1
|
Xiong LY, Zhao W, Hu FQ, Zhou XM, Zheng YJ. Ubiquitination in diabetes and its complications: A perspective from bibliometrics. World J Diabetes 2025; 16:100099. [PMID: 39817224 PMCID: PMC11718460 DOI: 10.4239/wjd.v16.i1.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Diabetes has a substantial impact on public health, highlighting the need for novel treatments. Ubiquitination, an intracellular protein modification process, is emerging as a promising strategy for regulating pathological mechanisms. We hypothesize that ubiquitination plays a critical role in the development and progression of diabetes and its complications, and that understanding these mechanisms can lead to new therapeutic approaches. AIM To uncover the research trends and advances in diabetes ubiquitination and its complications, we conducted a bibliometric analysis. METHODS Studies on ubiquitination in diabetes mellitus and its complications were retrieved from the Web of Science Core Collection. Visual mapping analysis was conducted using the CiteSpace software. RESULTS We gathered 791 articles published over the past 23 years, focusing on ubiquitination in diabetes and its associated complications. These articles originated from 54 countries and 386 institutions, with China as the leading contributor. Shanghai Jiao Tong University has the highest number of publications in this field. The most prominent authors contributing to this research area include Wei-Hua Zhang, with Zhang Y being the most frequently cited author. Additionally, The Journal of Biological Chemistry is noted as the most cited in this field. The predominant keywords included expression, activation, oxidative stress, phosphorylation, ubiquitination, degradation, and insulin resistance. CONCLUSION The role of ubiquitination in diabetes and its complications, such as diabetic nephropathy and cardiomyopathy, is a key research focus. However, these areas require further investigations.
Collapse
Affiliation(s)
- Li-Yuan Xiong
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Wei Zhao
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Fa-Quan Hu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Xue-Mei Zhou
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| | - Yu-Jiao Zheng
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China
| |
Collapse
|
2
|
Qian K, Hanf B, Cummins C, Fiedler D. Monodisperse Chemical Oligophosphorylation of Peptides via Protected Oligophosphorimidazolide Reagents. Angew Chem Int Ed Engl 2024:e202419147. [PMID: 39625829 DOI: 10.1002/anie.202419147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 12/17/2024]
Abstract
Protein poly- and oligophosphorylation are recently discovered post-translational modifications that remain poorly characterized due to (1) the difficulty of extracting endogenously polyphosphorylated species without degradation and (2) the absence of synthetic and analytical tools to prepare and characterize poly- and oligophosphorylated species in biochemical contexts. Herein, we report a methodology for the selective oligophosphorylation of peptides with monodisperse phosphate chain lengths (Pn=3-6). A library of oligophosphorimidazolide (oligoP-imidazolide) reagents featuring benzyl and o-nitrophenylethyl protecting groups was synthesized in moderate-to-good yields (65-93 %). These oligoP-imidazolide reagents enabled the selective and simultaneous conjugation of multiple phosphate units to phosphoryl nucleophiles, circumventing tedious iterative processes. The generalizability of this approach is illustrated by a substrate scope study that includes several biologically relevant phosphopeptide sequences, culminating in the synthesis of >60 examples of peptide oligophosphates (Pn=2-6). Moreover, we report the preparation of oligoP-diimidazolides (Pn=3-5) and discuss their application in generating unique condensed phosphate-peptide conjugates. We also demonstrate that human phospho-ubiquitin (pS65-Ub) is amenable to functionalization by our reagents. Overall, we envision the methods described here will enable future studies that characterize these newly discovered but poorly understood phosphorylation modes.
Collapse
Affiliation(s)
- Kevin Qian
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA-02139, United States of America
| | - Björn Hanf
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Germany, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Christopher Cummins
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA-02139, United States of America
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Germany, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
3
|
Iyer S, Das C. Ringing the changes: Regulation of Parkin activity by different ubiquitin and ubiquitin-like proteins. Structure 2024; 32:1857-1859. [PMID: 39515305 DOI: 10.1016/j.str.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Phosphorylation of ubiquitin and the ubiquitin-like domain of Parkin, mediated by the kinase PINK1, is essential for the liberation of the E3 ligase from its autoinhibited state. In this issue of Structure, Lenka et al.1 provide the structural basis for the specificity and stronger Parkin activation by phospho-NEDD8 compared to phospho-ubiquitin.
Collapse
Affiliation(s)
- Shalini Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
4
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
5
|
Sánchez Milán JA, Fernández‐Rhodes M, Guo X, Mulet M, Ngan SC, Iyappan R, Katoueezadeh M, Sze SK, Serra A, Gallart‐Palau X. Trioxidized cysteine in the aging proteome mimics the structural dynamics and interactome of phosphorylated serine. Aging Cell 2024; 23:e14062. [PMID: 38111315 PMCID: PMC10928580 DOI: 10.1111/acel.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
Aging is the primary risk factor for the development of numerous human chronic diseases. On a molecular level, it significantly impacts the regulation of protein modifications, leading to the accumulation of degenerative protein modifications (DPMs) such as aberrant serine phosphorylation (p-Ser) and trioxidized cysteine (t-Cys) within the proteome. The altered p-Ser is linked to abnormal cell signaling, while the accumulation of t-Cys is associated with chronic diseases induced by oxidative stress. Despite this, the potential cross-effects and functional interplay between these two critical molecular factors of aging remain undisclosed. This study analyzes the aging proteome of wild-type C57BL/6NTac mice over 2 years using advanced proteomics and bioinformatics. Our objective is to provide a comprehensive analysis of how t-Cys affects cell signaling and protein structure in the aging process. The results obtained indicate that t-Cys residues accumulate in the aging proteome, interact with p-Ser interacting enzymes, as validated in vitro, and alter their structures similarly to p-Ser. These findings have significant implications for understanding the interplay of oxidative stress and phosphorylation in the aging process. Additionally, they open new venues for further research on the role(s) of these protein modifications in various human chronic diseases and aging, wherein exacerbated oxidation and aberrant phosphorylation are implicated.
Collapse
Affiliation(s)
- Jose Antonio Sánchez Milán
- Biomedical Research Institute of Lleida (IRBLLEIDA) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity Hospital Arnau de Vilanova (HUAV)LleidaSpain
- Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRB Lleida) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity of Lleida (UdL)LleidaSpain
| | - María Fernández‐Rhodes
- Biomedical Research Institute of Lleida (IRBLLEIDA) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity Hospital Arnau de Vilanova (HUAV)LleidaSpain
- Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRB Lleida) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity of Lleida (UdL)LleidaSpain
| | - Xue Guo
- Institute of Molecular and Cell Biology (IMCB)SingaporeSingapore
| | - María Mulet
- Biomedical Research Institute of Lleida (IRBLLEIDA) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity Hospital Arnau de Vilanova (HUAV)LleidaSpain
- Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRB Lleida) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity of Lleida (UdL)LleidaSpain
| | - SoFong Cam Ngan
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Ranjith Iyappan
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Maryam Katoueezadeh
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Siu Kwan Sze
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Aida Serra
- Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRB Lleida) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity of Lleida (UdL)LleidaSpain
| | - Xavier Gallart‐Palau
- Biomedical Research Institute of Lleida (IRBLLEIDA) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity Hospital Arnau de Vilanova (HUAV)LleidaSpain
- Department of PsychologyUniversity of Lleida (UdL)LleidaSpain
| |
Collapse
|
6
|
van Overbeek NK, Aguirre T, van der Heden van Noort GJ, Blagoev B, Vertegaal ACO. Deciphering non-canonical ubiquitin signaling: biology and methodology. Front Mol Biosci 2024; 10:1332872. [PMID: 38414868 PMCID: PMC10897730 DOI: 10.3389/fmolb.2023.1332872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 02/29/2024] Open
Abstract
Ubiquitination is a dynamic post-translational modification that regulates virtually all cellular processes by modulating function, localization, interactions and turnover of thousands of substrates. Canonical ubiquitination involves the enzymatic cascade of E1, E2 and E3 enzymes that conjugate ubiquitin to lysine residues giving rise to monomeric ubiquitination and polymeric ubiquitination. Emerging research has established expansion of the ubiquitin code by non-canonical ubiquitination of N-termini and cysteine, serine and threonine residues. Generic methods for identifying ubiquitin substrates using mass spectrometry based proteomics often overlook non-canonical ubiquitinated substrates, suggesting that numerous undiscovered substrates of this modification exist. Moreover, there is a knowledge gap between in vitro studies and comprehensive understanding of the functional consequence of non-canonical ubiquitination in vivo. Here, we discuss the current knowledge about non-lysine ubiquitination, strategies to map the ubiquitinome and their applicability for studying non-canonical ubiquitination substrates and sites. Furthermore, we elucidate the available chemical biology toolbox and elaborate on missing links required to further unravel this less explored subsection of the ubiquitin system.
Collapse
Affiliation(s)
- Nila K. van Overbeek
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Tim Aguirre
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
7
|
Ma BB, Sun CF, Zhou JY, Gu SL, Dai XY, Chen YZ, Zhao QW, Mao XM. Post-crotonylation oxidation by a monooxygenase promotes acetyl-CoA synthetase degradation in Streptomyces roseosporus. Commun Biol 2023; 6:1243. [PMID: 38066175 PMCID: PMC10709465 DOI: 10.1038/s42003-023-05633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Protein post-translational modifications (PTMs) with various acyl groups play central roles in Streptomyces. But whether these acyl groups can be further modified, and the influences of these potential modifications on bacterial physiology have not been addressed. Here in Streptomyces roseosporus with rich crotonylation, a luciferase monooxygenase LimB is identified to elaborately regulate the crotonylation level, morphological development and antibiotic production by oxidation on the crotonyl groups of an acetyl-CoA synthetase Acs. This chemical modification on crotonylation leads to Acs degradation via the protease ClpP1/2 pathway and lowered intracellular crotonyl-CoA pool. Thus, we show that acyl groups after PTMs can be further modified, herein named post-PTM modification (PPM), and LimB is a PTM modifier to control the substrate protein turnover for cell development of Streptomyces. These findings expand our understanding of the complexity of chemical modifications on proteins for physiological regulation, and also suggest that PPM would be widespread.
Collapse
Affiliation(s)
- Bing-Bing Ma
- Department of Clinical Pharmacy, the First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 310058, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, China
| | - Chen-Fan Sun
- Department of Clinical Pharmacy, the First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 310058, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, China
| | - Jing-Yi Zhou
- Department of Clinical Pharmacy, the First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 310058, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, China
| | - Shuai-Lei Gu
- College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xin-Yi Dai
- College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yan-Zhen Chen
- College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Qing-Wei Zhao
- Department of Clinical Pharmacy, the First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 310058, Hangzhou, China.
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, 310006, Hangzhou, China.
| | - Xu-Ming Mao
- Department of Clinical Pharmacy, the First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, 310058, Hangzhou, China.
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, China.
| |
Collapse
|
8
|
Yang YH, Wen R, Yang N, Zhang TN, Liu CF. Roles of protein post-translational modifications in glucose and lipid metabolism: mechanisms and perspectives. Mol Med 2023; 29:93. [PMID: 37415097 DOI: 10.1186/s10020-023-00684-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
The metabolism of glucose and lipids is essential for energy production in the body, and dysregulation of the metabolic pathways of these molecules is implicated in various acute and chronic diseases, such as type 2 diabetes, Alzheimer's disease, atherosclerosis (AS), obesity, tumor, and sepsis. Post-translational modifications (PTMs) of proteins, which involve the addition or removal of covalent functional groups, play a crucial role in regulating protein structure, localization function, and activity. Common PTMs include phosphorylation, acetylation, ubiquitination, methylation, and glycosylation. Emerging evidence indicates that PTMs are significant in modulating glucose and lipid metabolism by modifying key enzymes or proteins. In this review, we summarize the current understanding of the role and regulatory mechanisms of PTMs in glucose and lipid metabolism, with a focus on their involvement in disease progression associated with aberrant metabolism. Furthermore, we discuss the future prospects of PTMs, highlighting their potential for gaining deeper insights into glucose and lipid metabolism and related diseases.
Collapse
Affiliation(s)
- Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| |
Collapse
|
9
|
Maggi F, Morelli MB, Aguzzi C, Zeppa L, Nabissi M, Polidori C, Santoni G, Amantini C. Calcium influx, oxidative stress, and apoptosis induced by TRPV1 in chronic myeloid leukemia cells: Synergistic effects with imatinib. Front Mol Biosci 2023; 10:1129202. [PMID: 36876044 PMCID: PMC9975599 DOI: 10.3389/fmolb.2023.1129202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction: Calcium flux is the master second messenger that influences the proliferation-apoptosis balance. The ability of calcium flux alterations to reduce cell growth makes ion channels interesting targets for therapy. Among all, we focused on transient receptor potential vanilloid 1, a ligand-gated cation channel with selectivity for calcium. Its involvement in hematological malignancies is poorly investigated, especially in the field of chronic myeloid leukemia, a malignancy characterized by the accumulation of immature cells. Methods: FACS analysis, Western blot analysis, gene silencing, and cell viability assay were performed to investigate the activation of transient receptor potential vanilloid 1, by N-oleoyl-dopamine, in chronic myeloid leukemia cell lines. Results: We demonstrated that the triggering of transient receptor potential vanilloid 1 inhibits cell growth and promotes apoptosis of chronic myeloid leukemia cells. Its activation induced calcium influx, oxidative stress, ER stress, mitochondria dysfunction, and caspase activation. Interestingly, a synergistic effect exerted by N-oleoyl-dopamine and the standard drug imatinib was found. Conclusion: Overall, our results support that transient receptor potential vanilloid 1 activation could be a promising strategy to enhance conventional therapy and improve the management of chronic myeloid leukemia.
Collapse
Affiliation(s)
- Federica Maggi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | | | - Laura Zeppa
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Carlo Polidori
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
10
|
Kelsall IR. Non-lysine ubiquitylation: Doing things differently. Front Mol Biosci 2022; 9:1008175. [PMID: 36200073 PMCID: PMC9527308 DOI: 10.3389/fmolb.2022.1008175] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The post-translational modification of proteins with ubiquitin plays a central role in nearly all aspects of eukaryotic biology. Historically, studies have focused on the conjugation of ubiquitin to lysine residues in substrates, but it is now clear that ubiquitylation can also occur on cysteine, serine, and threonine residues, as well as on the N-terminal amino group of proteins. Paradigm-shifting reports of non-proteinaceous substrates have further extended the reach of ubiquitylation beyond the proteome to include intracellular lipids and sugars. Additionally, results from bacteria have revealed novel ways to ubiquitylate (and deubiquitylate) substrates without the need for any of the enzymatic components of the canonical ubiquitylation cascade. Focusing mainly upon recent findings, this review aims to outline the current understanding of non-lysine ubiquitylation and speculate upon the molecular mechanisms and physiological importance of this non-canonical modification.
Collapse
|
11
|
On the Study of Deubiquitinases: Using the Right Tools for the Job. Biomolecules 2022; 12:biom12050703. [PMID: 35625630 PMCID: PMC9139131 DOI: 10.3390/biom12050703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Deubiquitinases (DUBs) have been the subject of intense scrutiny in recent years. Many of their diverse enzymatic mechanisms are well characterized in vitro; however, our understanding of these enzymes at the cellular level lags due to the lack of quality tool reagents. DUBs play a role in seemingly every biological process and are central to many human pathologies, thus rendering them very desirable and challenging therapeutic targets. This review aims to provide researchers entering the field of ubiquitination with knowledge of the pharmacological modulators and tool molecules available to study DUBs. A focus is placed on small molecule inhibitors, ubiquitin variants (UbVs), and activity-based probes (ABPs). Leveraging these tools to uncover DUB biology at the cellular level is of particular importance and may lead to significant breakthroughs. Despite significant drug discovery efforts, only approximately 15 chemical probe-quality small molecule inhibitors have been reported, hitting just 6 of about 100 DUB targets. UbV technology is a promising approach to rapidly expand the library of known DUB inhibitors and may be used as a combinatorial platform for structure-guided drug design.
Collapse
|
12
|
Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: From mechanisms to their inhibition by small molecules. Mol Cell 2021; 82:15-29. [PMID: 34813758 DOI: 10.1016/j.molcel.2021.10.027] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
Deubiquitinases (DUBs) are specialized proteases that remove ubiquitin from substrates or cleave within ubiquitin chains to regulate ubiquitylation and therefore play important roles in eukaryotic biology. Dysregulation of DUBs is implicated in several human diseases, highlighting the importance of DUB function. In addition, many pathogenic bacteria and viruses encode and deploy DUBs to manipulate host immune responses and establish infectious diseases in humans and animals. Hence, therapeutic targeting of DUBs is an increasingly explored area that requires an in-depth mechanistic understanding of human and pathogenic DUBs. In this review, we summarize the multiple layers of regulation that control autoinhibition, activation, and substrate specificity of DUBs. We discuss different strategies to inhibit DUBs and the progress in developing selective small-molecule DUB inhibitors. Finally, we propose a classification system of DUB inhibitors based on their mode of action.
Collapse
Affiliation(s)
- Sven M Lange
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lee A Armstrong
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|