glasshouse experiments (herbicidal activities, herbicidal activity spectrum, and crop selectivity). Preliminary bioassay results reveal that these derivatives are promising Arabidopsis thaliana HPPD inhibitors, compounds A11 (Ki = 0.021 μmol L-1 ) and B20 (Ki = 0.022 μmol L-1 ), which exhibit similar activities to that of mesotrione (Ki = 0.020 μmol L-1 ). The glasshouse experiments data indicated that compounds B34 displayed excellent herbicidal activity, which was higher compared to that of mesotrione. Moreover, molecular simulation results show that the compounds B20, B34, and mesotrione shared similar interplay with surrounding residues, which led to a perfect interaction with the active site of Arabidopsis thaliana HPPD. Based on herbicidal results, compound B34 was selected for crop selectivity studies (corn injury ≤ 10%), indicating its potential for weed control in corn fields. CONCLUSION These bioassay results showed that the compound B34 could be used as a possible lead compound for the development of HPPD inhibitors. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao Huang
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Man-Man Wang
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Lei Shu
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Yi-Le Yan
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Jian-Qiu Zhang
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Jian-Min Liu
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Xiao-Hang Zhan
- School of Sciences, China Pharmaceutical University, Nanjing, China
| | - Da-Yong Zhang
- School of Sciences, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
46
|
Liu B, Wang H, Zhang K, Zhu J, He Q, He J. Improved Herbicide Resistance of 4-Hydroxyphenylpyruvate Dioxygenase from Sphingobium sp. TPM-19 through Directed Evolution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12365-12374. [PMID: 33105985 DOI: 10.1021/acs.jafc.0c05785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) has attracted extensive interest as a promising target for the genetic engineering of herbicide-resistant crops. However, naturally occurring HPPDs are generally very sensitive to HPPD inhibitors. In this study, random mutagenesis was performed to increase the HPPD inhibitors' resistance of Sphingobium sp. HPPD (SpHPPD). Two mutants, Q258M and Y333F, with improved resistance were obtained. Subsequently, a double-mutant (Q258M/Y333F) was generated through combined mutation. Q258M/Y333F exhibited the highest resistance to four HPPD inhibitors [topramezone, mesotrione, tembotrione, and diketonitrile (DKN)]. The enzyme fitness of Q258M/Y333F to topramezone, mesotrione, tembotrione, and DKN was increased by 4.0-, 4.1-, 4.2-, and 3.2-folds, respectively, in comparison with that of the wild-type. Molecular modeling and docking revealed that Q258M mutation leads to the decrease of enzyme-inhibitor-binding strength by breaking the hydrogen bond between the enzyme and the inhibitor, and Y333F mutation changes the conformational balance of the C-terminal helix H11, which hinders the binding of the inhibitor to the enzyme and thus would contribute to improved herbicide resistance. This study helps to further elucidate the structural basis for herbicide resistance and provides better genetic resources for the genetic engineering of herbicide-resistant crops.
Collapse
Affiliation(s)
- Bin Liu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| | - Haiyan Wang
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| | - Kaiyun Zhang
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| | - Jianchun Zhu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| | - Qin He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| | - Jian He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| |
Collapse
|
47
|
Sheng M, Liu B, Xu J, Peng Q, Zhang L, Chen K, He J. Cloning of a novel topramezone-resistant 4-hydroxyphenylpyruvate dioxygenase gene and improvement of its resistance through pressure acclimation. Enzyme Microb Technol 2020; 140:109642. [DOI: 10.1016/j.enzmictec.2020.109642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/07/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
|
48
|
Li X, Yang X, Zheng X, Bai M, Hu D. Review on Structures of Pesticide Targets. Int J Mol Sci 2020; 21:E7144. [PMID: 32998191 PMCID: PMC7582455 DOI: 10.3390/ijms21197144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Molecular targets play important roles in agrochemical discovery. Numerous pesticides target the key proteins in pathogens, insect, or plants. Investigating ligand-binding pockets and/or active sites in the proteins' structures is usually the first step in designing new green pesticides. Thus, molecular target structures are extremely important for the discovery and development of such pesticides. In this manuscript, we present a review of the molecular target structures, including those of antiviral, fungicidal, bactericidal, insecticidal, herbicidal, and plant growth-regulator targets, currently used in agrochemical research. The data will be helpful in pesticide design and the discovery of new green pesticides.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China;
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China;
| | - Miao Bai
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China;
| |
Collapse
|
49
|
Based on the Virtual Screening of Multiple Pharmacophores, Docking and Molecular Dynamics Simulation Approaches toward the Discovery of Novel HPPD Inhibitors. Int J Mol Sci 2020; 21:ijms21155546. [PMID: 32756361 PMCID: PMC7432800 DOI: 10.3390/ijms21155546] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an iron-dependent non-heme oxygenase involved in the catabolic pathway of tyrosine, which is an important enzyme in the transformation of 4-hydroxyphenylpyruvic acid to homogentisic acid, and thus being considered as herbicide target. Within this study, a set of multiple structure-based pharmacophore models for HPPD inhibitors were developed. The ZINC and natural product database were virtually screened, and 29 compounds were obtained. The binding mode of HPPD and its inhibitors obtained through molecular docking study showed that the residues of Phe424, Phe381, His308, His226, Gln307 and Glu394 were crucial for activity. Molecular-mechanics-generalized born surface area (MM/GBSA) results showed that the coulomb force, lipophilic and van der Waals (vdW) interactions made major contributions to the binding affinity. These efforts will greatly contribute to design novel and effective HPPD inhibitory herbicides.
Collapse
|
50
|
Liu YX, Zhao LX, Ye T, Gao S, Li JZ, Ye F, Fu Y. Identification of key residues determining the binding specificity of human 4-hydroxyphenylpyruvate dioxygenase. Eur J Pharm Sci 2020; 154:105504. [PMID: 32750420 DOI: 10.1016/j.ejps.2020.105504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is the second enzyme of the tyrosine catabolic pathway. Its physiological function is to catalyze the conversion of 4-hydroxyphenylpyruvic acid to homogentisic acid, which displays different physiological effects in mammals and plants. Insights on the selective inhibition of human HPPD (hHPPD) by triketone inhibitors were furnished by the integrated application of molecular simulation and biological testing. The binding free energy of hHPPD and inhibitors was obtained through molecular dynamics (MD) simulations, and the result was in agreement with the inhibition experiment in vitro. The binding free energy contribution demonstrated that the formation of hHPPD-inhibitor complexes was mainly driven by van der Waals energy. Ser226, Asn241, Gln265, Phe336, Phe359 and Phe364 made great contributions to binding affinities of all the systems. Among the residues involved in the interaction between nitisinone (NTBC) and hHPPD, Tyr221 and Leu224, whose mutation into Ala caused significant decrease of NTBC binding ability, were two key residues in determining the selective binding affinity of inhibitor and hHPPD. This work provides valuable theoretical basis for rational design of highly selective inhibitors targeting hHPPD.
Collapse
Affiliation(s)
- Yong-Xuan Liu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Li-Xia Zhao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Shuang Gao
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jia-Zhong Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Fei Ye
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China.
| | - Ying Fu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|