1
|
Kaya S, Yalçın T. Linalool may have a therapeutic effect on cadmium-induced nephrotoxicity by regulating NF-κB/TNF and GRP78/CHOP signaling pathways. J Trace Elem Med Biol 2024; 86:127510. [PMID: 39216431 DOI: 10.1016/j.jtemb.2024.127510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) is an environmental pollutant heavy metal with nephrotoxic effect. One of the primary constituents of essential oils is Linalool (Lin), a monoterpene having a variety of pharmacological properties including antimicrobial, anti-inflammatory, and antioxidant effects. The purpose of this study was to ascertain how Lin affected endoplasmic reticulum stress (ERS) and pro-inflammatory mediators in Cd-induced nephrotoxicity. In the experiment, 28 male rats were randomly divided into four equal groups as control (no application), Cd (Cd at a dose of 3 mg/kg for the first 7 days), Cd+Lin (Cd at a dose of 3 mg/kg for the first 7 days and 100 mg/kg/day Lin) and Lin (100 mg/kg/day Lin) (n=7). The experiment was completed on the 15th day after all treatments were performed. Blood serum and kidney tissue samples were used for analyses. Cd-induced histopathological changes, inflammation, oxidative stress, and apoptosis were determined to increase in kidney tissue. However, it was observed that Cd-induced adverse effects in kidney tissue were mainly eliminated by Lin treatment. In conclusion, Lin demonstrated anti-inflammatory, anti-oxidant and anti-apoptotic effects in Cd-induced nephrotoxicity. Therefore, we believe that Lin may represent a high potential therapeutic strategy against renal tissue damage.
Collapse
Affiliation(s)
- Sercan Kaya
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey,.
| | - Tuba Yalçın
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey,.
| |
Collapse
|
2
|
Tian Y, Cao Y, Liu F, Xia L, Wang C, Su Z. Role of Histiocyte-Derived frHMGB1 as a Facilitator in Noncanonical Pyroptosis of Monocytes/Macrophages in Lethal Sepsis. J Infect Dis 2024; 230:298-308. [PMID: 38243905 DOI: 10.1093/infdis/jiae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
In this study, we investigated the role of the noncanonical pyroptosis pathway in the progression of lethal sepsis. Our findings emphasize the significance of noncanonical pyroptosis in monocytes/macrophages for the survival of septic mice. We observed that inhibiting pyroptosis alone significantly improved the survival rate of septic mice and that the HMGB1 A box effectively suppressed this noncanonical pyroptosis, thereby enhancing the survival of septic mice. Additionally, our cell in vitro experiments unveiled that frHMGB1, originating from lipopolysaccharide-carrying histiocytes, entered macrophages via RAGE, resulting in the direct activation of caspase 11 and the induction of noncanonical pyroptosis. Notably, A box's competitive binding with lipopolysaccharide impeded its entry into the cell cytosol. These findings reveal potential therapeutic strategies for slowing the progression of lethal sepsis by modulating the noncanonical pyroptosis pathway.
Collapse
Affiliation(s)
- Yu Tian
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- International Genome Center, Jiangsu University
| | - Yuwen Cao
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- International Genome Center, Jiangsu University
| | - Fang Liu
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- International Genome Center, Jiangsu University
| | - Lin Xia
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chao Wang
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- International Genome Center, Jiangsu University
| | - Zhaoliang Su
- Institute for Medical Immunology, the Affiliated Hospital of Jiangsu University
- International Genome Center, Jiangsu University
| |
Collapse
|
3
|
Renard D, Verdalle-Cazes M, Leprêtre P, Bellien J, Brunel V, Renet S, Tamion F, Besnier E, Clavier T. Association between volume of lung damage and endoplasmic reticulum stress expression among severe COVID-19 ICU patients. Front Med (Lausanne) 2024; 11:1368031. [PMID: 38933109 PMCID: PMC11200928 DOI: 10.3389/fmed.2024.1368031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Links have been established between SARS-CoV-2 and endoplasmic reticulum stress (ERS). However, the relationships between inflammation, ERS, and the volume of organ damage are not well known in humans. The aim of this study was to explore whether ERS explains lung damage volume (LDV) among COVID-19 patients admitted to the intensive care unit (ICU). Materials and methods We conducted a single-center retrospective study (ancillary analysis of a prospective cohort) including severe COVID-19 ICU patients who had a chest computed tomography (CT) scan 24 h before/after admission to assess LDV. We performed two multivariate linear regression models to identify factors associated with plasma levels of 78 kDa-Glucose-Regulated Protein (GRP78; ERS marker) and Interleukin-6 (IL-6; inflammation marker) at admission. Results Among 63 patients analyzed, GRP78 plasma level was associated with LDV in both multivariate models (β = 22.23 [4.08;40.38]; p = 0.0179, β = 20.47 [0.74;40.20]; p = 0.0423) but not with organ failure (Sequential Organ Failure Assessment (SOFA) score) at admission (r = 0.03 [-0.22;0.28]; p = 0.2559). GRP78 plasma level was lower among ICU survivors (1539.4 [1139.2;1941.1] vs. 1714.2 [1555.2;2579.1] pg./mL. respectively; p = 0.0297). IL-6 plasma level was associated with SOFA score at admission in both multivariate models (β = 136.60 [65.50;207.70]; p = 0.0003, β = 193.70 [116.60;270.90]; p < 0.0001) but not with LDV (r = 0.13 [-0.14;0.39]; p = 0.3219). IL-6 plasma level was not different between ICU survivors and non-survivors (12.2 [6.0;43.7] vs. 30.4 [12.9;69.7] pg./mL. respectively; p = 0.1857). There was no correlation between GRP78 and IL-6 plasma levels (r = 0.13 [-0.13;0.37]; p = 0.3106). Conclusion Among severe COVID-19 patients, ERS was associated with LDV but not with systemic inflammation, while systemic inflammation was associated with organ failure but not with LDV.
Collapse
Affiliation(s)
- Domitille Renard
- Department of Anesthesiology and Critical Care, CHU Rouen, Rouen, France
| | | | - Perrine Leprêtre
- Department of Anesthesiology and Critical Care, CHU Rouen, Rouen, France
- INSERM EnVI UMR 1096, University of Rouen Normandie, Rouen, France
| | - Jérémy Bellien
- INSERM EnVI UMR 1096, University of Rouen Normandie, Rouen, France
- Department of Pharmacology, CHU Rouen, Rouen, France
| | - Valery Brunel
- Department of General Biochemistry, CHU Rouen, Rouen, France
| | - Sylvanie Renet
- INSERM EnVI UMR 1096, University of Rouen Normandie, Rouen, France
| | - Fabienne Tamion
- INSERM EnVI UMR 1096, University of Rouen Normandie, Rouen, France
- Medical Intensive Care Unit, CHU Rouen, Rouen, France
| | - Emmanuel Besnier
- Department of Anesthesiology and Critical Care, CHU Rouen, Rouen, France
- INSERM EnVI UMR 1096, University of Rouen Normandie, Rouen, France
| | - Thomas Clavier
- Department of Anesthesiology and Critical Care, CHU Rouen, Rouen, France
- INSERM EnVI UMR 1096, University of Rouen Normandie, Rouen, France
| |
Collapse
|
4
|
Eggleton P, De Alba J, Weinreich M, Calias P, Foulkes R, Corrigall VM. The therapeutic mavericks: Potent immunomodulating chaperones capable of treating human diseases. J Cell Mol Med 2023; 27:322-339. [PMID: 36651415 PMCID: PMC9889696 DOI: 10.1111/jcmm.17669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Two major chaperones, calreticulin (CRT) and binding immunoglobulin protein (GRP78/BiP) dependent on their location, have immunoregulatory or anti-inflammatory functions respectively. CRT induces pro-inflammatory cytokines, dendritic cell (DC) maturation and activates cytotoxic T cells against tumours. By contrast, GRP78/BiP induces anti-inflammatory cytokines, inhibits DC maturation and heightens T-regulatory cell responses. These latter functions rebalance immune homeostasis in inflammatory diseases, such as rheumatoid arthritis. Both chaperones are therapeutically relevant agents acting primarily on monocytes/DCs. Endogenous exposure of CRT on cancer cell surfaces acts as an 'eat-me' signal and facilitates improved elimination of stressed and dying tumour cells by DCs. Therefore, therapeutics that promote endogenous CRT translocation to the cell surface can improve the removal of cancer cells. However, infused recombinant CRT dampens this cancer cell eradication by binding directly to the DCs. Low levels of endogenous BiP appear as a surface biomarker of endoplasmic reticulum (ER) stress in some types of tumour cells, a reflection of cells undergoing proliferation, in which resulting hypoxia and nutrient deprivation perturb ER homeostasis triggering the unfolded protein response, leading to increased expression of GRP78/BiP and altered cellular location. Conversely, infusion of an analogue of GRP78/BiP (IRL201805) can lead to long-term immune resetting and restoration of immune homeostasis. The therapeutic potential of both chaperones relies on them being relocated from their intracellular ER environment. Ongoing clinical trials are employing therapeutic interventions to either enhance endogenous cell surface CRT or infuse IRL201805, thereby triggering several disease-relevant immune responses leading to a beneficial clinical outcome.
Collapse
Affiliation(s)
- Paul Eggleton
- Revolo BiotherapeuticsNew OrleansLouisianaUSA,University of Exeter Medical SchoolExeterUK
| | | | | | | | | | - Valerie M. Corrigall
- Revolo BiotherapeuticsNew OrleansLouisianaUSA,Centre for Inflammation Biology and Cancer Immunology, King's College London, New Hunts HouseGuy' HospitalLondonUK
| |
Collapse
|
5
|
Angeles-Floriano T, Sanjuan-Méndez A, Rivera-Torruco G, Parra-Ortega I, Lopez-Martinez B, Martinez-Castro J, Marin-Santiago S, Alcántara-Hernández C, Martínez-Martínez A, Márquez-González H, Klünder-Klünder M, Olivar-López V, Zaragoza-Ojeda M, Arenas-Huertero F, Torres-Aguilar H, Medina-Contreras O, Zlotnik A, Valle-Rios R. Leukocyte surface expression of the endoplasmic reticulum chaperone GRP78 is increased in severe COVID-19. J Leukoc Biol 2023; 113:1-10. [PMID: 36822163 DOI: 10.1093/jleuko/qiac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 01/12/2023] Open
Abstract
Hyperinflammation present in individuals with severe COVID-19 has been associated with an exacerbated cytokine production and hyperactivated immune cells. Endoplasmic reticulum stress leading to the unfolded protein response has been recently reported as an active player in inducing inflammatory responses. Once unfolded protein response is activated, GRP78, an endoplasmic reticulum-resident chaperone, is translocated to the cell surface (sGRP78), where it is considered a cell stress marker; however, its presence has not been evaluated in immune cells during disease. Here we assessed the presence of sGRP78 on different cell subsets in blood samples from severe or convalescent COVID-19 patients. The frequency of CD45+sGRP78+ cells was higher in patients with the disease compared to convalescent patients. The latter showed similar frequencies to healthy controls. In patients with COVID-19, the lymphoid compartment showed the highest presence of sGRP78+ cells versus the myeloid compartment. CCL2, TNF-α, C-reactive protein, and international normalized ratio measurements showed a positive correlation with the frequency of CD45+sGRP78+ cells. Finally, gene expression microarray data showed that activated T and B cells increased the expression of GRP78, and peripheral blood mononuclear cells from healthy donors acquired sGRP78 upon activation with ionomycin and PMA. Thus, our data highlight the association of sGRP78 on immune cells in patients with severe COVID-19.
Collapse
Affiliation(s)
- Tania Angeles-Floriano
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Programa de Maestría y Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Adriana Sanjuan-Méndez
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.,Programa de Maestría en Biomedicina Experimental, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca City, Mexico
| | - Guadalupe Rivera-Torruco
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.,Departamento de Fisiología y Neurociencias, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Israel Parra-Ortega
- Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Briceida Lopez-Martinez
- Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jesús Martinez-Castro
- Departamento de Medicina Interna, Centro Médico Lic, Adolfo López Mateos de Toluca, Toluca City, Mexico
| | - Sergio Marin-Santiago
- Departamento de Medicina Interna, Centro Médico Lic, Adolfo López Mateos de Toluca, Toluca City, Mexico
| | | | - Araceli Martínez-Martínez
- Departamento de Medicina Interna, Centro Médico Lic, Adolfo López Mateos de Toluca, Toluca City, Mexico
| | - Horacio Márquez-González
- Departamento de Investigación Clínica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Miguel Klünder-Klünder
- Subdirección de Investigación, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Victor Olivar-López
- Departamento de Urgencias Pediátricas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Montserrat Zaragoza-Ojeda
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Honorio Torres-Aguilar
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca City, Mexico
| | - Oscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Albert Zlotnik
- Department of Physiology and Biophysics, University of California, Irvine, CA, United States
| | - Ricardo Valle-Rios
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
6
|
Liu C, Sun S, Mao J. Water-soluble Yb 3+, Er 3+ codoped NaYF 4 nanoparticles induced SGC-7901 cell apoptosis through mitochondrial dysfunction and ROS-mediated ER stress. Hum Exp Toxicol 2023; 42:9603271231188493. [PMID: 37419518 DOI: 10.1177/09603271231188493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
BACKGROUND Nanoparticles are potential luminescent probes; among them, upconversion nanoparticles (UCNP) are currently being developed as fluorescent probes for biomedical applications. However, the molecular mechanisms of UCNP in human gastric cell lines remain poorly understood. Here, we aimed to examine UCNP cytotoxicity to SGC-7901 cells and explore its underlying mechanisms. METHODS The effects of 50-400 μg/mL UCNP on human gastric adenocarcinoma (SGC-7901) cells were investigated. Flow cytometry was used to evaluate reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), intracellular Ca2+ levels, and apoptosis. Activated caspase-3 and nine activities were measured; meanwhile, cytochrome C (Cyt C) in the cytosol and B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax), protein kinase B (Akt), phosphorylated-Akt (p-Akt), 78 kDa glucose-regulated protein (GRP78), 94 kDa glucose-regulated protein (GRP94), calpain-1, and calpain-2 protein levels were also detected. RESULTS UCNP inhibited the viability of SGC-7901 cells in a concentration- and time-dependent manner and increased the proportion of cell apoptosis. Exposure to UCNP enhanced the ratio of Bax/Bcl-2, elevated the level of ROS, decreased ΔΨm, increased intracellular Ca2+ and Cyt C protein levels, decreased the levels of phosphorylated Akt, increased the activity of caspase-3 and caspase-9, and upregulated the protein expression of GRP-78, GRP-94, calpain-1 and calpain-2 in SGC-7901 cells. CONCLUSION UCNP induced SGC-7901 cell apoptosis by promoting mitochondrial dysfunction and ROS-mediated endoplasmic reticulum (ER) stress, initiating the caspase-9/caspase-3 cascade.
Collapse
Affiliation(s)
- Chen Liu
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Shaoqiang Sun
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| |
Collapse
|
7
|
Al Zaidi M, Pizarro C, Bley C, Repges E, Sedaghat A, Zimmer S, Jansen F, Tiyerili V, Nickenig G, Skowasch D, Aksoy A. ER-stress-induced secretion of circulating glucose-regulated protein 78kDa (GRP78) ameliorates pulmonary artery smooth muscle cell remodelling. Cell Stress Chaperones 2022; 27:561-572. [PMID: 36029373 PMCID: PMC9485380 DOI: 10.1007/s12192-022-01292-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is driven by vascular remodelling due to inflammation and cellular stress, including endoplasmic reticulum stress (ER stress). The main ER-stress chaperone, glucose-regulated protein 78 kDa (GRP78), is known to have protective effects in inflammatory diseases through extracellular signalling. The aim of this study is to investigate its significance in PAH. Human pulmonary arterial smooth muscle cells (PASMC) were stimulated with compounds that induce ER stress, after which the secretion of GRP78 into the cell medium was analysed by western blot. We found that when ER stress was induced in PASMC, there was also a time-dependent secretion of GRP78. Next, naïve PASMC were treated with conditioned medium (CM) from the ER-stressed donor PASMC. Incubation with CM from ER-stressed PASMC reduced the viability, oxidative stress, and expression of inflammatory and ER-stress markers in target cells. These effects were abrogated when the donor cells were co-treated with Brefeldin A to inhibit active secretion of GRP78. Direct treatment of PASMC with recombinant GRP78 modulated the expression of key inflammatory markers. Additionally, we measured GRP78 plasma levels in 19 PAH patients (Nice Group I) and correlated the levels to risk stratification according to ESC guidelines. Here, elevated plasma levels of GRP78 were associated with a favourable risk stratification. In conclusion, GRP78 is secreted by PASMC under ER stress and exhibits protective effects from the hallmarks of PAH in vitro. Circulating GRP78 may serve as biomarker for risk adjudication of patients with PAH. Proposed mechanism of ER-stress-induced GRP78 secretion by PASMC. Extracellular GRP78 can be measured as a circulating biomarker and is correlated with favourable clinical characteristics. Conditioned medium from ER-stressed PASMC reduces extensive viability, ROS formation, inflammation, and ER stress in target cells. These effects can be abolished by blocking protein secretion in donor cells by using Brefeldin A.
Collapse
Affiliation(s)
- Muntadher Al Zaidi
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Carmen Pizarro
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Carolin Bley
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Elena Repges
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alexander Sedaghat
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sebastian Zimmer
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Felix Jansen
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Vedat Tiyerili
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Georg Nickenig
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Dirk Skowasch
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Adem Aksoy
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
8
|
Zhao Y, Liu S, Shi Z, Zhu H, Li M, Yu Q. Pathogen infection-responsive nanoplatform targeting macrophage endoplasmic reticulum for treating life-threatening systemic infection. NANO RESEARCH 2022; 15:6243-6255. [PMID: 35382032 PMCID: PMC8972645 DOI: 10.1007/s12274-022-4211-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED Systemic infections caused by life-threatening pathogens represent one of the main factors leading to clinical death. In this study, we developed a pathogen infection-responsive and macrophage endoplasmic reticulum-targeting nanoplatform to alleviate systemic infections. The nanoplatform is composed of large-pore mesoporous silica nanoparticles (MSNs) grafted by an endoplasmic reticulum-targeting peptide, and a pathogen infection-responsive cap containing the reactive oxygen species-cleavable boronobenzyl acid linker and bovine serum albumin. The capped MSNs exhibited the capacity to high-efficiently load the antimicrobial peptide melittin, and to rapidly release the cargo triggered by H2O2 or the pathogen-macrophage interaction system, but had no obvious toxicity to macrophages. During the interaction with pathogenic Candida albicans cells and macrophages, the melittin-loading nanoplatform MSNE+MEL+TPB strongly inhibited pathogen growth, survived macrophages, and suppressed endoplasmic reticulum stress together with pro-inflammatory cytokine secretion. In a systemic infection model, the nanoplatform efficiently prevented kidney dysfunction, alleviated inflammatory symptoms, and protected the mice from death. This study developed a macrophage organelle-targeting nanoplatform for treatment of life-threatening systemic infections. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (N2 adsorption curves of the initial synthesized MSNs, FT-IR spectra of MSN, and MSNE, MEL release from the FITC-MEL-loading MSNE + TPB induced by different concentration of H2O2, viability of NIH3T3 cells, and DC2.4 cells after treatment of free MEL or the used nanoparticles, effect of MEL on C. albicans growth and macrophage death during the interaction between C. albicans and macrophages, effect of MEL and the nanoparticles on S. aureus growth and macrophage death during the interaction between S. aureus and macrophages, quantification of GRP78 (a) and activated Caspase-3, flow cytometry analysis of kidney non-macrophages with the Alexa Fluor 594 signal, survival curve of the infected mice treated by MEL or MSNE + MEL, kidney burden, blood urea levels and serum TNF-α levels in the infected mice) is available in the online version of this article at 10.1007/s12274-022-4211-z.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Shuo Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350 China
| | - Zhishang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| |
Collapse
|
9
|
Batty P, Lillicrap D. Gene therapy for hemophilia: Current status and laboratory consequences. Int J Lab Hematol 2021; 43 Suppl 1:117-123. [PMID: 34288447 DOI: 10.1111/ijlh.13605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022]
Abstract
Since the cloning and characterization of the factor VIII (FVIII) and factor IX genes in the mid-1980s, gene therapy has been perceived as having significant potential for the treatment of severe hemophilia. Now, some 35 years later, these proposals are close to being realized through the licensing of the first clinical gene therapy product. Adeno-associated viral vector-mediated gene therapy for hemophilia A and B has been extensively investigated in preclinical models over the past 20 years, and since 2011, there has been increasing evidence in early phase clinical trials that this therapeutic strategy can provide safe and effective rescue of the hemostatic phenotype in severe hemophilia. As the uptake of hemophilia gene therapy progresses, it is clear that many aspects of the gene therapy process require crucial laboratory support to ensure safe and effective outcomes from his new therapeutic paradigm. These laboratory contributions extend from evaluations of the gene therapy vehicle, assessments of the patient immune status for the vector, and ultimately the performance of assays to determine the hemostatic benefit of the gene therapy and potentially of its long-term safety on the host genome. As with many aspects of past hemophilia care, the safe and effective delivery of gene therapy will require an informed and coordinated contribution from laboratory science.
Collapse
Affiliation(s)
- Paul Batty
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
10
|
Nedeva C. Inflammation and Cell Death of the Innate and Adaptive Immune System during Sepsis. Biomolecules 2021; 11:1011. [PMID: 34356636 PMCID: PMC8301842 DOI: 10.3390/biom11071011] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Sepsis is a life-threatening medical condition that occurs when the host has an uncontrolled or abnormal immune response to overwhelming infection. It is now widely accepted that sepsis occurs in two concurrent phases, which consist of an initial immune activation phase followed by a chronic immunosuppressive phase, leading to immune cell death. Depending on the severity of the disease and the pathogen involved, the hosts immune system may not fully recover, leading to ongoing complications proceeding the initial infection. As such, sepsis remains one of the leading causes of morbidity and mortality world-wide, with treatment options limited to general treatment in intensive care units (ICU). Lack of specific treatments available for sepsis is mostly due to our limited knowledge of the immuno-physiology associated with the disease. This review will provide a comprehensive overview of the mechanisms and cell types involved in eliciting infection-induced immune activation from both the innate and adaptive immune system during sepsis. In addition, the mechanisms leading to immune cell death following hyperactivation of immune cells will be explored. The evaluation and better understanding of the cellular and systemic responses leading to disease onset could eventuate into the development of much needed therapies to combat this unrelenting disease.
Collapse
Affiliation(s)
- Christina Nedeva
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
11
|
Gonzalez-Gronow M, Gopal U, Austin RC, Pizzo SV. Glucose-regulated protein (GRP78) is an important cell surface receptor for viral invasion, cancers, and neurological disorders. IUBMB Life 2021; 73:843-854. [PMID: 33960608 DOI: 10.1002/iub.2502] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022]
Abstract
The 78 kDa glucose-regulated protein (GRP78) is an endoplasmic reticulum (ER)-resident molecular chaperone. GRP78 is a member of the 70 kDa heat shock family of proteins involved in correcting and clearing misfolded proteins in the ER. In response to cellular stress, GRP78 escapes from the ER and moves to the plasma membrane where it (a) functions as a receptor for many ligands, and (b) behaves as an autoantigen for autoantibodies that contribute to human disease and cancer. Cell surface GRP78 (csGRP78) associates with the major histocompatibility complex class I (MHC-I), and is the port of entry for several viruses, including the predictive binding of the novel SARS-CoV-2. Furthermore, csGRP78 is found in association with partners as diverse as the teratocarcinoma-derived growth factor 1 (Cripto), the melanocortin-4 receptor (MC4R) and the DnaJ-like protein MTJ-1. CsGRP78 also serves as a receptor for a large variety of ligands including activated α2 -macroglobulin (α2 M*), plasminogen kringle 5 (K5), microplasminogen, the voltage-dependent anion channel (VDAC), tissue factor (TF), and the prostate apoptosis response-4 protein (Par-4). In this review, we discuss the mechanisms involved in the translocation of GRP78 from the ER to the cell surface, and the role of secreted GRP78 and its autoantibodies in cancer and neurological disorders.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Biological Sciences, Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile.,Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Udhayakumar Gopal
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University and The Research Institute of St. Joseph's Hamilton, Hamilton, Ontario, Canada
| | - Salvatore V Pizzo
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|