1
|
Smethells JR, S W, P M, MG L, AP H. The role of β-Nicotyrine in E-Cigarette abuse liability I: Drug Discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603310. [PMID: 39071347 PMCID: PMC11275838 DOI: 10.1101/2024.07.12.603310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background β-Nicotyrine (β-Nic) is a unique minor alkaloid constituent in electronic nicotine delivery systems (ENDS) that is derived from nicotine (Nic) degradation and can reach 25% of Nic concentrations in ENDS aerosol. β-Nic slows Nic metabolism and prolongs systemic Nic exposure, which may alter the discriminability of Nic. The present study sought to examine β-Nic has interoceptive effects itself, and if it alters the subjective effects ENDS products within a drug-discrimination paradigm. Methods The pharmacodynamics of β-Nic were examined in vitro, and a nicotine discrimination paradigm was used to determine if β-Nic (0 - 5.0 mg/kg) shares discriminative stimulus properties with Nic (0.2 mg/kg) in male (n = 13) and female (n = 14) rats after 10- & 60-min β-Nic pretreatment delays. A second group of rats was trained to discriminate β-Nic and Nornicotine (Nornic) from saline to determine if β-Nic alone has interoceptive properties and whether they are similar to Nornic. Results β-Nic had similar binding affinity and efficacy at the α4β2 nicotinic receptor subtype as Nornic, ~50% of Nic efficacy. However, β-Nic only weakly substituted for Nic during substitution testing in female rats, but not males, whereas Nornic fully substituted for Nic. Combination testing at the 10 and 60-min pretreatment intervals showed that β-Nic dose-dependently increased the duration of nicotine's discriminative stimulus effects, especially at the 60-min delay. Drug naïve rats could reliably discriminate Nornic, but not β-Nic, from Sal. Conclusion β-Nic increased and prolonged the interoceptive stimulus properties of Nic, suggesting it may alter to the abuse liability of ENDS through its ability to slow Nic metabolism.
Collapse
Affiliation(s)
- JR Smethells
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Wilde S
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - Muelken P
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - LeSage MG
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Harris AP
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Sharp BM, Leng S, Huang J, Jones C, Chen H. Inbred rat heredity and sex affect oral oxycodone self-administration and augmented intake in long sessions: correlations with anxiety and novelty-seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.26.568753. [PMID: 38076806 PMCID: PMC10705287 DOI: 10.1101/2023.11.26.568753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Oxycodone abuse begins with prescription oral oxycodone, yet vulnerability factors determining abuse are largely undefined. We evaluated genetic vulnerability in a rat model of oral oxycodone self-administration (SA): increasing oxycodone concentration/session (0.025-0.1mg/ml; 1,4,16-h) followed by extinction and reinstatement. Active licks and oxycodone intake were greater in females than males during 4-h and 16-h sessions (p< 0.001). Each sex increased intake during 16-h vs 4-h sessions (p<2e-16), but a subset of strains dramatically augmented intake at 16-h (p=0.0005). Heritability (h 2) of active licks/4-h at increasing oxycodone dose ranged from 0.30-0.53. Under a progressive ratio schedule, breakpoints were strain-dependent (p<2e-16). Cued reinstatement was greater in females (p<0.001). Naive rats were assessed by elevated plus maze (EPM), open field (OF) and novel object interaction (NOI). We correlated these behaviors with 28 parameters of oxycodone SA. Anxiety-defining EPM traits were most associated with SA in both sexes, whereas more OF and NOI traits were SA-associated in males. Sex and heredity are major determinants of motivation to take and seek oxycodone; intake augments dramatically during extended access in specific strains; and pleiotropic genes affect anxiety and multiple SA parameters.
Collapse
Affiliation(s)
- Burt M Sharp
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Shuangying Leng
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Jun Huang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Caroline Jones
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| |
Collapse
|
3
|
Paletta P, Bass N, Aspesi D, Choleris E. Sex Differences in Social Cognition. Curr Top Behav Neurosci 2022; 62:207-234. [PMID: 35604571 DOI: 10.1007/7854_2022_325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this review we explore the sex differences underlying various types of social cognition. Particular focus will be placed on the behaviors of social recognition, social learning, and aggression. Known similarities and differences between sexes in the expressions of these behaviors and the known brain regions where these behaviors are mediated are discussed. The role that the sex hormones (estrogens and androgens) have as well as possible interactions with other neurochemicals, such as oxytocin, vasopressin, and serotonin is reviewed as well. Finally, implications about these findings on the mediation of social cognition are mediated and the sex differences related to humans are considered.
Collapse
Affiliation(s)
- Pietro Paletta
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Gunturkun MH, Wang T, Chitre AS, Garcia Martinez A, Holl K, St. Pierre C, Bimschleger H, Gao J, Cheng R, Polesskaya O, Solberg Woods LC, Palmer AA, Chen H. Genome-Wide Association Study on Three Behaviors Tested in an Open Field in Heterogeneous Stock Rats Identifies Multiple Loci Implicated in Psychiatric Disorders. Front Psychiatry 2022; 13:790566. [PMID: 35237186 PMCID: PMC8882588 DOI: 10.3389/fpsyt.2022.790566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/18/2022] [Indexed: 12/05/2022] Open
Abstract
Many personality traits are influenced by genetic factors. Rodents models provide an efficient system for analyzing genetic contribution to these traits. Using 1,246 adolescent heterogeneous stock (HS) male and female rats, we conducted a genome-wide association study (GWAS) of behaviors measured in an open field, including locomotion, novel object interaction, and social interaction. We identified 30 genome-wide significant quantitative trait loci (QTL). Using multiple criteria, including the presence of high impact genomic variants and co-localization of cis-eQTL, we identified 17 candidate genes (Adarb2, Ankrd26, Cacna1c, Cacng4, Clock, Ctu2, Cyp26b1, Dnah9, Gda, Grxcr1, Eva1a, Fam114a1, Kcnj9, Mlf2, Rab27b, Sec11a, and Ube2h) for these traits. Many of these genes have been implicated by human GWAS of various psychiatric or drug abuse related traits. In addition, there are other candidate genes that likely represent novel findings that can be the catalyst for future molecular and genetic insights into human psychiatric diseases. Together, these findings provide strong support for the use of the HS population to study psychiatric disorders.
Collapse
Affiliation(s)
- Mustafa Hakan Gunturkun
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tengfei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Apurva S. Chitre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Angel Garcia Martinez
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Katie Holl
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Celine St. Pierre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Hannah Bimschleger
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Jianjun Gao
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Riyan Cheng
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Oksana Polesskaya
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Abraham A. Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
5
|
Leyrer-Jackson JM, Overby PF, Bull A, Marusich JA, Gipson CD. Strain and sex matters: Differences in nicotine self-administration between outbred and recombinase-driver transgenic rat lines. Exp Clin Psychopharmacol 2021; 29:375-384. [PMID: 32297781 PMCID: PMC8375641 DOI: 10.1037/pha0000376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Preclinical studies of nicotine self-administration provide important value for the field as they are highly rigorous, controlled, can be conducted quickly, and are generalizable to humans. Given the translational value of the nicotine self-administration model, and the relatively new guidelines of the National Institutes of Health to include sex as a biological variable, strain and sex differences in nicotine acquisition were examined here in two outbred rat strains. Sprague-Dawley (SD) and Long-Evans (LE; wildtype and cholinergic acetyltransferase cre-recombinase transgenic) rats of each sex were implanted with indwelling intravenous jugular catheters. Rats were trained to self-administer nicotine (0.02 mg/kg per infusion, paired with contingent light + tone stimuli). Acquisition criteria were set at a minimum active:inactive response ratio of 2:1 and a minimum of 10 infusions per session, both of which had to be met for a minimum of 10 sessions. Across 10 sessions, male SD rats self-administered significantly more nicotine than female SD rats (p < .05), indicating a sex difference in this strain. LE females self-administered more nicotine than SD females indicative of a strain difference between females (p < .05). SD males increased nicotine infusions across sessions compared to LE males and SD females (p < .05). No strain or sex differences were observed in the number of sessions to reach criteria. No differences between wildtype and transgenic LE rats were observed. These results demonstrate sex and strain differences in nicotine self-administration between SD and LE rats and may lend insight into development of other nicotine self-administration models, where sex and strain may impact acquisition. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Paula F. Overby
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Amanda Bull
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Julie A. Marusich
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina, USA
| | - Cassandra D. Gipson
- Department of Family and Community Medicine, University of Kentucky, Lexington Kentucky, USA
| |
Collapse
|
6
|
Quintanilla ME, Morales P, Ezquer F, Ezquer M, Herrera-Marschitz M, Israel Y. Administration of N-acetylcysteine Plus Acetylsalicylic Acid Markedly Inhibits Nicotine Reinstatement Following Chronic Oral Nicotine Intake in Female Rats. Front Behav Neurosci 2021; 14:617418. [PMID: 33633548 PMCID: PMC7902020 DOI: 10.3389/fnbeh.2020.617418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Background Nicotine is the major addictive component of cigarette smoke and the prime culprit of the failure to quit smoking. Common elements perpetuating the use of addictive drugs are (i) cues associated with the setting in which drug was used and (ii) relapse/reinstatement mediated by an increased glutamatergic tone (iii) associated with drug-induced neuroinflammation and oxidative stress. Aims The present study assessed the effect of the coadministration of the antioxidant N-acetylcysteine (NAC) plus the anti-inflammatory acetylsalicylic acid (ASA) on oral nicotine reinstatement intake following a post-deprivation re-access in female rats that had chronically and voluntarily consumed a nicotine solution orally. The nicotine-induced oxidative stress and neuroinflammation in the hippocampus and its effects on the glutamate transporters GLT-1 and XCT mRNA levels in prefrontal cortex were also analyzed. Results The oral coadministration of NAC (40 mg/kg/day) and ASA (15 mg/kg/day) inhibited by 85% of the oral nicotine reinstatement intake compared to control (vehicle), showing an additive effect of both drugs. Acetylsalicylic acid and N-acetylcysteine normalized hippocampal oxidative stress and blunted the hippocampal neuroinflammation observed upon oral nicotine reinstatement. Nicotine downregulated GLT-1 and xCT gene expression in the prefrontal cortex, an effect reversed by N-acetylcysteine, while acetylsalicylic acid reversed the nicotine-induced downregulation of GLT-1 gene expression. The inhibitory effect of N-acetylcysteine on chronic nicotine intake was blocked by the administration of sulfasalazine, an inhibitor of the xCT transporter. Conclusion Nicotine reinstatement, following post-deprivation of chronic oral nicotine intake, downregulates the mRNA levels of GLT-1 and xCT transporters, an effect reversed by the coadministration of N-acetylcysteine and acetylsalicylic acid, leading to a marked inhibition of nicotine intake. The combination of these drugs may constitute a valuable adjunct in the treatment of nicotine-dependent behaviors.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
7
|
Housing conditions during self-administration determine motivation for cocaine in mice following chronic social defeat stress. Psychopharmacology (Berl) 2021; 238:41-54. [PMID: 32914243 PMCID: PMC8162736 DOI: 10.1007/s00213-020-05657-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Stress exposure has a lasting impact on motivated behavior and can exacerbate existing vulnerabilities for developing a substance use disorder. Several models have been developed to examine how stressful experiences shape drug reward. These range from locomotor sensitization and conditioned place preference to the propensity for drug self-administration or responding to drug-predictive cues. While self-administration studies are considered to have more translational relevance, most of the studies to date have been conducted in rats. Further, many self-administration studies are conducted in single-housed animals, adding the additional stressor of social isolation. OBJECTIVES We sought to establish how chronic social defeat stress (CSDS) and social housing conditions impact cocaine self-administration and cocaine-seeking behaviors in C57BL/6 mice. METHODS We assessed self-administration behavior (cocaine or saline, 0.5 mg/kg/infusion) in C57BL/6 mice subjected to 10-day CSDS or in unstressed controls. Mice were housed either in pairs or in isolation during self-administration. We compared the effect of housing on acquisition of self-administration, seeking, extinction, drug-induced reinstatement, and after re-exposure to the social stressor. RESULTS Pair-housing during self-administration revealed increased social avoidance after CSDS is associated with decreased cocaine intake. In contrast, single-housing revealed stress-sensitive cocaine intake, with increased social avoidance after CSDS associated with increased early cocaine intake. Pair-, but not single-housed mice are susceptible to drug-induced reinstatement independent of CSDS history. Stress re-exposure sensitized cocaine-seeking in stressed single-housed mice. CONCLUSIONS The social context surrounding cocaine intake can bidirectionally influence cocaine-related behaviors after psychosocial stress and should be considered when studying stress and drug cross-sensitization.
Collapse
|
8
|
Koul S, Schaal VL, Chand S, Pittenger ST, Nanoth Vellichirammal N, Kumar V, Guda C, Bevins RA, Yelamanchili SV, Pendyala G. Role of Brain Derived Extracellular Vesicles in Decoding Sex Differences Associated with Nicotine Self-Administration. Cells 2020; 9:cells9081883. [PMID: 32796722 PMCID: PMC7464419 DOI: 10.3390/cells9081883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Smoking remains a significant health and economic concern in the United States. Furthermore, the emerging pattern of nicotine intake between sexes further adds a layer of complexity. Nicotine is a potent psychostimulant with a high addiction liability that can significantly alter brain function. However, the neurobiological mechanisms underlying nicotine’s impact on brain function and behavior remain unclear. Elucidation of these mechanisms is of high clinical importance and may lead to improved therapeutics for smoking cessation. To fill in this critical knowledge gap, our current study focused on identifying sex-specific brain-derived extracellular vesicles (BDEV) signatures in male and female rats post nicotine self-administration. Extracellular vesicles (EVs) are comprised of phospholipid nanovesicles such as apoptotic bodies, microvesicles (MVs), and exosomes based on their origin or size. EVs are garnering significant attention as molecules involved in cell–cell communication and thus regulating the pathophysiology of several diseases. Interestingly, females post nicotine self-administration, showed larger BDEV sizes, along with impaired EV biogenesis compared to males. Next, using quantitative mass spectrometry-based proteomics, we identified BDEV signatures, including distinct molecular pathways, impacted between males and females. In summary, this study has identified sex-specific changes in BDEV biogenesis, protein cargo signatures, and molecular pathways associated with long-term nicotine self-administration.
Collapse
Affiliation(s)
- Sneh Koul
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Victoria L. Schaal
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Steven T. Pittenger
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (S.T.P.); (R.A.B.)
| | - Neetha Nanoth Vellichirammal
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Chittibabu Guda
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Rick A. Bevins
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (S.T.P.); (R.A.B.)
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
- Correspondence: ; Tel.: +1-402-559-8690
| |
Collapse
|
9
|
Hempel BJ, Melkumyan M, Crissman ME, Winston CA, Madar J, Riley AL. Pre-conception exposure to THC fails to impact nicotine reward in adult offspring. Pharmacol Biochem Behav 2020; 197:173001. [PMID: 32710886 DOI: 10.1016/j.pbb.2020.173001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/19/2020] [Indexed: 01/04/2023]
Abstract
Exposure to environmental stimuli in one generation can produce altered behavioral and neurobiological phenotypes in descendants. Recent work has shown that parental exposure to cannabinoids alters the rewarding properties of other abused drugs in the subsequent generation. However, whether preconception Δ9-tetrahydrocannabinol (THC) administration modifies the affective properties of nicotine in offspring is unknown. To address this question, male and female rats (F0) received THC (0 or 1.5 mg/kg) throughout the adolescent window and were bred on PND 65. In Experiment 1, adult F1-THC and F1-Veh progeny (males and females) underwent nicotine locomotor sensitization procedures during which nicotine (0 or 0.4 mg/kg) was administered every other day for five exposures, and locomotor activity was recorded on each exposure followed by a final nicotine challenge. There was no cross-generational effect of THC on nicotine locomotor sensitization, although acute exposure to nicotine produced greater activity in females relative to males independent of THC history. In Experiment 2, adult F1-THC and F1-Veh progeny (males and females) were implanted with jugular catheters and trained to self-administer nicotine (0.03 mg/kg/infusion). Following acquisition, all subjects were allowed to self-administer nicotine on a number of reinforcement schedules, e.g., FR2, FR5 and PR, followed by dose response and extinction procedures. Across all indices, F1-THC and F1-Veh subjects displayed similar IVSA of nicotine with no sex differences. The fact that there was no evidence of cross-generational effects of THC on nicotine suggests that such effects are drug-specific.
Collapse
Affiliation(s)
- Briana J Hempel
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA.
| | - Mariam Melkumyan
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Madeline E Crissman
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Chloe A Winston
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Jacob Madar
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Center for Behavioral Neuroscience, American University, 4400 Massachusetts Ave NW, Washington, D.C. 20016, USA.
| |
Collapse
|
10
|
Cepeda-Benito A. Nicotine Effects, Body Weight Concerns and Smoking: A Literature Review. Curr Pharm Des 2020; 26:2316-2326. [PMID: 32233995 DOI: 10.2174/1381612826666200401083040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/12/2020] [Indexed: 12/23/2022]
Abstract
How people become addicted to cigarette smoking and remain addicted despite repeated attempts to quit requires piecing together a rather complex puzzle. The present review contextualizes the role of nicotine and smoking sensory stimulation on maintaining smoking, describes nicotine's effects on feeding behavior and body weight, and explores the impact of smoking outcome expectancies, including the belief that nicotine suppresses appetite and body weight, on the decision to smoke or vape (use of e-cigarettes). The analysis concludes with a review of rat models of human nicotine intake that attempt to isolate the effects of nicotine on appetite and weight gain. Animal research replicates with relative closeness phenomena observed in smokers, but the rat model falls short of replicating the long-term weight gain observed post-smoking cessation.
Collapse
Affiliation(s)
- Antonio Cepeda-Benito
- Department of Psychological Science, Department of Medicine, University of Vermont Cancer Center, University of Vermont, Vermont, United States
| |
Collapse
|
11
|
Abstract
In this chapter we will review both the rationale and experimental design for using Heterogeneous Stock (HS) populations for fine-mapping of complex traits in mice and rats. We define an HS as an outbred population derived from an intercross between two or more inbred strains. HS have been used to perform genome-wide association studies (GWAS) for multiple behavioral, physiological, and gene expression traits. GWAS using HS require four key steps, which we review: selection of an appropriate HS population, phenotyping, genotyping, and statistical analysis. We provide advice on the selection of an HS, comment on key issues related to phenotyping, discuss genotyping methods relevant to these populations, and describe statistical genetic analyses that are applicable to genetic analyses that use HS.
Collapse
|
12
|
Social and anxiety-like behaviors contribute to nicotine self-administration in adolescent outbred rats. Sci Rep 2018; 8:18069. [PMID: 30584246 PMCID: PMC6305389 DOI: 10.1038/s41598-018-36263-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023] Open
Abstract
Both emotional and social traits interact with genetic factors to influence smoking behavior. We previously established a socially acquired nicotine intravenous self-administration model where social learning of a nicotine-associated odor cue reversed conditioned flavor aversion and promoted nicotine intake. In this study, we first phenotyped ~800 adolescent heterogeneous stock rats in open field, novel object interaction, social interaction, elevated plus maze, and marble burying behaviors. These rats were then phenotyped on socially acquired nicotine self-administration. We found 243 significant correlations between different behavioral tests. Principal component regression analysis found that ~10-20% of the variance in nicotine-related measures, such as intake during the first or the last three fixed-ratio sessions, the progressive ratio session, and reinstatement behavior, can be explained by variations in behavioral traits. Factors corresponding to social behavior and anxiety were among the strongest predictors of nicotine intake and reinstatement of nicotine-seeking behavior. We also found many sex differences in behavioral measures. These data indicated that the genetic diversity of this population, in combination with social behaviour and anxiety, are significant contributors to the divergent nicotine self-administration behavior and indicated a high probability of discovering sex-specific genetic mechanisms for nicotine intake in future genome-wide association studies.
Collapse
|
13
|
Pittenger ST, Schaal VL, Moore D, Guda RS, Koul S, Yelamanchili SV, Bevins RA, Pendyala G. MicroRNA cluster miR199a/214 are differentially expressed in female and male rats following nicotine self-administration. Sci Rep 2018; 8:17464. [PMID: 30504847 PMCID: PMC6269448 DOI: 10.1038/s41598-018-35747-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022] Open
Abstract
Previous research has established sex differences associated with nicotine intake, however a significant gap in knowledge remains regarding the molecular mechanisms that govern these differences at the transcriptional level. One critical regulator of transcription are microRNAs (miRNAs). miRNAs are a family of non-coding RNAs that regulate an array of important biological functions altered in several disease states, including neuroadaptive changes within the brain associated with drug dependence. We examined the prefrontal cortex (PFC) from male and female Sprague-Dawley rats following self-administration (22 days) of nicotine or yoked saline controls using next generation RNA-Sequencing (RNA-Seq) technology and found an array of miRNAs to be significantly and differentially regulated by nicotine self-administration. Of these, we found the expression of miR-199a and 214, which are expressed on the same cluster of chromosome 1, to be upregulated in the female rats exposed to nicotine; upregulation in this group was further validated by real time polymerase chain reaction (RT-PCR). Bioinformatics analysis to assess common targets of miR-199/214 identified Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD)- dependent deacetylase that plays a role in apoptosis, neuron survival, and stress resistance. Using western-blot, we confirmed downregulation of SIRT1 and increased cleaved caspase 3 expression in the brains of nicotine-exposed female rats and no change in expression levels in the other groups. Collectively, our findings highlight a miR-199/214 regulatory network that, through SIRT1, may be associated with nicotine seeking in females which may serve as a potential therapeutic target for sex-specific treatment approaches.
Collapse
Affiliation(s)
- Steven T Pittenger
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Yale University School of Medicine, Division of Molecular Psychiatry, New Haven, Connecticut, USA
| | - Victoria L Schaal
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Dalia Moore
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rahul S Guda
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sneh Koul
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sowmya V Yelamanchili
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rick A Bevins
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
14
|
Choleris E, Galea LAM, Sohrabji F, Frick KM. Sex differences in the brain: Implications for behavioral and biomedical research. Neurosci Biobehav Rev 2018; 85:126-145. [PMID: 29287628 PMCID: PMC5751942 DOI: 10.1016/j.neubiorev.2017.07.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/16/2017] [Indexed: 01/11/2023]
Abstract
Biological differences between males and females are found at multiple levels. However, females have too often been under-represented in behavioral neuroscience research, which has stymied the study of potential sex differences in neurobiology and behavior. This review focuses on the study of sex differences in the neurobiology of social behavior, memory, emotions, and recovery from brain injury, with particular emphasis on the role of estrogens in regulating forebrain function. This work, presented by the authors at the 2016 meeting of the International Behavioral Neuroscience Society, emphasizes varying approaches from several mammalian species in which sex differences have not only been documented, but also become the focus of efforts to understand the mechanistic basis underlying them. This information may provide readers with useful experimental tools to successfully address recently introduced regulations by granting agencies that either require (e.g. the National Institutes of Health in the United States and the Canadian Institutes of Health Research in Canada) or recommend (e.g. Horizon 2020 in Europe) the inclusion of both sexes in biomedical research.
Collapse
Affiliation(s)
- Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Bldg. Room 4020, Guelph, ON N1G 2W1, Canada.
| | - Liisa A M Galea
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| |
Collapse
|
15
|
Abstract
Heterogeneous Stock (HS) populations allow for fine-resolution genetic mapping of a variety of complex traits. HS mice and rats were created from breeding together eight inbred strains, followed by maintaining the colony in a manner that minimizes inbreeding. After 50 or more generations of breeding, the resulting animals' chromosomes represent a genetic mosaic of the founders' haplotypes, with the average distance between recombination events in the centiMorgan range. This allows for genetic mapping to only a few Mb, a much smaller region than what can be identified using traditional F2 intercross or backcross mapping strategies. HS animals have been used to fine-map a variety of complex traits including anxiety and fear behaviors, diabetes, asthma, and heart disease, among others. Once a quantitative trait locus (QTL) has been identified, founder sequence and expression analysis can be used to identify underlying causal genes. In the following review, we provide an overview of how HS rats and mice have been used to identify genetic loci, and in some cases the causal genes, underlying complex traits. We discuss the creation and breeding strategies for both HS rats and mice. We then discuss the statistical analyses used to identify genetic loci, as well as strategies to identify causal genes underlying these loci. We end the chapter by discussing limitations faced when using HS populations, including several statistical challenges that have not been fully resolved.
Collapse
Affiliation(s)
- Leah C Solberg Woods
- Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53130, USA.
| | - Richard Mott
- UCL Genetics Institute, University College London, Gower St., London, WC1E 6BT, UK
| |
Collapse
|
16
|
Sex differences in nicotine intravenous self-administration: A meta-analytic review. Physiol Behav 2017; 203:42-50. [PMID: 29158125 DOI: 10.1016/j.physbeh.2017.11.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/04/2017] [Accepted: 11/12/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This report reflects a meta-analysis that systematically reviewed the literature on intravenous self-administration (IVSA) of nicotine in female and male rats. The goal was to determine if sex differences in nicotine IVSA exist, estimate the magnitude of the effect, and identify potential moderators of the relationship between sex differences and nicotine consumption. METHODS Extensive search procedures identified 20 studies that met the inclusion criteria of employing both female and male rats in nicotine IVSA procedures. The meta-analysis was conducted on effect size values that were calculated from mean total intake or nicotine deliveries using the Hedges' unbiased gu statistic. RESULTS A random effects analysis revealed that overall females self-administered more nicotine than males (weighted gu=0.18, 95% CI [0.003, 0.34]). Subsequent moderator variable analyses revealed that certain procedural conditions influenced the magnitude of sex differences in nicotine IVSA. Specifically, higher reinforcement requirements (>FR1) and extended-access sessions (23h) were associated with greater nicotine IVSA in females versus males. Females also displayed higher nicotine intake than males when the experiment included a light cue that signaled nicotine delivery. Sex differences were not influenced by the diurnal phase of testing, dose of nicotine, or prior operant training. CONCLUSION Overall, the results revealed that female rats display higher levels of nicotine IVSA than males, suggesting that the strong reinforcing effects of nicotine promote tobacco use in women.
Collapse
|
17
|
Pogun S, Yararbas G, Nesil T, Kanit L. Sex differences in nicotine preference. J Neurosci Res 2017; 95:148-162. [PMID: 27870459 DOI: 10.1002/jnr.23858] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/29/2016] [Accepted: 07/11/2016] [Indexed: 01/01/2023]
Abstract
Smoking is the major cause of preventable deaths worldwide, and although there is a decline in overall smoking prevalence in developed countries, the decline in women is less pronounced than in men. Women become dependent faster and experience greater difficulties in quitting. Similar trends have been observed in animal models of nicotine/tobacco addiction. Individual differences in vulnerability to drug abuse are also observed in nicotine/tobacco addiction and point to the importance of sex differences. This Review, summarizes findings from three experimental approaches used to depict nicotine preference in animal models, intravenous and oral nicotine self-administration and nicotine-induced conditioned place preference. Nicotine preference is considered to be reflected in the animal's motivation to administer the drug (intravenously or orally) or to prefer an environment paired with the presence of the drug (conditioned place preference). These approaches all point to the importance of sex and age of the subjects; the preference of females and adolescents appear to be more pronounced than that of males and adults, respectively. A closer look at these factors will help us understand the mechanisms that underlie nicotine addiction and develop strategies to cope. Ignoring sex differences and reaching conclusions based only on studies using male subjects has resulted in erroneous generalizations in the past. Sex differences in nicotine preference have been clearly documented, and awareness on this aspect of nicotine dependence will significantly impact our success in translational research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sakire Pogun
- Center for Brain Research, Ege University, Izmir, Turkey
| | - Gorkem Yararbas
- Institute on Drug Abuse, Toxicology and Pharmaceutical Science, Ege University, Izmir, Turkey
| | - Tanseli Nesil
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, Virginia
| | - Lutfiye Kanit
- Center for Brain Research, Ege University, Izmir, Turkey.,Physiology Department, School of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
18
|
Han W, Wang T, Chen H. Social learning promotes nicotine self-administration by facilitating the extinction of conditioned aversion in isogenic strains of rats. Sci Rep 2017; 7:8052. [PMID: 28808247 PMCID: PMC5556091 DOI: 10.1038/s41598-017-08291-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/10/2017] [Indexed: 11/25/2022] Open
Abstract
Both social environment and genetic factors are critical for smoking initiation and nicotine addiction. We reported that rats developed conditioned flavor (i.e., taste and odor) aversion to intravenously self-administered (IVSA) nicotine, and that social learning promoted nicotine IVSA with flavor cues. We thus tested the hypothesis that socially acquired nicotine IVSA is a heritable trait by using female rats of six inbred strains and six F1 hybrids. Each strain was tested for 10 daily IVSA sessions. We found that the intake of nicotine (15 and 30 μg/kg/inf) varied among these strains by 33.7–56.6-fold. The heritability of nicotine intake was estimated to be 0.54–0.65. Further, there was a strong correlation in nicotine intake (R2 = 0.85, p < 0.0001) between the two nicotine doses. Another cohort of rats was given three daily IVSA sessions followed by five sessions that tested conditioned flavor aversion. Nicotine intake was highly correlated with the extinction of the conditioned aversion (R2 = 0.58, p < 0.005). These data showed that nicotine intake in the socially acquired nicotine self-administration model is controlled by genetic factors and that the role of social learning is likely in facilitating the extinction of conditioned aversive response to nicotine.
Collapse
Affiliation(s)
- Wenyan Han
- Department of Pharmacology, University of Tennessee Health Science Center, 71 S. Manassas St., Room 205 Translational Science Research Building, Memphis, TN, 38163, USA
| | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, 71 S. Manassas St., Room 205 Translational Science Research Building, Memphis, TN, 38163, USA
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, 71 S. Manassas St., Room 205 Translational Science Research Building, Memphis, TN, 38163, USA.
| |
Collapse
|
19
|
Garcia-Rivas V, Cannella N, Deroche-Gamonet V. Individual Variations in the Mechanisms of Nicotine Seeking: A Key for Research on Nicotine Dependence. Neuropsychopharmacology 2017; 42:584-586. [PMID: 27577600 PMCID: PMC5240183 DOI: 10.1038/npp.2016.176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Vernon Garcia-Rivas
- INSERM U1215, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Nazzareno Cannella
- INSERM U1215, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Véronique Deroche-Gamonet
- INSERM U1215, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France,INSERM U1215, Pathophysiology of Addiction, Neuro Centre Magendie, 146 rue Léo Saignat, Bordeaux 33077, France, Tel: +33 5 57 57 36 80, Fax: +33 5 57 57 36 69, E-mail:
| |
Collapse
|
20
|
Besson M, Guiducci S, Granon S, Guilloux JP, Guiard B, Repérant C, Faure P, Pons S, Cannazza G, Zoli M, Gardier AM, Maskos U. Alterations in alpha5* nicotinic acetylcholine receptors result in midbrain- and hippocampus-dependent behavioural and neural impairments. Psychopharmacology (Berl) 2016; 233:3297-314. [PMID: 27385416 DOI: 10.1007/s00213-016-4362-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/20/2016] [Indexed: 12/14/2022]
Abstract
RATIONALE Evidence links alterations in α5-containing nicotinic receptors (α5*-nAChRs) to nicotine addiction. Notably, the rs16969968 polymorphism in the α5 gene (α5SNP) increases the risk for heavy smoking and impairs nicotine-rewarding properties in mice. Additional work is needed to understand how native and polymorphic α5*-nAChRs contribute to processes associated with the risk for nicotine addiction. OBJECTIVES We aimed at understanding the contribution of α5*-nAChRs to endophenotypes like increased responses to novelty and anxiety, known to promote vulnerability to addiction, and to the response of the dopamine and serotonin systems to nicotine. METHODS Behavioural phenotypes were investigated in mice lacking the α5 gene (α5(-/-)). Nicotine injections were performed to test the consequences of nicotine exposure on the phenotypes identified. Dopamine and serotonin signalling were assessed using in vivo microdialysis and electrophysiology. We used lentiviral vectors to compare the consequences of re-expressing either the α5 wild-type allele or the α5SNP in specific brain areas of α5(-/-) mice. RESULTS α5(-/-) mice did not exhibit high responses to novelty but showed decreased novelty-induced rearing behaviour together with high anxiety. Exposure to high doses of nicotine rescued these phenotypes. We identified altered spontaneous and nicotine-elicited serotonin and dopamine activity in α5(-/-) mice. Re-expression of α5 in the ventral tegmental area and hippocampus rescued rearing and anxiety levels in α5(-/-) mice, respectively. When expressing the α5SNP instead, this resulted in a knockout-like phenotype for both behaviours. CONCLUSIONS We propose that altered α5*-nAChR cholinergic signalling contributes to emotional/behavioural impairments that may be alleviated by nicotine consumption.
Collapse
Affiliation(s)
- Morgane Besson
- Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, CNRS UMR 3571, Institut Pasteur, Paris, 75724 cedex15, France.
| | - Stefania Guiducci
- Department of Biomedical, Metabolic and Neural Sciences, Section of Physiology and Neurosciences, University of Modena and Reggio Emilia, Modena, 41121, Italy
| | - Sylvie Granon
- Neurobiologie de la Prise de Décision, Neuro-PSI, CNRS UMR 9197, Orsay, 91405, France
| | - Jean-Philippe Guilloux
- Neuropharmacologie des troubles anxieux-dépressifs et neurogénèse, Université Paris-Sud XI, Chatenay-Malabry, 91290, France
| | - Bruno Guiard
- Neuropharmacologie des troubles anxieux-dépressifs et neurogénèse, Université Paris-Sud XI, Chatenay-Malabry, 91290, France
| | - Christelle Repérant
- Neuropharmacologie des troubles anxieux-dépressifs et neurogénèse, Université Paris-Sud XI, Chatenay-Malabry, 91290, France
| | - Philippe Faure
- Neurobiologie des processus adaptatifs, Neurophysiologie et Comportement, Université Pierre et Marie Curie, Paris, 75005, France
| | - Stéphanie Pons
- Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, CNRS UMR 3571, Institut Pasteur, Paris, 75724 cedex15, France
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41121, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Section of Physiology and Neurosciences, University of Modena and Reggio Emilia, Modena, 41121, Italy
| | - Alain M Gardier
- Neuropharmacologie des troubles anxieux-dépressifs et neurogénèse, Université Paris-Sud XI, Chatenay-Malabry, 91290, France
| | - Uwe Maskos
- Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neuroscience, CNRS UMR 3571, Institut Pasteur, Paris, 75724 cedex15, France
| |
Collapse
|
21
|
Pittenger ST, Swalve N, Chou S, Smith MD, Hoonakker AJ, Pudiak CM, Fleckenstein AE, Hanson GR, Bevins RA. Sex differences in neurotensin and substance P following nicotine self-administration in rats. Synapse 2016; 70:336-46. [PMID: 27074301 DOI: 10.1002/syn.21907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/21/2016] [Accepted: 04/08/2016] [Indexed: 02/02/2023]
Abstract
Investigator-administered nicotine alters neurotensin and substance P levels in Sprague-Dawley rats. This finding suggested a role of the dopamine-related endogenous neuropeptides in nicotine addiction. We sought to extend this observation by determining the responses of neurotensin and substance P systems (assessed using radioimmunoassay) in male and female rats following nicotine self-administration (SA). Male and female Sprague-Dawley were trained to self-administer nicotine, or receive saline infusions yoked to a nicotine-administering rat during daily sessions (1-h; 21 days). Brains were extracted 3 h after the last SA session. Nicotine SA increased tissue levels of neurotensin in the males in the anterior and posterior caudate, globus pallidus, frontal cortex, nucleus accumbens core and shell, and ventral tegmental area. Nicotine SA also increased tissue levels of neurotensin in the females in the anterior caudate, globus pallidus, nucleus accumbens core and shell, but not in the posterior caudate, frontal cortex, or ventral tegmental area. There were fewer sex differences observed in the substance P systems. Nicotine SA increased tissue levels of substance P in both the males and females in the posterior caudate, globus pallidus, frontal cortex, nucleus accumbens shell, and ventral tegmental area. A sex difference was observed in the nucleus accumbens core, where nicotine SA increased tissue levels of substance P in the males, yet decreased levels in the females. The regulation of neuropeptides following nicotine SA may play a role in the susceptibility to nicotine dependence in females and males. Synapse 70:336-346, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven T Pittenger
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Natashia Swalve
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Shinnyi Chou
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Misty D Smith
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108.,Department of Pharmacology and Toxicology, University of Utah, Skaggs Hall, Salt Lake City, Utah, 84112
| | - Amanda J Hoonakker
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108
| | - Cindy M Pudiak
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| | - Annette E Fleckenstein
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108
| | - Glen R Hanson
- School of Dentistry, University of Utah, 530 so. Wakara Way, Salt Lake City, Utah, 84108.,Department of Pharmacology and Toxicology, University of Utah, Skaggs Hall, Salt Lake City, Utah, 84112
| | - Rick A Bevins
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, Nebraska, 68588-0308
| |
Collapse
|
22
|
Socially acquired nicotine self-administration with an aversive flavor cue in adolescent female rats. Psychopharmacology (Berl) 2016; 233:1837-1844. [PMID: 26911379 PMCID: PMC4846487 DOI: 10.1007/s00213-016-4249-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/17/2016] [Indexed: 01/19/2023]
Abstract
RATIONALE Establishing a behavioral model for the effect of social environment on nicotine intake in rodents facilitates the investigation of molecular mechanisms critical for the interaction between social environment and cigarette smoking. OBJECTIVES Our main objective was to test the hypothesis that nicotine is the primary reinforcer in the socially acquired nicotine intravenous self-administration (IVSA) model by using an aversive flavor cue. METHODS Adolescent female rats were placed in operant conditioning chambers equipped with two lickometers. Operant licking triggered concurrent deliveries of a flavor (i.e., taste and odor) cue containing either quinine or saccharin and an i.v. infusion (30 μg/kg nicotine or saline). An audiovisual cue was provided for some groups of rats. A second rat that did not receive nicotine was placed in the operant conditioning chambers to provide either a neutral or an inducing (i.e., by consuming the flavored solution) social environment. These two rats were separated by a divider that allowed orofacial interactions. RESULTS Rats acquired stable nicotine IVSA with either the aversive or the appetitive flavor cue in the inducing social environment, and obtained similar amounts of infusions. The neutral social environment did not support nicotine IVSA with either cue. The audiovisual cue per se did not support nicotine IVSA but enhanced nicotine intake. Nicotine increased the number of concurrent nose pokes by the two rats into the center divider, a measure of social interaction. CONCLUSIONS Despite its aversive effects, nicotine is the primary reinforcer for the operant responses in the socially acquired nicotine IVSA model.
Collapse
|
23
|
Besson M, Forget B. Cognitive Dysfunction, Affective States, and Vulnerability to Nicotine Addiction: A Multifactorial Perspective. Front Psychiatry 2016; 7:160. [PMID: 27708591 PMCID: PMC5030478 DOI: 10.3389/fpsyt.2016.00160] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 09/06/2016] [Indexed: 11/17/2022] Open
Abstract
Although smoking prevalence has declined in recent years, certain subpopulations continue to smoke at disproportionately high rates and show resistance to cessation treatments. Individuals showing cognitive and affective impairments, including emotional distress and deficits in attention, memory, and inhibitory control, particularly in the context of psychiatric conditions, such as attention-deficit hyperactivity disorder, schizophrenia, and mood disorders, are at higher risk for tobacco addiction. Nicotine has been shown to improve cognitive and emotional processing in some conditions, including during tobacco abstinence. Self-medication of cognitive deficits or negative affect has been proposed to underlie high rates of tobacco smoking among people with psychiatric disorders. However, pre-existing cognitive and mood disorders may also influence the development and maintenance of nicotine dependence, by biasing nicotine-induced alterations in information processing and associative learning, decision-making, and inhibitory control. Here, we discuss the potential forms of contribution of cognitive and affective deficits to nicotine addiction-related processes, by reviewing major clinical and preclinical studies investigating either the procognitive and therapeutic action of nicotine or the putative primary role of cognitive and emotional impairments in addiction-like features.
Collapse
Affiliation(s)
- Morgane Besson
- Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, Department of Neuroscience, CNRS UMR 3571, Institut Pasteur , Paris , France
| | - Benoît Forget
- Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, Department of Neuroscience, CNRS UMR 3571, Institut Pasteur , Paris , France
| |
Collapse
|
24
|
Ervin KSJ, Lymer JM, Matta R, Clipperton-Allen AE, Kavaliers M, Choleris E. Estrogen involvement in social behavior in rodents: Rapid and long-term actions. Horm Behav 2015; 74:53-76. [PMID: 26122289 DOI: 10.1016/j.yhbeh.2015.05.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/16/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
Abstract
This article is part of a Special Issue ("Estradiol and cognition"). Estrogens have repeatedly been shown to influence a wide array of social behaviors, which in rodents are predominantly olfactory-mediated. Estrogens are involved in social behavior at multiple levels of processing, from the detection and integration of socially relevant olfactory information to more complex social behaviors, including social preferences, aggression and dominance, and learning and memory for social stimuli (e.g. social recognition and social learning). Three estrogen receptors (ERs), ERα, ERβ, and the G protein-coupled ER 1 (GPER1), differently affect these behaviors. Social recognition, territorial aggression, and sexual preferences and mate choice, all requiring the integration of socially related olfactory information, seem to primarily involve ERα, with ERβ playing a lesser, modulatory role. In contrast, social learning consistently responds differently to estrogen manipulations than other social behaviors. This suggests differential ER involvement in brain regions important for specific social behaviors, such as the ventromedial and medial preoptic nuclei of the hypothalamus in social preferences and aggression, the medial amygdala and hippocampus in social recognition, and the prefrontal cortex and hippocampus in social learning. While the long-term effects of ERα and ERβ on social behavior have been extensively investigated, our knowledge of the rapid, non-genomic, effects of estrogens is more limited and suggests that they may mediate some social behaviors (e.g. social learning) differently from long-term effects. Further research is required to compare ER involvement in regulating social behavior in male and female animals, and to further elucidate the roles of the more recently described G protein-coupled ERs, both the GPER1 and the Gq-mER.
Collapse
Affiliation(s)
- Kelsy S J Ervin
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer M Lymer
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Richard Matta
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | | | - Martin Kavaliers
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
25
|
Strickland JC, Smith MA. Animal models of social contact and drug self-administration. Pharmacol Biochem Behav 2015; 136:47-54. [PMID: 26159089 DOI: 10.1016/j.pbb.2015.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/27/2015] [Accepted: 06/30/2015] [Indexed: 01/28/2023]
Abstract
Social learning theories of drug abuse propose that individuals imitate drug use behaviors modeled by social peers, and that these behaviors are selectively reinforced and/or punished depending on group norms. Historically, animal models of social influence have focused on distal factors (i.e., those factors outside the drug-taking context) in drug self-administration studies. Recently, several investigators have developed novel models, or significantly modified existing models, to examine the role of proximal factors (i.e., those factors that are immediately present at the time of drug taking) on measures of drug self-administration. Studies using these newer models have revealed several important conclusions regarding the effects of social learning on drug abuse: 1) the presence of a social partner influences drug self-administration, 2) the behavior of a social partner determines whether social contact will increase or decrease drug intake, and 3) social partners can model and imitate specific patterns of drug self-administration. These findings are congruent with those obtained in the human laboratory, providing support for the cross-species generality and validity of these preclinical models. This mini-review describes in detail some of the preclinical animal models used to study social contact and drug self-administration to guide future research on social learning and drug abuse.
Collapse
Affiliation(s)
| | - Mark A Smith
- Department of Psychology, Davidson College, Davidson, NC 28035, USA; Program in Neuroscience, Davidson College, Davidson, NC 28035, USA.
| |
Collapse
|
26
|
Le Foll B, Ng E, Di Ciano P, Trigo JM. Psychiatric disorders as vulnerability factors for nicotine addiction: what have we learned from animal models? Curr Top Behav Neurosci 2015; 24:155-170. [PMID: 25638337 DOI: 10.1007/978-3-319-13482-6_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Epidemiological studies indicate a high prevalence of tobacco smoking in subjects with psychiatric disorders. Notably, there is a high prevalence of smoking among those with dependence to other substances, schizophrenia, mood, or anxiety disorders. It has been difficult to understand how these phenomena interact with clinical populations as it is unclear what preceded what in most of the studies. These comorbidities may be best understood by using experimental approaches in well-controlled conditions. Notably, animal models represent advantageous approaches as the parameters under study can be controlled perfectly. This review will focus on evidence collected so far exploring how behavioral effects of nicotine are modified in animal models of psychiatric conditions. Notably, we will focus on behavioral responses induced by nicotine that are relevant for its addictive potential. Despite the clinical relevance and frequency of the comorbidity between psychiatric issues and tobacco smoking, very few studies have been done to explore this issue in animals. The available data suggest that the behavioral and reinforcing effects of nicotine are enhanced in animal models of these comorbidities, although much more experimental work would be required to provide certainty in this domain.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, ON, M5S 2S1, Canada,
| | | | | | | |
Collapse
|
27
|
Wang T, Chen H. Carbon disulfide mediates socially-acquired nicotine self-administration. PLoS One 2014; 9:e115222. [PMID: 25532105 PMCID: PMC4274004 DOI: 10.1371/journal.pone.0115222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/20/2014] [Indexed: 12/28/2022] Open
Abstract
The social environment plays a critical role in smoking initiation as well as relapse. We previously reported that rats acquired nicotine self-administration with an olfactogustatory cue only when another rat consuming the same cue was present during self-administration. Because carbon disulfide (CS2) mediates social learning of food preference in rodents, we hypothesized that socially acquired nicotine self-administration is also mediated by CS2. We tested this hypothesis by placing female adolescent Sprague-Dawley rats in operant chambers equipped with two lickometers. Licking on the active spout meeting a fixed-ratio 10 schedule triggered the concurrent delivery of an i.v. infusion (saline, or 30 µg/kg nicotine, free base) and an appetitive olfactogustatory cue containing CS2 (0–500 ppm). Rats that self-administered nicotine with the olfactogustatory cue alone licked less on the active spout than on the inactive spout. Adding CS2 to the olfactogustatory cue reversed the preference for the spouts. The group that received 500 ppm CS2 and the olfactogustatory cue obtained a significantly greater number of nicotine infusions than other groups. After extinction training, the original self-administration context reinstated nicotine-seeking behavior in all nicotine groups. In addition, in rats that received the olfactogustatory cue and 500 ppm CS2 during SA, a social environment where the nicotine-associated olfactory cue is present, induced much stronger drug-seeking behavior compared to a social environment lacking the olfactogustatory cue. These data established that CS2 is a critical signal that mediates social learning of nicotine self-administration with olfactogustatory cues in rodents. Additionally, these data showed that the social context can further enhance the drug-seeking behavior induced by the drug-taking environment.
Collapse
Affiliation(s)
- Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
28
|
Wang T, Wang B, Chen H. Menthol facilitates the intravenous self-administration of nicotine in rats. Front Behav Neurosci 2014; 8:437. [PMID: 25566005 PMCID: PMC4267270 DOI: 10.3389/fnbeh.2014.00437] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/01/2014] [Indexed: 11/17/2022] Open
Abstract
Menthol is preferred by ~25% of smokers and is the most common flavoring additive in tobacco and electronic cigarettes. Although some clinical studies have suggested that menthol facilitates the initiation of smoking and enhances the dependence on nicotine, many controversies remain. Using licking as the operant behavior, we found that adolescent rats self-administering nicotine (30μg/kg/infusion, free base, i.v.) with contingent oral menthol (60μl, 0.01% w/v) obtained significantly more infusions than rats receiving a vehicle cue or rats self-administering i.v. saline with a menthol cue. Rats yoked to their menthol-nicotine masters emitted significantly fewer licks on the active spouts, indicating that contingent pairing between nicotine and menthol is required for sustained nicotine intake. Rats that self-administered nicotine with a menthol cue also exhibited a long-lasting extinction burst and robust reinstatement behavior, neither of which were observed in rats that self-administered saline with a menthol cue. The cooling sensation of menthol is induced by activating the transient receptor potential M8 (TRPM8) channel. When WS-23, an odorless agonist of the TRPM8 channel, was used as a contingent cue for nicotine, the rats obtained a similar number of nicotine infusions as the rats that were provided a menthol cue and exhibited a strong preference for the active spout. In contrast, highly appetitive taste and odor cues failed to support nicotine self-administration. These data indicated that menthol, likely by inducing a cooling sensation, becomes a potent conditioned reinforcer when it is contingently delivered with nicotine. Together, these results provide a key behavioral mechanism by which menthol promotes the use of tobacco products or electronic cigarettes.
Collapse
Affiliation(s)
- Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Bin Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine Xian Yang, Shaanxi, China
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
29
|
Genomes and phenomes of a population of outbred rats and its progenitors. Sci Data 2014; 1:140011. [PMID: 25977769 PMCID: PMC4381735 DOI: 10.1038/sdata.2014.11] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/12/2014] [Indexed: 01/31/2023] Open
Abstract
Finding genetic variants that contribute to phenotypic variation is one of the main challenges of modern genetics. We used an outbred population of rats (Heterogeneous Stock, HS) in a combined sequence-based and genetic mapping analysis to identify sequence variants and genes contributing to complex traits of biomedical relevance. Here we describe the sequences of the eight inbred progenitors of the HS and the variants that segregate between them. We report the genotyping of 1,407 HS rats, and the collection from 2,006 rats of 195 phenotypic measures that are relevant to models of anxiety, type 2 diabetes, hypertension and osteoporosis. We make available haplotype dosages for the 1,407 genotyped rats, since genetic mapping in the HS is best carried out by reconstructing each HS chromosome as a mosaic of the progenitor genomes. Finally, we have deposited an R object that makes it easy to incorporate our sequence data into any genetic study of HS rats. Our genetic data are available for both Rnor3.4 and Rnor5.0 rat assemblies.
Collapse
|