1
|
Tang W, Zhang Y, Lu S, Xue C. Association between ATG16L1 rs2241880(T300A) and rs4663421 and ANCA‑associated vasculitis in the Guangxi population of China: Propensity score matching analysis. Biomed Rep 2025; 22:3. [PMID: 39483332 PMCID: PMC11522951 DOI: 10.3892/br.2024.1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
Antineutrophil cytoplasmic antibody-associated vasculitis (AAV) is a rare autoimmune disease with an unclear pathogenesis. The present study investigated the associations between autophagy-related protein 16-like 1 (ATG16L1) rs2241880(T300A) and rs4663421 and AAV. A total of 177 patients with AAV and 216 healthy controls were included. Propensity score matching was used to match the two groups of subjects in terms of sex, age and ethnicity. Analyses of the relationships between these genetic polymorphisms and AAV susceptibility, including comparisons of allele and genotype frequency distribution, linkage disequilibrium analysis and analysis of single nucleotide polymorphism (SNP) interactions between two loci were performed. The association between the loci and laboratory test results and renal pathology were also analysed. A total of 154 pairs of patients with AAV and healthy controls was successfully matched. Neither polymorphism was associated with AAV susceptibility. However, SNP interaction in the model constructed with the two loci was statistically significant (P=0.018), and the combination of the AA genotype of rs2241880(T300A) and GG genotype of rs4663421 was associated the highest disease risk. The differences in the Birmingham Vasculitis Activity Score (BVAS), C-reactive protein (CRP) levels and 24-h urine protein level between patients with the rs2241880(T300A) AA + AG genotypes and the GG genotype were statistically significant (P<0.05). Furthermore, significant differences in the severity of glomerulosclerosis and global sclerosis were detected between individuals with the AA + AG genotype and those with the GG genotype at the rs2241880(T300A) locus (P<0.05). Similarly, there were statistically significant differences in degree of segmental sclerosis between individuals with CC + CG genotypes and those with GG genotypes at the rs2243421 locus (P<0.05). In summary, the single gene polymorphisms of these loci were not associated with genetic susceptibility to AAV. However, SNP interactions may serve a role in the risk of AAV. The rs2241880(T300A) polymorphism may be associated with BVAS, CRP levels and 24-h urine protein level in AAV. These SNPs may be associated with glomerulosclerosis and segmental sclerosis.
Collapse
Affiliation(s)
- Wenlv Tang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Yurong Zhang
- Department of Electrocardiographic Diagnosis, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530000, P.R. China
| | - Shurong Lu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Chao Xue
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| |
Collapse
|
2
|
Elshazly AM, Xu J, Melhem N, Abdulnaby A, Elzahed AA, Saleh T, Gewirtz DA. Is Autophagy Targeting a Valid Adjuvant Strategy in Conjunction with Tyrosine Kinase Inhibitors? Cancers (Basel) 2024; 16:2989. [PMID: 39272847 PMCID: PMC11394573 DOI: 10.3390/cancers16172989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) represent a relatively large class of small-molecule inhibitors that compete with ATP for the catalytic binding site of tyrosine kinase proteins. While TKIs have demonstrated effectiveness in the treatment of multiple malignancies, including chronic myelogenous leukemia, gastrointestinal tumors, non-small cell lung cancers, and HER2-overexpressing breast cancers, as is almost always the case with anti-neoplastic agents, the development of resistance often imposes a limit on drug efficacy. One common survival response utilized by tumor cells to ensure their survival in response to different stressors, including anti-neoplastic drugs, is that of autophagy. The autophagic machinery in response to TKIs in multiple tumor models has largely been shown to be cytoprotective in nature, although there are a number of cases where autophagy has demonstrated a cytotoxic function. In this review, we provide an overview of the literature examining the role that autophagy plays in response to TKIs in different preclinical tumor model systems in an effort to determine whether autophagy suppression or modulation could be an effective adjuvant strategy to increase efficiency and/or overcome resistance to TKIs.
Collapse
Affiliation(s)
- Ahmed M Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Nebras Melhem
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Alsayed Abdulnaby
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Aya A Elzahed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, Hashemite University, Zarqa 13133, Jordan
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA
| |
Collapse
|
3
|
Wu X, Yang Y, Ru Y, Hao R, Zhao D, Ren R, Lu B, Li Y, Sun S, Zheng H, Wang W. Knockout of the WD40 domain of ATG16L1 enhances foot and mouth disease virus replication. BMC Genomics 2024; 25:796. [PMID: 39179961 PMCID: PMC11342673 DOI: 10.1186/s12864-024-10703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
The WD40 domain is one of the most abundant domains and is among the top interacting domains in eukaryotic genomes. The WD40 domain of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Canonical autophagy was utilized by FMDV, while the relationship between FMDV and non-canonical autophagy is still elusive. In the present study, WD40 knockout (KO) PK15 cells were successfully generated via CRISPR/cas9 technology as a tool for studying the effect of non-canonical autophagy on FMDV replication. The results of growth curve analysis, morphological observation and karyotype analysis showed that the WD40 knockout cell line was stable in terms of growth and morphological characteristics. After infection with FMDV, the expression of viral protein, viral titers, and the number of copies of viral RNA in the WD40-KO cells were significantly greater than those in the wild-type PK15 cells. Moreover, RNA‒seq technology was used to sequence WD40-KO cells and wild-type cells infected or uninfected with FMDV. Differentially expressed factors such as Mx1, RSAD2, IFIT1, IRF9, IFITM3, GBP1, CXCL8, CCL5, TNFRSF17 were significantly enriched in the autophagy, NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and TNF signaling pathway, etc. The expression levels of differentially expressed genes were detected via qRT‒PCR, which was consistent with the RNA‒seq data. Here, we experimentally demonstrate for the first time that knockout of the WD40 domain of ATG16L1 enhances FMDV replication by downregulation innate immune factors. In addition, this result also indicates non-canonical autophagy inhibits FMDV replication. In total, our results play an essential role in regulating the replication level of FMDV and providing new insights into virus-host interactions and potential antiviral strategies.
Collapse
Affiliation(s)
- Xiuping Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yang Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Rongzeng Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Dongmei Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Ruifang Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Bingzhou Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yajun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Shengzhen Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Wei F, Wang Y, Yao J, Mei L, Huang X, Kong H, Chen J, Chen X, Liu L, Wang Z, Wang J, Song J, Kong E, Yang A. ZDHHC7-mediated S-palmitoylation of ATG16L1 facilitates LC3 lipidation and autophagosome formation. Autophagy 2024:1-19. [PMID: 39087410 DOI: 10.1080/15548627.2024.2386915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
Macroautophagy/autophagy is a fundamental cellular catabolic process that delivers cytoplasmic components into double-membrane vesicles called autophagosomes, which then fuse with lysosomes and their contents are degraded. Autophagy recycles cytoplasmic components, including misfolded proteins, dysfunctional organelles and even microbial invaders, thereby playing an essential role in development, immunity and cell death. Autophagosome formation is the main step in autophagy, which is governed by a set of ATG (autophagy related) proteins. ATG16L1 interacts with ATG12-ATG5 conjugate to form an ATG12-ATG5-ATG16L1 complex. The complex acts as a ubiquitin-like E3 ligase that catalyzes the lipidation of MAP1LC3/LC3 (microtubule associated protein 1 light chain 3), which is crucial for autophagosome formation. In the present study, we found that ATG16L1 was subject to S-palmitoylation on cysteine 153, which was catalyzed by ZDHHC7 (zinc finger DHHC-type palmitoyltransferase 7). We observed that re-expressing ATG16L1 but not the S-palmitoylation-deficient mutant ATG16L1C153S rescued a defect in the lipidation of LC3 and the formation of autophagosomes in ATG16L1-KO (knockout) HeLa cells. Furthermore, increasing ATG16L1 S-palmitoylation by ZDHHC7 expression promoted the production of LC3-II, whereas reducing ATG16L1 S-palmitoylation by ZDHHC7 deletion inhibited the LC3 lipidation process and autophagosome formation. Mechanistically, the addition of a hydrophobic 16-carbon palmitoyl group on Cys153 residue of ATG16L1 enhances the formation of ATG16L1-WIPI2B complex and ATG16L1-RAB33B complex on phagophore, thereby facilitating the LC3 lipidation process and autophagosome formation. In conclusion, S-palmitoylation of ATG16L1 is essential for the lipidation process of LC3 and the formation of autophagosomes. Our research uncovers a new regulatory mechanism of ATG16L1 function in autophagy.Abbreviation: ABE: acyl-biotin exchange; ATG: autophagy related; Baf-A1: bafilomycin A1; 2-BP: 2-bromopalmitate; CCD: coiled-coil domain; co-IP: co-immunoprecipitation; CQ: chloroquine; EBSS: Earle's balanced salt solution; HAM: hydroxylamine; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NP-40: Nonidet P-40; PBS: phosphate-buffered saline; PE: phosphatidylethanolamine; PtdIns3K-C1: class III phosphatidylinositol 3-kinase complex I; PTM: post-translational modification; RAB33B: RAB33B, member RAS oncogene family; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SDS: sodium dodecyl sulfate; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscope; WD: tryptophan and aspartic acid; WIPI2B: WD repeat domain, phosphoinositide interacting 2B; WT: wild-type; ZDHHC: zinc finger DHHC-type palmitoyltransferase.
Collapse
Affiliation(s)
- Fujing Wei
- School of Life Sciences, Chongqing University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yu Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hesheng Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Xinxiang Medical University, Xinxiang, China
| | - Jing Chen
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xiaorong Chen
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhuolin Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jiaxin Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jiong Song
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Eryan Kong
- Institute of Psychiatry and Neuroscience, Xinxiang Key Laboratory of Protein Palmitoylation and Major Human Diseases, Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, Xinxiang Medical University, Xinxiang, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
5
|
Luo M, Luan X, Yang C, Chen X, Yuan S, Cao Y, Zhang J, Xie J, Luo Q, Chen L, Li S, Xiang W, Zhou J. Revisiting the potential of regulated cell death in glioma treatment: a focus on autophagy-dependent cell death, anoikis, ferroptosis, cuproptosis, pyroptosis, immunogenic cell death, and the crosstalk between them. Front Oncol 2024; 14:1397863. [PMID: 39184045 PMCID: PMC11341384 DOI: 10.3389/fonc.2024.1397863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Gliomas are primary tumors that originate in the central nervous system. The conventional treatment options for gliomas typically encompass surgical resection and temozolomide (TMZ) chemotherapy. However, despite aggressive interventions, the median survival for glioma patients is merely about 14.6 months. Consequently, there is an urgent necessity to explore innovative therapeutic strategies for treating glioma. The foundational study of regulated cell death (RCD) can be traced back to Karl Vogt's seminal observations of cellular demise in toads, which were documented in 1842. In the past decade, the Nomenclature Committee on Cell Death (NCCD) has systematically classified and delineated various forms and mechanisms of cell death, synthesizing morphological, biochemical, and functional characteristics. Cell death primarily manifests in two forms: accidental cell death (ACD), which is caused by external factors such as physical, chemical, or mechanical disruptions; and RCD, a gene-directed intrinsic process that coordinates an orderly cellular demise in response to both physiological and pathological cues. Advancements in our understanding of RCD have shed light on the manipulation of cell death modulation - either through induction or suppression - as a potentially groundbreaking approach in oncology, holding significant promise. However, obstacles persist at the interface of research and clinical application, with significant impediments encountered in translating to therapeutic modalities. It is increasingly apparent that an integrative examination of the molecular underpinnings of cell death is imperative for advancing the field, particularly within the framework of inter-pathway functional synergy. In this review, we provide an overview of various forms of RCD, including autophagy-dependent cell death, anoikis, ferroptosis, cuproptosis, pyroptosis and immunogenic cell death. We summarize the latest advancements in understanding the molecular mechanisms that regulate RCD in glioma and explore the interconnections between different cell death processes. By comprehending these connections and developing targeted strategies, we have the potential to enhance glioma therapy through manipulation of RCD.
Collapse
Affiliation(s)
- Maowen Luo
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xingzhao Luan
- Department of Neurosurgery, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Chaoge Yang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Xiaofan Chen
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Suxin Yuan
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Youlin Cao
- Department of Neurosurgery, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Jing Zhang
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Jiaying Xie
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Qinglian Luo
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Shenjie Li
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Wei Xiang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Jie Zhou
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Lu Y, Pan S, Li W, Qi Y, Li L, Yan YH, Wei J, Yao DN, Wu J, Deng H, Ye S, Chen H, Chen Q, Gao H, Han L, Lu C. The Benefit of the Optimized Formula of Yinxieling in Psoriasis Vulgaris via Regulation on Autophagy Based on microRNA Expression Profile and Network Pharmacology Analysis. Drug Des Devel Ther 2024; 18:2257-2272. [PMID: 38895176 PMCID: PMC11185257 DOI: 10.2147/dddt.s459622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Background Psoriasis is a widespread chronic, immune-mediated skin disease with frequent recurrences, and is extremely harmful to the physical and mental health of patients, causing enormous suffering and exerting considerable economic burdens on the health care system as a whole. In more than a decade of clinical use, the optimized formula of Yinxieling (PSORI-CM01) has consistently demonstrated its effectiveness for treating psoriasis. However, its underlying mechanism remains largely unexplored. Methods The network pharmacology analysis was conducted to predict the mechanism and protective effect of PSORI-CM01 in treating psoriasis. Subsequently, we collected blood samples from 21 patients with psoriasis as part of a randomized, double-blind, and double-dummy clinical trial for microRNA expression profiling. Finally, it was experimentally confirmed that PSORI-CM01 improved psoriasis by regulating miR-20a-3p and miR-3184-3p expression. Results As a result of the network pharmacology analysis, PSORI-CM01 improved psoriasis through the regulation of autophagy, cellular apoptosis, cellular proliferation, and anti-inflammatory processes. In the target-miRNA regulatory network, these key targets were mainly associated with the regulation of hsa-miR-20a-3p, hsa-miR-155-5p, has-miR-3184-3p, hsa-miR-328-3p and hsa-miR-124-3p. Based on the microRNA expression profiling results, the PSORI-CM01 treatment group exhibited five up-regulated genes and 16 down-regulated genes compared with the healthy control group. In particular, miR-20a-3p and miR-3184-3p were the primary differentially expressed microRNAs, and they were significantly enriched in the signaling pathways involving autophagy, apoptosis, proliferation, and anti-inflammation. Further experiments confirmed that PSORI-CM01 effectively regulates miR-20a-3p and miR-3184-3p, resulting in increased autophagy. Conclusion We demonstrated by combining network pharmacology and clinical studies of miRNA expression profiles in PBMCs that PSORI-CM01 effectively modulated miR-20a-3p and miR-3184-3p, leading to an increase in autophagy and a decrease in keratinocyte proliferation.
Collapse
Affiliation(s)
- Yue Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Simin Pan
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Wenzhen Li
- The Clinical College of Acupuncture Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yao Qi
- Shanghai Molecular Medicine Engineering Technology Research Center, Shanghai, People’s Republic of China
- Shanghai National Engineering Research Center of Biochip, Shanghai, People’s Republic of China
| | - Li Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yu-Hong Yan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Jianan Wei
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Dan-Ni Yao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Jingjing Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Hao Deng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Shuyan Ye
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Haiming Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Qubo Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Hengjun Gao
- Shanghai Molecular Medicine Engineering Technology Research Center, Shanghai, People’s Republic of China
- Shanghai National Engineering Research Center of Biochip, Shanghai, People’s Republic of China
| | - Ling Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Ripa I, Andreu S, Josa-Prado F, Fernández Gómez B, de Castro F, Arribas M, Bello-Morales R, López-Guerrero JA. Herpes Simplex Virus type 1 inhibits autophagy in glial cells but requires ATG5 for the success of viral replication. Front Microbiol 2024; 15:1411655. [PMID: 38915300 PMCID: PMC11194409 DOI: 10.3389/fmicb.2024.1411655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Herpes Simplex Virus type 1 (HSV-1) 1 is a neurotropic virus that has been associated with neurodegenerative disorders. The dysregulation of autophagy by HSV-1 has been proposed as a potential cause of neurodegeneration. While studies have extensively tackled the interaction between autophagy and HSV-1 in neurons, research in glial cells is currently limited. Our studies demonstrate that HSV-1 inhibits, but not completely blocks, the formation of autophagosomes in human oligodendroglioma- and astrocytoma- derived cell lines. These findings have been confirmed in murine oligodendrocyte precursor cells (OPCs). Finally, this study investigates the impact of autophagy on HSV-1 infection in glial cells. While the lack of basal autophagy in LC3B knockout glial cells does not have a significant effect on viral infection, cells without the autophagy-related protein ATG5 exhibit reduced viral production. The absence of ATG5 leads to a decrease in the transcription and replication of viral genes, as well as a delay in the initial stages of the formation of HSV-1 replication compartments. These findings indicate that while autophagy may not play a significant role in antiviral defense in glial cells, HSV-1 may be inhibiting autophagy to exploit non-canonical functions of certain components of the autophagic machinery, such as ATG5, to benefit its lifecycle.
Collapse
Affiliation(s)
- Inés Ripa
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Sabina Andreu
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Fernando Josa-Prado
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Madrid, Spain
| | | | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Madrid, Spain
| | - María Arribas
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Raquel Bello-Morales
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - José Antonio López-Guerrero
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
8
|
Kurganovs NJ, Engedal N. To eat or not to eat: a critical review on the role of autophagy in prostate carcinogenesis and prostate cancer therapeutics. Front Pharmacol 2024; 15:1419806. [PMID: 38910881 PMCID: PMC11190189 DOI: 10.3389/fphar.2024.1419806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Around 1 in 7 men will be diagnosed with prostate cancer during their lifetime. Many strides have been made in the understanding and treatment of this malignancy over the years, however, despite this; treatment resistance and disease progression remain major clinical concerns. Recent evidence indicate that autophagy can affect cancer formation, progression, and therapeutic resistance. Autophagy is an evolutionarily conserved process that can remove unnecessary or dysfunctional components of the cell as a response to metabolic or environmental stress. Due to the emerging importance of autophagy in cancer, targeting autophagy should be considered as a potential option in disease management. In this review, along with exploring the advances made on understanding the role of autophagy in prostate carcinogenesis and therapeutics, we will critically consider the conflicting evidence observed in the literature and suggest how to obtain stronger experimental evidence, as the application of current findings in clinical practice is presently not viable.
Collapse
Affiliation(s)
- Natalie Jayne Kurganovs
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| | - Nikolai Engedal
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Peng Y, Liu X, Tan S, Li J, Tang L, Liu Y, Xiao J, Wu H, Feng H. Black carp ATG16L1 negatively regulates STING-mediated antiviral innate immune response. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109483. [PMID: 38458501 DOI: 10.1016/j.fsi.2024.109483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The precise control of interferon (IFN) production is indispensable for the host to eliminate invading viruses and maintain a homeostatic state. In mammals, stimulator of interferon genes (STING) is a prominent adaptor involved in antiviral immune signaling pathways. However, the regulatory mechanism of piscine STING has not been thoroughly investigated. Here, we report that autophagy related 16 like 1 (bcATG16L1) of black carp (Mylopharyngodon piceus) is a negative regulator in black carp STING (bcSTING)-mediated signaling pathway. Initially, we substantiated that knockdown of bcATG16L1 increased the transcription of IFN and ISGs and enhanced the antiviral activity of the host cells. Subsequently, we identified that bcATG16L1 inhibited the bcSTING-mediated IFN promoter activation and proved that bcATG16L1 suppressed bcSTING-mediated antiviral ability. Furthermore, we revealed that bcATG16L1 interacted with bcSTING and the two proteins shared a similar subcellular distribution. Mechanically, we found that bcATG16L1 attenuated the oligomerization of bcSTING, which was a key step for bcSTING activation. Taken together, our results indicate that bcATG16L1 interacts with bcSTING, dampens the oligomerization of bcSTING, and negatively regulates bcSTING-mediated antiviral activity.
Collapse
Affiliation(s)
- Yuqing Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xiaoyu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shasha Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jinyi Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Le Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Youjia Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
10
|
Cui Q, Liu HC, Liu WM, Ma F, Lv Y, Ma JC, Wu RQ, Ren YF. Milk fat globule epidermal growth factor 8 alleviates liver injury in severe acute pancreatitis by restoring autophagy flux and inhibiting ferroptosis in hepatocytes. World J Gastroenterol 2024; 30:728-741. [PMID: 38515944 PMCID: PMC10950629 DOI: 10.3748/wjg.v30.i7.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Liver injury is common in severe acute pancreatitis (SAP). Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes, which induces lipid peroxidation and mitochondrial iron deposition and ultimately leads to ferroptosis. Our previous study found that milk fat globule epidermal growth factor 8 (MFG-E8) alleviates acinar cell damage during SAP via binding to αvβ3/5 integrins. MFG-E8 also seems to mitigate pancreatic fibrosis via inhibiting chaperone-mediated autophagy. AIM To speculate whether MFG-E8 could also alleviate SAP induced liver injury by restoring the abnormal autophagy flux. METHODS SAP was induced in mice by 2 hly intraperitoneal injections of 4.0 g/kg L-arginine or 7 hly injections of 50 μg/kg cerulein plus lipopolysaccharide. mfge8-knockout mice were used to study the effect of MFG-E8 deficiency on SAP-induced liver injury. Cilengitide, a specific αvβ3/5 integrin inhibitor, was used to investigate the possible mechanism of MFG-E8. RESULTS The results showed that MFG-E8 deficiency aggravated SAP-induced liver injury in mice, enhanced autophagy flux in hepatocyte, and worsened the degree of ferroptosis. Exogenous MFG-E8 reduced SAP-induced liver injury in a dose-dependent manner. Mechanistically, MFG-E8 mitigated excessive autophagy and inhibited ferroptosis in liver cells. Cilengitide abolished MFG-E8's beneficial effects in SAP-induced liver injury. CONCLUSION MFG-E8 acts as an endogenous protective mediator in SAP-induced liver injury. MFG-E8 alleviates the excessive autophagy and inhibits ferroptosis in hepatocytes by binding to integrin αVβ3/5.
Collapse
Affiliation(s)
- Qing Cui
- Department of Cardiology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an 710003, Shaanxi Province, China
| | - Hang-Cheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Wu-Ming Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Feng Ma
- Department of Cardiology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an 710003, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Jian-Cang Ma
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Rong-Qian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yi-Fan Ren
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
11
|
Du J, Dong Y, Zuo W, Deng Y, Zhu H, Yu Q, Li M. Mec1-Rad53 Signaling Regulates DNA Damage-Induced Autophagy and Pathogenicity in Candida albicans. J Fungi (Basel) 2023; 9:1181. [PMID: 38132782 PMCID: PMC10744610 DOI: 10.3390/jof9121181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
DNA damage activates the DNA damage response and autophagy in C. albicans; however, the relationship between the DNA damage response and DNA damage-induced autophagy in C. albicans remains unclear. Mec1-Rad53 signaling is a critical pathway in the DNA damage response, but its role in DNA damage-induced autophagy and pathogenicity in C. albicans remains to be further explored. In this study, we compared the function of autophagy-related (Atg) proteins in DNA damage-induced autophagy and traditional macroautophagy and explored the role of Mec1-Rad53 signaling in regulating DNA damage-induced autophagy and pathogenicity. We found that core Atg proteins are required for these two types of autophagy, while the function of Atg17 is slightly different. Our results showed that Mec1-Rad53 signaling specifically regulates DNA damage-induced autophagy but has no effect on macroautophagy. The recruitment of Atg1 and Atg13 to phagophore assembly sites (PAS) was significantly inhibited in the mec1Δ/Δ and rad53Δ/Δ strains. The formation of autophagic bodies was obviously affected in the mec1Δ/Δ and rad53Δ/Δ strains. We found that DNA damage does not induce mitophagy and ER autophagy. We also identified two regulators of DNA damage-induced autophagy, Psp2 and Dcp2, which regulate DNA damage-induced autophagy by affecting the protein levels of Atg1, Atg13, Mec1, and Rad53. The deletion of Mec1 or Rad53 significantly reduces the ability of C. albicans to systematically infect mice and colonize the kidneys, and it makes C. albicans more susceptible to being killed by macrophages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China; (J.D.); (Y.D.); (W.Z.); (Y.D.); (H.Z.); (Q.Y.)
| |
Collapse
|
12
|
Yang X, Wen J, Yang H, Jones IR, Zhu X, Liu W, Li B, Clelland CD, Luo W, Wong MY, Ren X, Cui X, Song M, Liu H, Chen C, Eng N, Ravichandran M, Sun Y, Lee D, Van Buren E, Jiang MZ, Chan CSY, Ye CJ, Perera RM, Gan L, Li Y, Shen Y. Functional characterization of Alzheimer's disease genetic variants in microglia. Nat Genet 2023; 55:1735-1744. [PMID: 37735198 PMCID: PMC10939305 DOI: 10.1038/s41588-023-01506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
Candidate cis-regulatory elements (cCREs) in microglia demonstrate the most substantial enrichment for Alzheimer's disease (AD) heritability compared to other brain cell types. However, whether and how these genome-wide association studies (GWAS) variants contribute to AD remain elusive. Here we prioritize 308 previously unreported AD risk variants at 181 cCREs by integrating genetic information with microglia-specific 3D epigenome annotation. We further establish the link between functional variants and target genes by single-cell CRISPRi screening in microglia. In addition, we show that AD variants exhibit allelic imbalance on target gene expression. In particular, rs7922621 is the effective variant in controlling TSPAN14 expression among other nominated variants in the same cCRE and exerts multiple physiological effects including reduced cell surface ADAM10 and altered soluble TREM2 (sTREM2) shedding. Our work represents a systematic approach to prioritize and characterize AD-associated variants and provides a roadmap for advancing genetic association to experimentally validated cell-type-specific phenotypes and mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Jia Wen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Han Yang
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Ian R Jones
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaodong Zhu
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, NY, USA
| | - Weifang Liu
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Bingkun Li
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Claire D Clelland
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, NY, USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, NY, USA
| | - Xingjie Ren
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Xiekui Cui
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Song
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Hongjiang Liu
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Cady Chen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Nicolas Eng
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Yang Sun
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - David Lee
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Eric Van Buren
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Min-Zhi Jiang
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Candace S Y Chan
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Rushika M Perera
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, NY, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA.
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA.
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
He Y, Peng Y, Liu X, Yu J, Du Y, Li Z, Wu H, Xiao J, Feng H. ATG16L1 negatively regulates MAVS-mediated antiviral signaling in black carp Mylopharyngodon piceus. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108706. [PMID: 36965610 DOI: 10.1016/j.fsi.2023.108706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Autophagy related 16 like 1 (ATG16L1) is a crucial component of autophagy that regulates the formation of the autophagosome. In mammals, ATG16L1 also performs important roles in immunity, including controlling viral replication and regulating innate immune signaling; however, investigation on the role of piscine ATG16L1 in immunity is rare. In this report, the ATG16L1 homolog of black carp Mylopharyngodon piceus (bcATG16L1) was cloned and identified, and its negative regulatory role in mitochondrial antiviral signaling protein (MAVS)-mediated antiviral signaling was described. The coding region of bcATG16L1 consists of 1830 nucleotides and encodes 609 amino acids, including one coiled-coil domain at the N-terminus, three low complexity region domains in the middle, and seven WD40 domains at the C-terminus. By immunofluorescence assay and immunoblotting, we found that bcATG16L1 is a cytosolic protein with a molecular weight of ∼74 kDa. In addition, over-expression of bcATG16L1 suppressed bcMAVS-mediated bcIFNa and DrIFNφ1 promoters transcriptional activity and inhibited bcMAVS-mediated antiviral activity. We further confirmed the co-localization of bcATG16L1 and bcMAVS by immunofluorescence assay and verified the protein interaction between bcATG16L1 and bcMAVS by immunoprecipitation assay. Our results report for the first time that black carp ATG16L1 suppresses MAVS-mediated antiviral signaling in teleost fish.
Collapse
Affiliation(s)
- Yunfan He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuqing Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiaoyu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jiamin Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuting Du
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhiming Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
14
|
Vianello C, Salluzzo M, Anni D, Boriero D, Buffelli M, Carboni L. Increased Expression of Autophagy-Related Genes in Alzheimer's Disease-Type 2 Diabetes Mellitus Comorbidity Models in Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20054540. [PMID: 36901549 PMCID: PMC10002426 DOI: 10.3390/ijerph20054540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 05/31/2023]
Abstract
The association between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) has been extensively demonstrated, but despite this, the pathophysiological mechanisms underlying it are still unknown. In previous work, we discovered a central role for the autophagy pathway in the common alterations observed between AD and T2DM. In this study, we further investigate the role of genes belonging to this pathway, measuring their mRNA expression and protein levels in 3xTg-AD transgenic mice, an animal model of AD. Moreover, primary mouse cortical neurons derived from this model and the human H4Swe cell line were used as cellular models of insulin resistance in AD brains. Hippocampal mRNA expression showed significantly different levels for Atg16L1, Atg16L2, GabarapL1, GabarapL2, and Sqstm1 genes at different ages of 3xTg-AD mice. Significantly elevated expression of Atg16L1, Atg16L2, and GabarapL1 was also observed in H4Swe cell cultures, in the presence of insulin resistance. Gene expression analysis confirmed that Atg16L1 was significantly increased in cultures from transgenic mice when insulin resistance was induced. Taken together, these results emphasise the association of the autophagy pathway in AD-T2DM co-morbidity, providing new evidence about the pathophysiology of both diseases and their mutual interaction.
Collapse
Affiliation(s)
- Clara Vianello
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Marco Salluzzo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Daniela Anni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Diana Boriero
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Mario Buffelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
15
|
Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev 2023; 123:31-72. [PMID: 36317983 PMCID: PMC9837825 DOI: 10.1021/acs.chemrev.2c00431] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/12/2023]
Abstract
The human microbiome is composed of a collection of dynamic microbial communities that inhabit various anatomical locations in the body. Accordingly, the coevolution of the microbiome with the host has resulted in these communities playing a profound role in promoting human health. Consequently, perturbations in the human microbiome can cause or exacerbate several diseases. In this Review, we present our current understanding of the relationship between human health and disease development, focusing on the microbiomes found across the digestive, respiratory, urinary, and reproductive systems as well as the skin. We further discuss various strategies by which the composition and function of the human microbiome can be modulated to exert a therapeutic effect on the host. Finally, we examine technologies such as multiomics approaches and cellular reprogramming of microbes that can enable significant advancements in microbiome research and engineering.
Collapse
Affiliation(s)
- Nikhil Aggarwal
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Shohei Kitano
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Ginette Ru Ying Puah
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - Sandra Kittelmann
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Wilmar
International Limited, Singapore 138568, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore
Institute of Technology, Singapore 138683, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Wilmar-NUS
(WIL@NUS) Corporate Laboratory, National
University of Singapore, Singapore 117599, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
16
|
Peña-Martinez C, Rickman AD, Heckmann BL. Beyond autophagy: LC3-associated phagocytosis and endocytosis. SCIENCE ADVANCES 2022; 8:eabn1702. [PMID: 36288309 PMCID: PMC9604515 DOI: 10.1126/sciadv.abn1702] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/26/2022] [Indexed: 05/08/2023]
Abstract
Noncanonical functions of the autophagy machinery in pathways including LC3-associated phagocytosis and LC3-associated endocytosis have garnered increasing interest in both normal physiology and pathobiology. New discoveries over the past decade of noncanonical uses of the autophagy machinery in these distinct molecular mechanisms have led to robust investigation into the roles of single-membrane LC3 lipidation. Noncanonical autophagy pathways have now been implicated in the regulation of multiple processes ranging from debris clearance, cellular signaling, and immune regulation and inflammation. Accumulating evidence is demonstrating roles in a variety of disease states including host-pathogen responses, autoimmunity, cancer, and neurological and neurodegenerative pathologies. Here, we broadly summarize the differences in the mechanistic regulation between autophagy and LAP and LANDO and highlight some of the key roles of LAP and LANDO in innate immune function, inflammation, and disease pathology.
Collapse
Affiliation(s)
- Carolina Peña-Martinez
- Department of Molecular Medicine, USF Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer’s Center, USF Health Neuroscience Institute, Tampa, FL, USA
| | - Alexis D. Rickman
- Department of Molecular Medicine, USF Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer’s Center, USF Health Neuroscience Institute, Tampa, FL, USA
| | - Bradlee L. Heckmann
- Department of Molecular Medicine, USF Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer’s Center, USF Health Neuroscience Institute, Tampa, FL, USA
| |
Collapse
|
17
|
Magné J, Green DR. LC3-associated endocytosis and the functions of Rubicon and ATG16L1. SCIENCE ADVANCES 2022; 8:eabo5600. [PMID: 36288306 PMCID: PMC9604520 DOI: 10.1126/sciadv.abo5600] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
LC3-associated endocytosis (LANDO) is a noncanonical function of the autophagy machinery, in which LC3 (microtubule-associated protein light chain) is conjugated to rab5-positive endosomes, using a portion of the canonical autophagy pathway. LANDO was initially discovered in a murine model of Alzheimer's disease as a critical regulator of amyloid-β receptor recycling in microglial cells, playing a protective role against neuronal loss and memory impairment. Recent evidence suggests an emerging role of LANDO in cytokine receptor signaling and innate immunity. Here, we discuss the regulation of two crucial effectors of LANDO, Rubicon and ATG16L1, and their impact on endocytosis, autophagy, and phagocytosis.
Collapse
|
18
|
PS-NPs Induced Neurotoxic Effects in SHSY-5Y Cells via Autophagy Activation and Mitochondrial Dysfunction. Brain Sci 2022; 12:brainsci12070952. [PMID: 35884757 PMCID: PMC9321807 DOI: 10.3390/brainsci12070952] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Polystyrene nanoparticles (PS-NPs) are organic pollutants that are widely detected in the environment and organisms, posing potential threats to both ecosystems and human health. PS-NPs have been proven to penetrate the blood–brain barrier and increase the incidence of neurodegenerative diseases. However, information relating to the pathogenic molecular mechanism is still unclear. This study investigated the neurotoxicity and regulatory mechanisms of PS-NPs in human neuroblastoma SHSY-5Y cells. The results show that PS-NPs caused obvious mitochondrial damages, as evidenced by inhibited cell proliferation, increased lactate dehydrogenase release, stimulated oxidative stress responses, elevated Ca2+ level and apoptosis, and reduced mitochondrial membrane potential and adenosine triphosphate levels. The increased release of cytochrome c and the overexpression of apoptosis-related proteins apoptotic protease activating factor-1 (Apaf-1), cysteinyl aspartate specific proteinase-3 (caspase-3), and caspase-9 indicate the activation of the mitochondrial apoptosis pathway. In addition, the upregulation of autophagy markers light chain 3-II (LC3-II), Beclin-1, and autophagy-related protein (Atg) 5/12/16L suggests that PS-NPs could promote autophagy in SHSY-5Y cells. The RNA interference of Beclin-1 confirms the regulatory role of autophagy in PS-NP-induced neurotoxicity. The administration of antioxidant N-acetylcysteine (NAC) significantly attenuated the cytotoxicity and autophagy activation induced by PS-NP exposure. Generally, PS-NPs could induce neurotoxicity in SHSY-5Y cells via autophagy activation and mitochondria dysfunction, which was modulated by mitochondrial oxidative stress. Mitochondrial damages caused by oxidative stress could potentially be involved in the pathological mechanisms for PS-NP-induced neurodegenerative diseases.
Collapse
|
19
|
Okai N, Watanabe T, Minaga K, Kamata K, Honjo H, Kudo M. Alterations of autophagic and innate immune responses by the Crohn’s disease-associated ATG16L1 mutation. World J Gastroenterol 2022; 28:3063-3070. [PMID: 36051337 PMCID: PMC9331526 DOI: 10.3748/wjg.v28.i26.3063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/21/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Crohn’s disease (CD) is driven by the loss of tolerance to intestinal microbiota and excessive production of pro-inflammatory cytokines. These pro-inflammatory cytokines are produced by macrophages and dendritic cells (DCs) upon sensing the intestinal microbiota by the pattern recognition receptors (PRRs). Impaired activation of PRR-mediated signaling pathways is associated with chronic gastrointestinal inflammation, as shown by the fact that loss-of-function mutations in the nucleotide-binding oligomerization domain 2 gene increase the risk of CD development. Autophagy is an intracellular degradation process, during which cytoplasmic nutrients and intracellular pathogens are digested. Given that impaired reaction to intestinal microbiota alters signaling pathways mediated by PRRs, it is likely that dysfunction of the autophagic machinery is involved in the development of CD. Indeed, the loss-of-function mutation T300A in the autophagy related 16 like 1 (ATG16L1) protein, a critical regulator of autophagy, increases susceptibility to CD. Recent studies have provided evidence that ATG16L1 is involved not only in autophagy, but also in PRR-mediated signaling pathways. ATG16L1 negatively regulates pro-inflammatory cytokine responses of macrophages and DCs after these cells sense the intestinal microbiota by PRRs. Here, we discuss the molecular mechanisms underlying the development of CD in the T300A ATG16L1 mutation by focusing on PRR-mediated signaling pathways.
Collapse
Affiliation(s)
- Natsuki Okai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan
| | - Hajime Honjo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Osaka, Japan
| |
Collapse
|
20
|
Kuo WT, Chang JM, Chen CC, Tsao N, Chang CP. Autophagy drives plasticity and functional polarization of tumor-associated macrophages. IUBMB Life 2021; 74:157-169. [PMID: 34467634 DOI: 10.1002/iub.2543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 08/07/2021] [Indexed: 01/11/2023]
Abstract
Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and are key cells in regulating tumor development, metastasis, immune responses, inflammation, and chemoresistance. In response to TME stimulation, circulating monocytes are recruited and differentiated as TAMs. Most TAMs are defined as alternatively activated (M2) phenotype to create immunosuppressive TME and support tumor progression. In contrast, classically activated (M1) TAMs can produce pro-inflammatory cytokines and enhance immune responses against tumor development. Autophagy is a conserved catabolic process to control cellular homeostasis and biological function. Emerging evidence reveals crucial contribution of autophagy in modulating TAM plasticity and functional polarization in TME. In this review, we introduce the current understanding of autophagy-regulated TAM function in development of cancer. We focus on how autophagy modulates antigen presentation, LC3-associated phagocytosis, cytokine secretion, inflammasome regulation, recruitment, differentiation, and polarization of TAMs and suggest strategies for potential therapeutics by targeting autophagy in TAMs. We expect this review can provide a new notion of future cancer immunotherapy.
Collapse
Affiliation(s)
- Wan-Ting Kuo
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Ming Chang
- Department of Surgery, Division of Thoracic Surgery, Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chien-Chin Chen
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Nina Tsao
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Peng Chang
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|