1
|
Buschbom-Helmke S, Wang P, Alcaide A, Miguez-Cabello F, Carta M, Viotti JS, Nielsen B, Mulle C, Bowie D, Jørgensen FS, Pickering DS, Bunch L. Domoic Acid as a Lead for the Discovery of the First Selective Ligand for Kainate Receptor Subtype 5 (GluK5). J Med Chem 2024; 67:14524-14542. [PMID: 39133077 DOI: 10.1021/acs.jmedchem.4c01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Twenty-one simplified analogues of the natural product domoic acid were designed, synthesized, and then characterized at homomeric kainic acid (KA) receptors (GluK1-3,5). LBG20304 displays a high affinity for homomeric GluK5 receptors (IC50 = 432 nM) with a >40-fold selectivity over homomeric GluK1-3 subtypes and ≫100-fold selectivity over native AMPA and N-methyl d-aspartate receptors. Functional studies of LBG20304 on heteromeric GluK2/5 receptors show no agonist or antagonist functional response at 10 μM, while a concentration of 100 μM at neuronal slices (rat) shows low agonist activity. A molecular dynamics simulation of LBG20304, in a homology model of GluK5, suggests specific interactions with the GluK5 receptor and an occluded ligand binding domain, which is translated to agonist or partial agonist activity. LBG20304 is a new compound for the study of the role and function of the KA receptors with the aim of understanding the involvement of these receptors in health and disease.
Collapse
Affiliation(s)
- Silke Buschbom-Helmke
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Pengfei Wang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Anna Alcaide
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Federico Miguez-Cabello
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, H3G 0B1 Montréal, Canada
| | - Mario Carta
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, F-33000 Bordeaux, France
| | - Julio S Viotti
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, F-33000 Bordeaux, France
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, F-33000 Bordeaux, France
| | - Derek Bowie
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, H3G 0B1 Montréal, Canada
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen OE, Denmark
| |
Collapse
|
2
|
Itoh M, Piot L, Mony L, Paoletti P, Yuzaki M. Lack of evidence for direct ligand-gated ion channel activity of GluD receptors. Proc Natl Acad Sci U S A 2024; 121:e2406655121. [PMID: 39052831 PMCID: PMC11295041 DOI: 10.1073/pnas.2406655121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 07/27/2024] Open
Abstract
Delta receptors (GluD1 and GluD2), members of the large ionotropic glutamate receptor (iGluR) family, play a central role in numerous neurodevelopmental and psychiatric disorders. The amino-terminal domain (ATD) of GluD orchestrates synapse formation and maturation processes through its interaction with the Cbln family of synaptic organizers and neurexin (Nrxn). The transsynaptic triad of Nrxn-Cbln-GluD also serves as a potent regulator of synaptic plasticity, at both excitatory and inhibitory synapses. Despite these recognized functions, there is still debate as to whether GluD functions as a "canonical" ion channel, similar to other iGluRs. A recent report proposes that the ATD of GluD2 imposes conformational constraints on channel activity; removal of this constraint by binding to Cbln1 and Nrxn, or removal of the ATD, reveals channel activity in GluD2 upon administration of glycine (Gly) and d-serine (d-Ser), two GluD ligands. We were able to reproduce currents when Gly or d-Ser was administered to clusters of heterologous human embryonic kidney 293 (HEK293) cells expressing Cbln1, GluD2 (or GluD1), and Nrxn. However, Gly or d-Ser, but also l-glutamate (l-Glu), evoked similar currents in naive (i.e., untransfected) HEK293 cells and in GluD2-null Purkinje neurons. Furthermore, no current was detected in isolated HEK293 cells expressing GluD2 lacking the ATD upon administration of Gly. Taken together, these results cast doubt on the previously proposed hypothesis that extracellular ligands directly gate wild-type GluD channels.
Collapse
Affiliation(s)
- Masayuki Itoh
- Department of Physiology, Keio University School of Medicine, Tokyo160-8582, Japan
| | - Laura Piot
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences & Lettres, CNRS, INSERM, ParisF-75005, France
| | - Laetitia Mony
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences & Lettres, CNRS, INSERM, ParisF-75005, France
| | - Pierre Paoletti
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences & Lettres, CNRS, INSERM, ParisF-75005, France
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo160-8582, Japan
| |
Collapse
|
3
|
Lu Y, Lin Y, Wang J. Progress on functions of intracellular domain of trimeric ligand-gated ion channels. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:221-230. [PMID: 38310082 PMCID: PMC11057991 DOI: 10.3724/zdxbyxb-2023-0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/11/2023] [Indexed: 02/05/2024]
Abstract
Ligand-gated ion channels are a large category of essential ion channels, modulating their state by binding to specific ligands to allow ions to pass through the cell membrane. Purinergic ligand-gated ion channel receptors (P2XRs) and acid-sensitive ion channels (ASICs) are representative members of trimeric ligand-gated ion channel. Recent studies have shown that structural differences in the intracellular domain of P2XRs may determine the desensitization process. The lateral fenestrations of P2XRs potentially serve as a pathway for ion conductance and play a decisive role in ion selectivity. Phosphorylation of numerous amino acid residues in the P2XRs are involved in regulating the activity of ion channels. Additionally, the P2XRs interact with other ligand-gated ion channels including N-methyl-D-aspartate receptors, γ-aminobutyric acid receptors, 5-hydroxytryptamin receptors and nicotinic acetylcholine receptors, mediating physiological processes such as synaptic plasticity. Conformational changes in the intracellular domain of the ASICs expose binding sites of intracellular signal partners, facilitating metabolic signal transduction. Amino acids such as Val16, Ser17, Ile18, Gln19 and Ala20 in the ASICs participate in channel opening and membrane expression. ASICs can also bind to intracellular proteins, such as CIPP and p11, to regulate channel function. Many phosphorylation sites at the C-terminus and N-terminus of ASICs are involved in the regulation of receptors. Furthermore, ASICs are involved in various physiological and pathophysiological processes, which include pain, ischemic stroke, psychiatric disorders, and neurodegenerative disease. In this article, we review the roles of the intracellular domains of these trimeric ligand-gated ion channels in channel gating as well as their physiological and pathological functions, in order to provide new insights into the discovery of related drugs.
Collapse
Affiliation(s)
- Yan Lu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yiyu Lin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jin Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Bay Y, Venskutonytė R, Frantsen SM, Thorsen TS, Musgaard M, Frydenvang K, Francotte P, Pirotte B, Biggin PC, Kristensen AS, Boesen T, Pickering DS, Gajhede M, Kastrup JS. Small-molecule positive allosteric modulation of homomeric kainate receptors GluK1-3: development of screening assays and insight into GluK3 structure. FEBS J 2024; 291:1506-1529. [PMID: 38145505 DOI: 10.1111/febs.17046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/20/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
The kainate receptors GluK1-3 (glutamate receptor ionotropic, kainate receptors 1-3) belong to the family of ionotropic glutamate receptors and are essential for fast excitatory neurotransmission in the brain, and are associated with neurological and psychiatric diseases. How these receptors can be modulated by small-molecule agents is not well understood, especially for GluK3. We show that the positive allosteric modulator BPAM344 can be used to establish robust calcium-sensitive fluorescence-based assays to test agonists, antagonists, and positive allosteric modulators of GluK1-3. The half-maximal effective concentration (EC50) of BPAM344 for potentiating the response of 100 μm kainate was determined to be 26.3 μm for GluK1, 75.4 μm for GluK2, and 639 μm for GluK3. Domoate was found to be a potent agonist for GluK1 and GluK2, with an EC50 of 0.77 and 1.33 μm, respectively, upon co-application of 150 μm BPAM344. At GluK3, domoate acts as a very weak agonist or antagonist with a half-maximal inhibitory concentration (IC50) of 14.5 μm, in presence of 500 μm BPAM344 and 100 μm kainate for competition binding. Using H523A-mutated GluK3, we determined the first dimeric structure of the ligand-binding domain by X-ray crystallography, allowing location of BPAM344, as well as zinc-, sodium-, and chloride-ion binding sites at the dimer interface. Molecular dynamics simulations support the stability of the ion sites as well as the involvement of Asp761, Asp790, and Glu797 in the binding of zinc ions. Using electron microscopy, we show that, in presence of glutamate and BPAM344, full-length GluK3 adopts a dimer-of-dimers arrangement.
Collapse
Affiliation(s)
- Yasmin Bay
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Raminta Venskutonytė
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Stine M Frantsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thor S Thorsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Karla Frydenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Pierre Francotte
- Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Bernard Pirotte
- Department of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | | | - Anders S Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Boesen
- Danish Research Institute of Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jette S Kastrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Rosano G, Barzasi A, Lynagh T. Loss of activation by GABA in vertebrate delta ionotropic glutamate receptors. Proc Natl Acad Sci U S A 2024; 121:e2313853121. [PMID: 38285949 PMCID: PMC10861852 DOI: 10.1073/pnas.2313853121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Ionotropic glutamate receptors (iGluRs) mediate excitatory signals between cells by binding neurotransmitters and conducting cations across the cell membrane. In the mammalian brain, most of these signals are mediated by two types of iGluRs: AMPA and NMDA (i.e. iGluRs sensitive to 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid and N-methyl-D-aspartic acid, respectively). Delta-type iGluRs of mammals also form neurotransmitter-binding channels in the cell membrane, but in contrast, their channel is not activated by neurotransmitter binding, raising biophysical questions about iGluR activation and biological questions about the role of delta iGluRs. We therefore investigated the divergence of delta iGluRs from their iGluR cousins using molecular phylogenetics, electrophysiology, and site-directed mutagenesis. We find that delta iGluRs are found in numerous bilaterian animals (e.g., worms, starfish, and vertebrates) and are closely related to AMPA receptors, both genetically and functionally. Surprisingly, we observe that many iGluRs of the delta family are activated by the classical inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Finally, we identify nine amino acid substitutions that likely gave rise to the inactivity of today's mammalian delta iGluRs, and these mutations abolish activity when engineered into active invertebrate delta iGluRs, partly by inducing receptor desensitization. These results offer biophysical insight into iGluR activity and point to a role for GABA in excitatory signaling in invertebrates.
Collapse
Affiliation(s)
- Giulio Rosano
- Michael Sars Centre, University of Bergen, Bergen5008, Norway
| | - Allan Barzasi
- Michael Sars Centre, University of Bergen, Bergen5008, Norway
| | - Timothy Lynagh
- Michael Sars Centre, University of Bergen, Bergen5008, Norway
| |
Collapse
|
6
|
Kumar J, Popescu GK, Gantz SC. GluD receptors are functional ion channels. Biophys J 2023; 122:2383-2395. [PMID: 37177782 PMCID: PMC10323023 DOI: 10.1016/j.bpj.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
In this article, we review contemporary evidence that GluD receptors are functional ion channels whose depolarizing currents contribute to their biological functions, akin to all other members of the ionotropic glutamate receptor (iGluR) family.
Collapse
Affiliation(s)
- Janesh Kumar
- Laboratory of Membrane Protein Biology, Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, SUNY, Buffalo, New York
| | - Stephanie C Gantz
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa.
| |
Collapse
|