1
|
Mignogna KM, Tatom Z, Macleod L, Sergi Z, Nguyen A, Michenkova M, Smith ML, Miles MF. Identification of novel genetic loci and candidate genes for progressive ethanol consumption in diversity outbred mice. Neuropsychopharmacology 2024; 49:1892-1904. [PMID: 38951586 PMCID: PMC11473901 DOI: 10.1038/s41386-024-01902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
Mouse behavioral genetic mapping studies can identify genomic intervals modulating complex traits under well-controlled environmental conditions and have been used to study ethanol behaviors to aid in understanding genetic risk and the neurobiology of alcohol use disorder (AUD). However, historically such studies have produced large confidence intervals, thus complicating identification of potential causal candidate genes. Diversity Outbred (DO) mice offer the ability to perform high-resolution quantitative trait loci (QTL) mapping on a very genetically diverse background, thus facilitating identification of candidate genes. Here, we studied a population of 636 male DO mice with four weeks of intermittent ethanol access via a three-bottle choice procedure, producing a progressive ethanol consumption phenotype. QTL analysis identified 3 significant (Chrs 3, 4, and 12) and 13 suggestive loci for ethanol-drinking behaviors with narrow confidence intervals (1-4 Mbp for significant QTLs). Results suggested that genetic influences on initial versus progressive ethanol consumption were localized to different genomic intervals. A defined set of positional candidate genes were prioritized using haplotype analysis, identified coding polymorphisms, prefrontal cortex transcriptomics data, human GWAS data and prior rodent gene set data for ethanol or other misused substances. These candidates included Car8, the lone gene with a significant cis-eQTL within a Chr 4 QTL for week four ethanol consumption. These results represent the highest-resolution genetic mapping of ethanol consumption behaviors in mice to date, providing identification of novel loci and candidate genes for study in relation to the neurobiology of AUD.
Collapse
Affiliation(s)
- Kristin M Mignogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Tatom
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Lorna Macleod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Angel Nguyen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Marie Michenkova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA.
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Mendoza ET, Villada M, Velásquez-Martínez MC. Voluntary Ethanol Intake and Anxiety Behavior in Wistar-Uis Rats. Int J Psychol Res (Medellin) 2024; 17:63-72. [PMID: 39376933 PMCID: PMC11456330 DOI: 10.21500/20112084.7060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 04/08/2024] [Indexed: 10/09/2024] Open
Abstract
Ethanol consumption is among the first five substances with higher risk associated with diseases, disability, and death in the world. Anxiety behavior has been linked to ethanol-addictive conduct. The aim of the present study was to evaluate three strains with differential anxiety behavior: a Wild-type strain; a "Reactive" strain, with an increase in anxiety-related behaviors; and a "Non-Reactive" strain, with lower anxiety-related behaviors, before and after the voluntary consumption of ethanol (10%) protocol. To evaluate anxiety, animals were exposed to the elevated plus-maze 24 h before and after the consumption protocol. On the voluntary consumption of ethanol protocol, the animals were exposed to a water and an ethanol bottle. The weight of the liquid consumed daily for 40 days was registered. Results: all strains increased ethanol vs water consumption: Wild-type: day 8; R: day 10; NR: day 31. Ethanol consumption reduced the number and percentage of open arms entries only on the Wild-type strain. Conclusion: anxiety can predispose to an increase in ethanol consumption and to the maintenance of anxiety-related behaviors.
Collapse
Affiliation(s)
- Elizabeth T Mendoza
- Universidad Industrial de Santander, Bucaramanga, Santander, Colombia.Universidad Industrial de SantanderUniversidad Industrial de SantanderBucaramangaSantanderColombia
| | - María Villada
- Universidad Industrial de Santander, Bucaramanga, Santander, Colombia.Universidad Industrial de SantanderUniversidad Industrial de SantanderBucaramangaSantanderColombia
| | - Maria Carolina Velásquez-Martínez
- Universidad Industrial de Santander, Bucaramanga, Santander, Colombia.Universidad Industrial de SantanderUniversidad Industrial de SantanderBucaramangaSantanderColombia
- Grupo de Neurociencias y Comportamiento UIS-UPB. Departamento de Ciencias Básicas, Escuela de Medicina, Facultad de Salud, Universidad Industrial de San tander, Bucaramanga, Santander, Colombia.Universidad Industrial de SantanderGrupo de Neurociencias y Comportamiento UIS-UPB. Departamento de Ciencias BásicasEscuela de Medicina, Facultad de SaludUniversidad Industrial de San tanderBucaramangaSantanderColombia
| |
Collapse
|
3
|
Ma J, Huang A, Yan K, Li Y, Sun X, Joehanes R, Huan T, Levy D, Liu C. Blood transcriptomic biomarkers of alcohol consumption and cardiovascular disease risk factors: the Framingham Heart Study. Hum Mol Genet 2023; 32:649-658. [PMID: 36130209 PMCID: PMC9896471 DOI: 10.1093/hmg/ddac237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/19/2022] [Accepted: 09/15/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The relations of alcohol consumption and gene expression remain to be elucidated. MATERIALS AND METHODS We examined cross-sectional associations between alcohol consumption and whole blood derived gene expression levels and between alcohol-associated genes and obesity, hypertension, and diabetes in 5531 Framingham Heart Study (FHS) participants. RESULTS We identified 25 alcohol-associated genes. We further showed cross-sectional associations of 16 alcohol-associated genes with obesity, nine genes with hypertension, and eight genes with diabetes at P < 0.002. For example, we observed decreased expression of PROK2 (β = -0.0018; 95%CI: -0.0021, -0.0007; P = 6.5e - 5) and PAX5 (β = -0.0014; 95%CI: -0.0021, -0.0007; P = 6.5e - 5) per 1 g/day increase in alcohol consumption. Consistent with our previous observation on the inverse association of alcohol consumption with obesity and positive association of alcohol consumption with hypertension, we found that PROK2 was positively associated with obesity (OR = 1.42; 95%CI: 1.17, 1.72; P = 4.5e - 4) and PAX5 was negatively associated with hypertension (OR = 0.73; 95%CI: 0.59, 0.89; P = 1.6e - 3). We also observed that alcohol consumption was positively associated with expression of ABCA13 (β = 0.0012; 95%CI: 0.0007, 0.0017; P = 1.3e - 6) and ABCA13 was positively associated with diabetes (OR = 2.57; 95%CI: 1.73, 3.84; P = 3.5e - 06); this finding, however, was inconsistent with our observation of an inverse association between alcohol consumption and diabetes. CONCLUSIONS We showed strong cross-sectional associations between alcohol consumption and expression levels of 25 genes in FHS participants. Nonetheless, complex relationships exist between alcohol-associated genes and CVD risk factors.
Collapse
Affiliation(s)
- Jiantao Ma
- Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allen Huang
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02142, USA
| | - Kaiyu Yan
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Yi Li
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Xianbang Sun
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tianxiao Huan
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA 01702, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
- Boston University’s and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA 01702, USA
| |
Collapse
|
4
|
Fujino K, Nishio T, Fujioka K, Yoshikawa Y, Kenmotsu T, Yoshikawa K. Activation/Inhibition of Gene Expression Caused by Alcohols: Relationship with the Viscoelastic Property of a DNA Molecule. Polymers (Basel) 2022; 15:polym15010149. [PMID: 36616499 PMCID: PMC9823369 DOI: 10.3390/polym15010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Alcohols are used in the life sciences because they can condense and precipitate DNA. Alcohol consumption has been linked to many diseases and can alter genetic activity. In the present report, we carried out experiments to make clear how alcohols affect the efficiency of transcription-translation (TX-TL) and translation (TL) by adapting cell-free gene expression systems with plasmid DNA and RNA templates, respectively. In addition, we quantitatively analyzed intrachain fluctuations of single giant DNA molecules based on the fluctuation-dissipation theorem to gain insight into how alcohols affect the dynamical property of a DNA molecule. Ethanol (2-3%) increased gene expression levels four to five times higher than the control in the TX-TL reaction. A similar level of enhancement was observed with 2-propanol, in contrast to the inhibitory effect of 1-propanol. Similar alcohol effects were observed for the TL reaction. Intrachain fluctuation analysis through single DNA observation showed that 1-propanol markedly increased both the spring and damping constants of single DNA in contrast to the weak effects observed with ethanol, whereas 2-propanol exhibits an intermediate effect. This study indicates that the activation/inhibition effects of alcohol isomers on gene expression correlate with the changes in the viscoelastic mechanical properties of DNA molecules.
Collapse
Affiliation(s)
- Kohei Fujino
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
- Cluster of Excellence Physics of Life, Technical University of Dresden, 01307 Dresden, Germany
- Correspondence: (T.N.); (K.Y.)
| | - Keita Fujioka
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Takahiro Kenmotsu
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
- Correspondence: (T.N.); (K.Y.)
| |
Collapse
|
5
|
Parker CC, Philip VM, Gatti DM, Kasparek S, Kreuzman AM, Kuffler L, Mansky B, Masneuf S, Sharif K, Sluys E, Taterra D, Taylor WM, Thomas M, Polesskaya O, Palmer AA, Holmes A, Chesler EJ. Genome-wide association mapping of ethanol sensitivity in the Diversity Outbred mouse population. Alcohol Clin Exp Res 2022; 46:941-960. [PMID: 35383961 DOI: 10.1111/acer.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND A strong predictor for the development of alcohol use disorder (AUD) is altered sensitivity to the intoxicating effects of alcohol. Individual differences in the initial sensitivity to alcohol are controlled in part by genetic factors. Mice offer a powerful tool to elucidate the genetic basis of behavioral and physiological traits relevant to AUD, but conventional experimental crosses have only been able to identify large chromosomal regions rather than specific genes. Genetically diverse, highly recombinant mouse populations make it possible to observe a wider range of phenotypic variation, offer greater mapping precision, and thus increase the potential for efficient gene identification. METHODS We have taken advantage of the Diversity Outbred (DO) mouse population to identify and precisely map quantitative trait loci (QTL) associated with ethanol sensitivity. We phenotyped 798 male J:DO mice for three measures of ethanol sensitivity: ataxia, hypothermia, and loss of the righting response. We used high-density MegaMUGA and GigaMUGA to obtain genotypes ranging from 77,808 to 143,259 SNPs. We also performed RNA sequencing in striatum to map expression QTLs and identify gene expression-trait correlations. We then applied a systems genetic strategy to identify narrow QTLs and construct the network of correlations that exists between DNA sequence, gene expression values, and ethanol-related phenotypes to prioritize our list of positional candidate genes. RESULTS We observed large amounts of phenotypic variation with the DO population and identified suggestive and significant QTLs associated with ethanol sensitivity on chromosomes 1, 2, and 16. The implicated regions were narrow (4.5-6.9 Mb in size) and each QTL explained ~4-5% of the variance. CONCLUSIONS Our results can be used to identify alleles that contribute to AUD in humans, elucidate causative biological mechanisms, or assist in the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Clarissa C Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Vivek M Philip
- Center for Computational Sciences, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Daniel M Gatti
- Center for Computational Sciences, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Steven Kasparek
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Andrew M Kreuzman
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Lauren Kuffler
- Center for Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Benjamin Mansky
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Sophie Masneuf
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Kayvon Sharif
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Erica Sluys
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Dominik Taterra
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Walter M Taylor
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Mary Thomas
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Elissa J Chesler
- Center for Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| |
Collapse
|
6
|
Gupta S, Mukhopadhyay S, Mitra A. Therapeutic potential of GHSR-1A antagonism in alcohol dependence, a review. Life Sci 2022; 291:120316. [PMID: 35016882 DOI: 10.1016/j.lfs.2022.120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Growth hormone secretagogue receptor type 1A (GHSR-1A) is a functional receptor of orexigenic peptide ghrelin and is highly expressed in mesolimbic dopaminergic systems that regulate incentive value of artificial reward in substance abuse. Interestingly, GHSR-1A has also shown ligand-independent constitutive activity. Alcohol use disorder (AUD) is one of the growing concerns worldwide as it involves complex neuro-psycho-endocrinological interactions. Positive correlation of acylated ghrelin and alcohol-induced human brain response in the right and left ventral striatum are evident. In the last decade, the beneficial effects of ghrelin receptor (GHSR-1A) antagonism to suppress artificial reward circuitries and induce self-control for alcohol consumption have drawn significant attention from researchers. In this updated review, we summarize the available recent preclinical, clinical, and experimental data to discuss functional, molecular actions of central ghrelin-GHSR-1A signaling in different craving levels for alcohol as well as to promote "GHSR-1A antagonism" as one of the potential therapies in early abstinence.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman 713 347, West Bengal, India
| | - Sanchari Mukhopadhyay
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hombegowda Nagar, Bengaluru 560029, India
| | - Arkadeep Mitra
- Department of Zoology, City College, 102/1, Raja Rammohan Sarani, Kolkata 700 009, West Bengal, India.
| |
Collapse
|
7
|
Kisby BR, Farris SP, McManus MM, Varodayan FP, Roberto M, Harris RA, Ponomarev I. Alcohol Dependence in Rats Is Associated with Global Changes in Gene Expression in the Central Amygdala. Brain Sci 2021; 11:1149. [PMID: 34573170 PMCID: PMC8468792 DOI: 10.3390/brainsci11091149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol dependence is associated with adverse consequences of alcohol (ethanol) use and is evident in most severe cases of alcohol use disorder (AUD). The central nucleus of the amygdala (CeA) plays a critical role in the development of alcohol dependence and escalation of alcohol consumption in dependent subjects. Molecular mechanisms underlying the CeA-driven behavioral changes are not well understood. Here, we examined the effects of alcohol on global gene expression in the CeA using a chronic intermittent ethanol (CIE) vapor model in rats and RNA sequencing (RNA-Seq). The CIE procedure resulted in robust changes in CeA gene expression during intoxication, as the number of differentially expressed genes (DEGs) was significantly greater than those expected by chance. Over-representation analysis of cell types, functional groups and molecular pathways revealed biological categories potentially important for the development of alcohol dependence in our model. Genes specific for astrocytes, myelinating oligodendrocytes, and endothelial cells were over-represented in the DEG category, suggesting that these cell types were particularly affected by the CIE procedure. The majority of the over-represented functional groups and molecular pathways were directly related to the functions of glial and endothelial cells, including extracellular matrix (ECM) organization, myelination, and the regulation of innate immune response. A coordinated regulation of several ECM metalloproteinases (e.g., Mmp2; Mmp14), their substrates (e.g., multiple collagen genes and myelin basic protein; Mbp), and a metalloproteinase inhibitor, Reck, suggests a specific mechanism for ECM re-organization in response to chronic alcohol, which may modulate neuronal activity and result in behavioral changes, such as an escalation of alcohol drinking. Our results highlight the importance of glial and endothelial cells in the effects of chronic alcohol exposure on the CeA, and demonstrate further insight into the molecular mechanisms of alcohol dependence in rats. These molecular targets may be used in future studies to develop therapeutics to treat AUD.
Collapse
Affiliation(s)
- Brent R. Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Sean P. Farris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Michelle M. McManus
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Florence P. Varodayan
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - R. Adron Harris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78741, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| |
Collapse
|
8
|
Cao KX, Ma ML, Wang CZ, Iqbal J, Si JJ, Xue YX, Yang JL. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology 2021; 197:108574. [PMID: 33894219 DOI: 10.1016/j.neuropharm.2021.108574] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
The etiology of psychiatric disorders remains largely unknown. The exploration of the neurobiological mechanisms of mental illness helps improve diagnostic efficacy and develop new therapies. This review focuses on the application of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) in various mental diseases, including major depressive disorder, bipolar disorder, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, substance use disorder, and insomnia. First, we summarize the commonly used protocols and output measures of TMS-EEG; then, we review the literature exploring the alterations in neural patterns, particularly cortical excitability, plasticity, and connectivity alterations, and studies that predict treatment responses and clinical states in mental disorders using TMS-EEG. Finally, we discuss the potential mechanisms underlying TMS-EEG in establishing biomarkers for psychiatric disorders and future research directions.
Collapse
Affiliation(s)
- Ke-Xin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mao-Liang Ma
- Department of Clinical Psychology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Cheng-Zhan Wang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Javed Iqbal
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Ji-Jian Si
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China; Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning Commission, Peking University, Beijing, China.
| | - Jian-Li Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
9
|
Engel GL, Taber K, Vinton E, Crocker AJ. Studying alcohol use disorder using Drosophila melanogaster in the era of 'Big Data'. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2019; 15:7. [PMID: 30992041 PMCID: PMC6469124 DOI: 10.1186/s12993-019-0159-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 02/08/2023]
Abstract
Our understanding of the networks of genes and protein functions involved in Alcohol Use Disorder (AUD) remains incomplete, as do the mechanisms by which these networks lead to AUD phenotypes. The fruit fly (Drosophila melanogaster) is an efficient model for functional and mechanistic characterization of the genes involved in alcohol behavior. The fly offers many advantages as a model organism for investigating the molecular and cellular mechanisms of alcohol-related behaviors, and for understanding the underlying neural circuitry driving behaviors, such as locomotor stimulation, sedation, tolerance, and appetitive (reward) learning and memory. Fly researchers are able to use an extensive variety of tools for functional characterization of gene products. To understand how the fly can guide our understanding of AUD in the era of Big Data we will explore these tools, and review some of the gene networks identified in the fly through their use, including chromatin-remodeling, glial, cellular stress, and innate immunity genes. These networks hold great potential as translational drug targets, making it prudent to conduct further research into how these gene mechanisms are involved in alcohol behavior.
Collapse
Affiliation(s)
- Gregory L. Engel
- Department of Psychological Sciences, Castleton University, Castleton, VT 05735 USA
| | - Kreager Taber
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Elizabeth Vinton
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| | - Amanda J. Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753 USA
| |
Collapse
|
10
|
Finn DA, Hashimoto JG, Cozzoli DK, Helms ML, Nipper MA, Kaufman MN, Wiren KM, Guizzetti M. Binge Ethanol Drinking Produces Sexually Divergent and Distinct Changes in Nucleus Accumbens Signaling Cascades and Pathways in Adult C57BL/6J Mice. Front Genet 2018; 9:325. [PMID: 30250478 PMCID: PMC6139464 DOI: 10.3389/fgene.2018.00325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
We previously determined that repeated binge ethanol drinking produced sex differences in the regulation of signaling downstream of Group 1 metabotropic glutamate receptors in the nucleus accumbens (NAc) of adult C57BL/6J mice. The purpose of the present study was to characterize RNA expression differences in the NAc of adult male and female C57BL/6J mice following 7 binge ethanol drinking sessions, when compared with controls consuming water. This binge drinking procedure produced high intakes (average >2.2 g/kg/30 min) and blood ethanol concentrations (average >1.3 mg/ml). Mice were euthanized at 24 h after the 7th binge session, and focused qPCR array analysis was employed on NAc tissue to quantify expression levels of 384 genes in a customized Mouse Mood Disorder array, with a focus on glutamatergic signaling (3 arrays/group). We identified significant regulation of 50 genes in male mice and 70 genes in female mice after 7 ethanol binges. Notably, 14 genes were regulated in both males and females, representing common targets to binge ethanol drinking. However, expression of 10 of these 14 genes was strongly dimorphic (e.g., opposite regulation for genes such as Crhr2, Fos, Nos1, and Star), and only 4 of the 14 genes were regulated in the same direction (Drd5, Grm4, Ranbp9, and Reln). Interestingly, the top 30 regulated genes by binge ethanol drinking for each sex differed markedly in the male and female mice, and this divergent neuroadaptive response in the NAc could result in dysregulation of distinct biological pathways between the sexes. Characterization of the expression differences with Ingenuity Pathway Analysis was used to identify Canonical Pathways, Upstream Regulators, and significant Biological Functions. Expression differences suggested that hormone signaling and immune function were altered by binge drinking in female mice, whereas neurotransmitter metabolism was a central target of binge ethanol drinking in male mice. Thus, these results indicate that the transcriptional response to repeated binge ethanol drinking was strongly influenced by sex, and they emphasize the importance of considering sex in the development of potential pharmacotherapeutic targets for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Debra K Cozzoli
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Melinda L Helms
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Moriah N Kaufman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kristine M Wiren
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
11
|
Ruan QT, Yazdani N, Beierle JA, Hixson KM, Hokenson KE, Apicco DJ, Luttik KP, Zheng K, Maziuk BF, Ash PEA, Szumlinski KK, Russek SJ, Wolozin B, Bryant CD. Changes in neuronal immunofluorescence in the C- versus N-terminal domains of hnRNP H following D1 dopamine receptor activation. Neurosci Lett 2018; 684:109-114. [PMID: 30003938 DOI: 10.1016/j.neulet.2018.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/04/2018] [Accepted: 07/08/2018] [Indexed: 12/23/2022]
Abstract
RNA binding proteins are a diverse class of proteins that regulate all aspects of RNA metabolism. Accumulating studies indicate that heterogeneous nuclear ribonucleoproteins are associated with cellular adaptations in response to drugs of abuse. We recently mapped and validated heterogeneous nuclear ribonucleoprotein H1 (Hnrnph1) as a quantitative trait gene underlying differential behavioral sensitivity to methamphetamine. The molecular mechanisms by which hnRNP H1 alters methamphetamine behaviors are unknown but could involve pre- and/or post-synaptic changes in protein localization and function. Methamphetamine initiates post-synaptic D1 dopamine receptor signaling indirectly by binding to pre-synaptic dopamine transporters and vesicular monoamine transporters of midbrain dopaminergic neurons which triggers reverse transport and accumulation of dopamine at the synapse. Here, we examined changes in neuronal localization of hnRNP H in primary rat cortical neurons that express dopamine receptors that can be modulated by the D1 or D2 dopamine receptor agonists SKF38393 and (-)-Quinpirole HCl, respectively. Basal immunostaining of hnRNP H was localized primarily to the nucleus. D1 dopamine receptor activation induced an increase in hnRNP H nuclear immunostaining as detected by immunocytochemistry with a C-domain directed antibody containing epitope near the glycine-rich domain but not with an N-domain specific antibody. Although there was no change in hnRNP H protein in the nucleus or cytoplasm, there was a decrease in Hnrnph1 transcript following D1 receptor stimulation. Taken together, these results suggest that D1 receptor activation increases availability of the hnRNP H C-terminal epitope, which could potentially reflect changes in protein-protein interactions. Thus, D1 receptor signaling could represent a key molecular post-synaptic event linking Hnrnph1 polymorphisms to drug-induced behavior.
Collapse
Affiliation(s)
- Qiu T Ruan
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States; Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, United States; Transformative Training Program in Addiction Science, Boston University, United States
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States; Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, United States; Transformative Training Program in Addiction Science, Boston University, United States
| | - Jacob A Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States; Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, United States; Transformative Training Program in Addiction Science, Boston University, United States
| | - Kathryn M Hixson
- Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, United States; Laboratory of Translational Epilepsy, Department of Pharmacology and Experimental Therapeutics and Biology, Boston University School of Medicine, United States
| | - Kristen E Hokenson
- Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, United States; Laboratory of Translational Epilepsy, Department of Pharmacology and Experimental Therapeutics and Biology, Boston University School of Medicine, United States
| | - Daniel J Apicco
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States; Laboratory of Neurodegeneration, Department of Pharmacology and Experimental Therapeutics and Neurology, Boston University School of Medicine, United States
| | - Kimberly P Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States
| | - Karen Zheng
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States
| | - Brandon F Maziuk
- Laboratory of Neurodegeneration, Department of Pharmacology and Experimental Therapeutics and Neurology, Boston University School of Medicine, United States
| | - Peter E A Ash
- Laboratory of Neurodegeneration, Department of Pharmacology and Experimental Therapeutics and Neurology, Boston University School of Medicine, United States
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, United States
| | - Shelley J Russek
- Laboratory of Translational Epilepsy, Department of Pharmacology and Experimental Therapeutics and Biology, Boston University School of Medicine, United States
| | - Benjamin Wolozin
- Laboratory of Neurodegeneration, Department of Pharmacology and Experimental Therapeutics and Neurology, Boston University School of Medicine, United States
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States.
| |
Collapse
|
12
|
Silva CP, Horton WJ, Caruso MJ, Sebastian A, Klein LC, Albert I, Kamens HM. The influence of adolescent nicotine exposure on ethanol intake and brain gene expression. PLoS One 2018; 13:e0198935. [PMID: 29912970 PMCID: PMC6005571 DOI: 10.1371/journal.pone.0198935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023] Open
Abstract
Nicotine and alcohol are often co-abused. Adolescence is a vulnerable period for the initiation of both nicotine and alcohol use, which can lead to subsequent neurodevelopmental and behavioral alterations. It is possible that during this vulnerable period, use of one drug leads to neurobiological alterations that affect subsequent consumption of the other drug. The aim of the present study was to determine the effect of nicotine exposure during adolescence on ethanol intake, and the effect of these substances on brain gene expression. Forty-three adolescent female C57BL/6J mice were assigned to four groups. In the first phase of the experiment, adolescent mice (PND 36-41 days) were exposed to three bottles filled with water or nicotine (200 μg/ml) for 22 h a day and a single bottle of water 2 h a day for six days. In the second phase (PND 42-45 days), the 4-day Drinking-in-the-Dark paradigm consisting of access to 20% v/v ethanol or water for 2h or 4h (the last day) was overlaid during the time when the mice did not have nicotine available. Ethanol consumption (g/kg) and blood ethanol concentrations (BEC, mg %) were measured on the final day and whole brains including the cerebellum, were dissected for RNA sequencing. Differentially expressed genes (DEG) were detected with CuffDiff and gene networks were built using WGCNA. Prior nicotine exposure increased ethanol consumption and resulting BEC. Significant DEG and biological pathways found in the group exposed to both nicotine and ethanol included genes important in stress-related neuropeptide signaling, hypothalamic-pituitary-adrenal (HPA) axis activity, glutamate release, GABA signaling, and dopamine release. These results replicate our earlier findings that nicotine exposure during adolescence increases ethanol consumption and extends this work by examining gene expression differences which could mediate these behavioral effects.
Collapse
Affiliation(s)
- Constanza P. Silva
- Biobehavioral Health Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - William J. Horton
- Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael J. Caruso
- Biobehavioral Health Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Aswathy Sebastian
- Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Laura C. Klein
- Biobehavioral Health Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Istvan Albert
- Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Helen M. Kamens
- Biobehavioral Health Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
13
|
Ramirez-Roman ME, Billini CE, Ghezzi A. Epigenetic Mechanisms of Alcohol Neuroadaptation: Insights from Drosophila. J Exp Neurosci 2018; 12:1179069518779809. [PMID: 29899666 PMCID: PMC5990879 DOI: 10.1177/1179069518779809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Alcohol addiction is a serious condition perpetuated by enduring physiological and behavioral adaptations. An important component of these adaptations is the long-term rearrangement of neuronal gene expression in the brain of the addicted individual. Epigenetic histone modifications have recently surfaced as important modulators of the transcriptional adaptation to alcohol as these are thought to represent a form of transcriptional memory that is directly imprinted on the chromosome. Some histone modifications affect transcription by modulating the accessibility of the underlying DNA, whereas others have been proposed to serve as marks read by transcription factors as a "histone code" that helps to specify the expression level of a gene. Although the effects of some epigenetic modifications on the transcriptional activity of genes are well known, the mechanisms by which alcohol consumption produces this rearrangement and leads to lasting changes in behavior remain unresolved. Recent advances using the Drosophila model system have started to unravel the epigenetic modulators underlying functional alcohol neuroadaptations. In this review, we discuss the role of 3 different histone modification systems in Drosophila, which have a direct impact on key alcohol neuroadaptations associated with the addictive process. These systems involve the histone deacetylase Sirt1, the histone acetyltransferase CREB-binding protein (CBP), and a subset of the Drosophila JmjC-Domain histone demethylase family.
Collapse
Affiliation(s)
| | - Carlos E Billini
- Department of Biology, University of Puerto Rico–Rio Piedras, San Juan, PR, USA
| | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico–Rio Piedras, San Juan, PR, USA
| |
Collapse
|
14
|
You C, Vandegrift B, Brodie MS. Ethanol actions on the ventral tegmental area: novel potential targets on reward pathway neurons. Psychopharmacology (Berl) 2018; 235:1711-1726. [PMID: 29549390 PMCID: PMC5949141 DOI: 10.1007/s00213-018-4875-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 12/14/2022]
Abstract
The ventral tegmental area (VTA) evaluates salience of environmental stimuli and provides dopaminergic innervation to many brain areas affected by acute and chronic ethanol exposure. While primarily associated with rewarding and reinforcing stimuli, recent evidence indicates a role for the VTA in aversion as well. Ethanol actions in the VTA may trigger neuroadaptation resulting in reduction of the aversive responses to alcohol and a relative increase in the rewarding responses. In searching for effective pharmacotherapies for the treatment of alcohol abuse and alcoholism, recognition of this imbalance may reveal novel strategies. In addition to conventional receptor/ion channel pharmacotherapies, epigenetic factors that control neuroadaptation to chronic ethanol treatment can be targeted as an avenue for development of therapeutic approaches to restore the balance. Furthermore, when exploring therapies to address reward/aversion imbalance in the action of alcohol in the VTA, sex differences have to be taken into account to ensure effective treatment for both men and women. These principles apply to a VTA-centric approach to therapies, but should hold true when thinking about the overall approach in the development of neuroactive drugs to treat alcohol use disorders. Although the functions of the VTA itself are complex, it is a useful model system to evaluate the reward/aversion imbalance that occurs with ethanol exposure and could be used to provide new leads in the efforts to develop novel drugs to treat alcoholism.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bertha Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
15
|
McGuier NS, Rinker JA, Cannady R, Fulmer DB, Jones SR, Hoffman M, Mulholland PJ. Identification and validation of midbrain Kcnq4 regulation of heavy alcohol consumption in rodents. Neuropharmacology 2018; 138:10-19. [PMID: 29775679 DOI: 10.1016/j.neuropharm.2018.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/27/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Currently available pharmacotherapies for treating alcohol use disorder (AUD) suffer from deleterious side effects and are not efficacious in diverse populations. Clinical and preclinical studies provide evidence that the Kcnq family of genes that encode KV7 channels influence alcohol intake and dependence. KV7 channels are a class of slowly activating voltage-dependent K+ channels that regulate neuronal excitability. Studies indicate that the KV7 channel positive modulator retigabine can decrease dopaminergic neuron firing, alter dopamine (DA) release, and reduce alcohol intake in heavy drinking rodents. Given the critical nature of ventral tegmental area (VTA) DA to the addiction process and predominant expression of Kcnq4 in DA neurons, we investigated the role of midbrain Kcnq genes and KV7 channels in the VTA of genetically diverse mice and long-term heavy drinking rats, respectively. Integrative bioinformatics analysis identified negative correlations between midbrain Kcnq4 expression and alcohol intake and seeking behaviors. Kcnq4 expression levels were also correlated with dopaminergic-related phenotypes in BXD strains, and Kcnq4 was present in support intervals for alcohol sensitivity and alcohol withdrawal severity QTLs in rodents. Pharmacological validation studies revealed that VTA KV7 channels regulate excessive alcohol intake in rats with a high-drinking phenotype. Administration of a novel and selective KV7.2/4 channel positive modulator also reduced alcohol drinking in rats. Together, these findings indicate that midbrain Kcnq4 expression regulates alcohol-related behaviors in genetically diverse mice and provide evidence that KV7.4 channels are a critical mediator of excessive alcohol drinking.
Collapse
Affiliation(s)
- Natalie S McGuier
- Medical University of South Carolina, Department of Neuroscience, 67 President Street, Charleston, SC, 29425, United States
| | - Jennifer A Rinker
- Medical University of South Carolina, Department of Neuroscience, 67 President Street, Charleston, SC, 29425, United States; Medical University of South Carolina, Department of Psychiatry & Behavioral Sciences, 67 President Street, Charleston, SC, 29425, United States
| | - Reginald Cannady
- Medical University of South Carolina, Department of Neuroscience, 67 President Street, Charleston, SC, 29425, United States
| | - Diana B Fulmer
- Medical University of South Carolina, Department of Neuroscience, 67 President Street, Charleston, SC, 29425, United States
| | - Sara R Jones
- Wake Forest School of Medicine, Department of Physiology and Pharmacology, 1 Medical Center Boulevard, Winston Salem, NC, 27157, United States
| | - Michaela Hoffman
- Medical University of South Carolina, Department of Psychiatry & Behavioral Sciences, 67 President Street, Charleston, SC, 29425, United States
| | - Patrick J Mulholland
- Medical University of South Carolina, Department of Neuroscience, 67 President Street, Charleston, SC, 29425, United States; Medical University of South Carolina, Department of Psychiatry & Behavioral Sciences, 67 President Street, Charleston, SC, 29425, United States.
| |
Collapse
|
16
|
Ponomarev I, Stelly CE, Morikawa H, Blednov YA, Mayfield RD, Harris RA. Mechanistic insights into epigenetic modulation of ethanol consumption. Alcohol 2017; 60:95-101. [PMID: 28433417 DOI: 10.1016/j.alcohol.2017.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/16/2022]
Abstract
There is growing evidence that small-molecule inhibitors of epigenetic modulators, such as histone deacetylases (HDAC) and DNA methyltransferases (DNMT), can reduce voluntary ethanol consumption in animal models, but molecular and cellular processes underlying this behavioral effect are poorly understood. We used C57BL/6J male mice to investigate the effects of two FDA-approved drugs, decitabine (a DNMT inhibitor) and SAHA (an HDAC inhibitor), on ethanol consumption using two tests: binge-like drinking in the dark (DID) and chronic intermittent every other day (EOD) drinking. Decitabine but not SAHA reduced ethanol consumption in both tests. We further investigated decitabine's effects on the brain's reward pathway by gene expression profiling in the ventral tegmental area (VTA), using RNA sequencing and electrophysiological recordings from VTA dopaminergic neurons. Decitabine-induced decreases in EOD drinking were associated with global changes in gene expression, implicating regulation of cerebral blood flow, extracellular matrix organization, and neuroimmune functions in decitabine actions. In addition, an in vivo administration of decitabine shortened ethanol-induced excitation of VTA dopaminergic neurons in vitro, suggesting that decitabine reduces ethanol drinking via changes in the reward pathway. Taken together, our data suggest a contribution of both neuronal and non-neuronal mechanisms in the VTA in the regulation of ethanol consumption. Decitabine and other epigenetic compounds have been approved for cancer treatment, and understanding their mechanisms of actions in the brain may assist in repurposing these drugs and developing novel therapies for central disorders, including drug addiction.
Collapse
Affiliation(s)
- Igor Ponomarev
- Waggoner Center for Alcohol and Addiction Research, USA; The College of Pharmacy, The University of Texas at Austin, 2500 Speedway A4800, Austin, TX, 78712, USA.
| | | | | | | | | | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, USA; The College of Pharmacy, The University of Texas at Austin, 2500 Speedway A4800, Austin, TX, 78712, USA
| |
Collapse
|
17
|
Reilly MT, Noronha A, Goldman D, Koob GF. Genetic studies of alcohol dependence in the context of the addiction cycle. Neuropharmacology 2017; 122:3-21. [PMID: 28118990 DOI: 10.1016/j.neuropharm.2017.01.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 12/16/2022]
Abstract
Family, twin and adoption studies demonstrate clearly that alcohol dependence and alcohol use disorders are phenotypically complex and heritable. The heritability of alcohol use disorders is estimated at approximately 50-60% of the total phenotypic variability. Vulnerability to alcohol use disorders can be due to multiple genetic or environmental factors or their interaction which gives rise to extensive and daunting heterogeneity. This heterogeneity makes it a significant challenge in mapping and identifying the specific genes that influence alcohol use disorders. Genetic linkage and (candidate gene) association studies have been used now for decades to map and characterize genomic loci and genes that underlie the genetic vulnerability to alcohol use disorders. These approaches have been moderately successful in identifying several genes that contribute to the complexity of alcohol use disorders. Recently, genome-wide association studies have become one of the major tools for identifying genes for alcohol use disorders by examining correlations between millions of common single-nucleotide polymorphisms with diagnosis status. Genome-wide association studies are just beginning to uncover novel biology; however, the functional significance of results remains a matter of extensive debate and uncertainty. In this review, we present a select group of genome-wide association studies of alcohol dependence, as one example of a way to generate functional hypotheses, within the addiction cycle framework. This analysis may provide novel directions for validating the functional significance of alcohol dependence candidate genes. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Matthew T Reilly
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Division of Neuroscience and Behavior, 5635 Fishers Lane, Bethesda, MD 20852, USA.
| | - Antonio Noronha
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Division of Neuroscience and Behavior, 5635 Fishers Lane, Bethesda, MD 20852, USA
| | - David Goldman
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Chief, Laboratory of Neurogenetics, 5635 Fishers Lane, Bethesda, MD 20852, USA
| | - George F Koob
- National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Director NIAAA, 5635 Fishers Lane, Bethesda, MD 20852, USA
| |
Collapse
|
18
|
Darlington TM, McCarthy RD, Cox RJ, Miyamoto-Ditmon J, Gallego X, Ehringer MA. Voluntary wheel running reduces voluntary consumption of ethanol in mice: identification of candidate genes through striatal gene expression profiling. GENES BRAIN AND BEHAVIOR 2016; 15:474-90. [PMID: 27063791 DOI: 10.1111/gbb.12294] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/11/2016] [Accepted: 04/06/2016] [Indexed: 01/10/2023]
Abstract
Hedonic substitution, where wheel running reduces voluntary ethanol consumption, has been observed in prior studies. Here, we replicate and expand on previous work showing that mice decrease voluntary ethanol consumption and preference when given access to a running wheel. While earlier work has been limited mainly to behavioral studies, here we assess the underlying molecular mechanisms that may account for this interaction. From four groups of female C57BL/6J mice (control, access to two-bottle choice ethanol, access to a running wheel, and access to both two-bottle choice ethanol and a running wheel), mRNA-sequencing of the striatum identified differential gene expression. Many genes in ethanol preference quantitative trait loci were differentially expressed due to running. Furthermore, we conducted Weighted Gene Co-expression Network Analysis and identified gene networks corresponding to each effect behavioral group. Candidate genes for mediating the behavioral interaction between ethanol consumption and wheel running include multiple potassium channel genes, Oprm1, Prkcg, Stxbp1, Crhr1, Gabra3, Slc6a13, Stx1b, Pomc, Rassf5 and Camta2. After observing an overlap of many genes and functional groups previously identified in studies of initial sensitivity to ethanol, we hypothesized that wheel running may induce a change in sensitivity, thereby affecting ethanol consumption. A behavioral study examining Loss of Righting Reflex to ethanol following exercise trended toward supporting this hypothesis. These data provide a rich resource for future studies that may better characterize the observed transcriptional changes in gene networks in response to ethanol consumption and wheel running.
Collapse
Affiliation(s)
- T M Darlington
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Current address: Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - R D McCarthy
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - R J Cox
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - J Miyamoto-Ditmon
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - X Gallego
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - M A Ehringer
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|