1
|
Sarangi S, Sharma S, Nahak SK, Panda AK. Association of CACNA1C polymorphisms (rs1006737, rs4765905, rs2007044) with schizophrenia: A meta-analysis and trial sequential analysis. Schizophr Res 2024; 274:247-256. [PMID: 39378823 DOI: 10.1016/j.schres.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
Schizophrenia is a complex neurological disorder characterized by significant impairment in the perception of reality and changes in behavior. Genetic and environmental factors influence the development of schizophrenia. CACNA1C, which encodes a subunit of a voltage-dependent calcium channel, has been associated with various neurological disorders, including schizophrenia. Several studies have been performed in different populations to explore the association of common genetic variants in the CACNA1C gene with susceptibility to the development of schizophrenia, but results remain contradictory. To draw a definitive conclusion on the association between CACNA1C polymorphisms and schizophrenia, we conducted a meta-analysis focusing on three commonly studied polymorphisms: rs1006737, rs4765905, and rs2007044. For the meta-analysis, a comprehensive literature search was performed using PubMed, Scopus, Science Direct and Google Scholar databases. Data was retrieved, and the meta-analysis was performed using CMA v4 software. The meta-analysis revealed a significant association between rs1006737 and rs2007044 and schizophrenia in the overall population, while no such association was found for rs4765905. Population-wise analysis suggested that all three polymorphisms were significantly associated with schizophrenia in the Asian population and that rs1006737 was significantly associated with schizophrenia in Europeans. We also performed a Trial Sequential Analysis (TSA), which supported our findings. Some report-based assay studies have suggested a role for these polymorphisms in schizophrenia, but further case-control studies are needed to confirm the association of rs4765905 and rs2007044 with the disorder.
Collapse
Affiliation(s)
- Surjyapratap Sarangi
- ImmGen EvSys Laboratory BT-113, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India; Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453552, India
| | - Saurav Sharma
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453552, India
| | - Suraj Kumar Nahak
- ImmGen EvSys Laboratory BT-113, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India
| | - Aditya K Panda
- ImmGen EvSys Laboratory BT-113, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India; Centre of Excellence on Bioprospecting of Ethno-pharmaceuticals of Southern Odisha (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India.
| |
Collapse
|
2
|
Dickerson MR, Reed J. Pharmacogenetic testing may benefit people receiving low-dose lithium in clinical practice. J Am Assoc Nurse Pract 2024; 36:320-328. [PMID: 37882688 DOI: 10.1097/jxx.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Mental illnesses are leading causes of disability in the United States. Some evidence supports that pharmacogenetic testing may be beneficial in select populations and that lithium is beneficial for treating mood disorders and anxiety in some populations. PURPOSE This research aimed to determine whether low-dose lithium effectively decreases depression and anxiety in adults with a risk allele for CACNA1C genotypes. METHODOLOGY The study design was correlational. Fifty patients were treated at a nurse practitioner-owned clinic in Prairie Village, Kansas. Chart review was used. Adults older than 18 years diagnosed with major depressive disorder, bipolar disorder, or generalized anxiety disorder presenting with an abnormality in the CACNA1C gene single-nucleotide polymorphism rs1006737 were included in this research. Assessment tools used were the Patient Health Questionnaire-9 for depression and GAD-7 for anxiety. RESULTS Low-dose lithium significantly decreased depression by 66% ( p < .001) and anxiety by 65% ( p = <.001). There was a significant difference in pretest depression levels based on CACNA1C genotype ( p = .033). The A allele frequency was 60% higher (48%) in this population than found in general population (30%). CONCLUSIONS Low-dose lithium significantly decreased anxiety and depression compared with baseline. People with different versions of the CACNA1C genotype had responses that differed significantly. The A risk allele was 60% more common than in the general population. IMPLICATIONS This study could aid in establishing genetic testing as an effective clinical tool for treating depression and anxiety using lithium, an inexpensive and widely available medication.
Collapse
Affiliation(s)
- Michael Ray Dickerson
- University of Missouri-Kansas City, Kansas City, Missouri
- Southwest Baptist University, Springfield, Missouri
| | | |
Collapse
|
3
|
Shen G, Chen L, Liu Y, Zhu Q, Kang Y, Luo X, Wang F, Wang W. ANK3 rs10994336 and ZNF804A rs7597593 polymorphisms: genetic interaction for emotional and behavioral symptoms of alcohol withdrawal syndrome. BMC Psychiatry 2024; 24:335. [PMID: 38702695 PMCID: PMC11067186 DOI: 10.1186/s12888-024-05787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
OBJECTIVE Alcohol withdrawal syndrome (AWS) is a complex condition associated with alcohol use disorder (AUD), characterized by significant variations in symptom severity among patients. The psychological and emotional symptoms accompanying AWS significantly contribute to withdrawal distress and relapse risk. Despite the importance of neural adaptation processes in AWS, limited genetic investigations have been conducted. This study primarily focuses on exploring the single and interaction effects of single-nucleotide polymorphisms in the ANK3 and ZNF804A genes on anxiety and aggression severity manifested in AWS. By examining genetic associations with withdrawal-related psychopathology, we ultimately aim to advance understanding the genetic underpinnings that modulate AWS severity. METHODS The study involved 449 male patients diagnosed with alcohol use disorder. The Self-Rating Anxiety Scale (SAS) and Buss-Perry Aggression Questionnaire (BPAQ) were used to assess emotional and behavioral symptoms related to AWS. Genomic DNA was extracted from peripheral blood, and genotyping was performed using PCR. RESULTS Single-gene analysis revealed that naturally occurring allelic variants in ANK3 rs10994336 (CC homozygous vs. T allele carriers) were associated with mood and behavioral symptoms related to AWS. Furthermore, the interaction between ANK3 and ZNF804A was significantly associated with the severity of psychiatric symptoms related to AWS, as indicated by MANOVA. Two-way ANOVA further demonstrated a significant interaction effect between ANK3 rs10994336 and ZNF804A rs7597593 on anxiety, physical aggression, verbal aggression, anger, and hostility. Hierarchical regression analyses confirmed these findings. Additionally, simple effects analysis and multiple comparisons revealed that carriers of the ANK3 rs10994336 T allele experienced more severe AWS, while the ZNF804A rs7597593 T allele appeared to provide protection against the risk associated with the ANK3 rs10994336 mutation. CONCLUSION This study highlights the gene-gene interaction between ANK3 and ZNF804A, which plays a crucial role in modulating emotional and behavioral symptoms related to AWS. The ANK3 rs10994336 T allele is identified as a risk allele, while the ZNF804A rs7597593 T allele offers protection against the risk associated with the ANK3 rs10994336 mutation. These findings provide initial support for gene-gene interactions as an explanation for psychiatric risk, offering valuable insights into the pathophysiological mechanisms involved in AWS.
Collapse
Affiliation(s)
- Guanghui Shen
- Key Laboratory of Psychoneuroendocrinology, Wenzhou Seventh People's Hospital, Wenzhou, 325006, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Li Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qi Zhu
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yimin Kang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Hohhot, China
| | - Xinguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China.
| | - Wei Wang
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Punchaichira TJ, Kukshal P, Bhatia T, Deshpande SN, Thelma BK. Effect of rs1108580 of DBH and rs1006737 of CACNA1C on Cognition and Tardive Dyskinesia in a North Indian Schizophrenia Cohort. Mol Neurobiol 2023; 60:6826-6839. [PMID: 37493923 DOI: 10.1007/s12035-023-03496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
Genetic perturbations in dopamine neurotransmission and calcium signaling pathways are implicated in the etiology of schizophrenia. We aimed to test the association of a functional splice variant each in Dopamine β-Hydroxylase (DBH; rs1108580) and Calcium voltage-gated channel subunit alpha1 C (CACNA1C; rs1006737) genes in these pathways with schizophrenia (506 cases, 443 controls); Abnormal Involuntary Movement Scale (AIMS) scores in subjects assessed for tardive dyskinesia (76 TD-positive, 95 TD-negative) and Penn Computerized Neurocognitive Battery (PennCNB) scores (334 cases, 234 controls). The effect of smoking status and SNP genotypes on AIMS scores were assessed using ANOVA; health status and SNP genotypes on three performance functions of PennCNB cognitive domains were assessed by ANCOVA with age and sex as covariates. Association with Positive and Negative Syndrome Scale (PANSS) scores in the TD cohort and cognitive scores in healthy controls of the cognition cohort were tested by linear regression. None of the markers were associated with schizophrenia. Smoking status [F(2, 139) = 10.6; p = 5 × 10-5], rs1006737 [F(2, 139) = 7.1; p = 0.001], TD status*smoking [F(2, 139) = 8.0; p = 5.0 × 10-4] and smoking status*rs1006737 [F(4, 139) = 2.7; p = 0.03] had an effect on AIMS score. Furthermore, rs1006737 was associated with orofacial [F(2, 139) = 4.6; p = 0.01] and limb-truncal TD [(F(2, 139) = 3.8; p = 0.02]. Main effect of rs1108580 on working memoryprocessing speed [F(2, 544) = 3.8; p = 0.03] and rs1006737 on spatial abilityefficiency [F(1, 550) = 9.4; p = 0.02] was identified. Health status*rs1006737 interaction had an effect on spatial memoryprocessing speed [F(1, 550) = 6.9; p = 0.01]. Allelic/genotypic association (p = 0.01/0.03) of rs1006737 with disorganized/concrete factor and allelic association of rs1108580 (p = 0.04) with a depressive factor of PANSS was observed in the TD-negative subcohort. Allelic association of rs1006737 with sensorimotor dexterityaccuracy (p = 0.03), attentionefficiency (p = 0.05), and spatial abilityefficiency (p = 0.02); allelic association of rs1108580 with face memoryaccuracy (p = 0.05) and emotionefficiency (p = 0.05); and allelic/genotypic association with emotionaccuracy (p = 0.003/0.009) were observed in healthy controls of the cognition cohort. These association findings may have direct implications for personalized medicine and cognitive remediation.
Collapse
Affiliation(s)
| | - Prachi Kukshal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
- Sri Sathya Sai Sanjeevani International Centre for Child Heart Care & Research, Palwal, Haryana, 121102, India
| | - Triptish Bhatia
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, Baba Kharak Singh Marg, Connaught Place, New Delhi, 110001, India
| | - Smita Neelkanth Deshpande
- Department of Psychiatry, Postgraduate Institute of Medical Education and Research-Dr. Ram Manohar Lohia Hospital, Baba Kharak Singh Marg, Connaught Place, New Delhi, 110001, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
5
|
Kalcev G, Scano A, Orrù G, Primavera D, Cossu G, Nardi AE, Carta MG. Is a Genetic Variant associated with Bipolar Disorder Frequent in People without Bipolar Disorder but with Characteristics of Hyperactivity and Novelty Seeking? Clin Pract Epidemiol Ment Health 2023; 19:e174501792303280. [PMID: 37916199 PMCID: PMC10351339 DOI: 10.2174/17450179-v19-e230419-2022-53] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 11/03/2023]
Abstract
Objective The objective is to verify whether a genetic condition associated with bipolar disorder (BD) is frequent in old adults adapted to their environment, without BD, but with aptitudes for hyperactivity and novelty seeking (H/NS). Methods In this cross-sectional study, the study sample included healthy elderly people (40 participants, aged 60 or older) living in an urban area and recruited from a previous study on physical exercise and active aging, who were compared with 21 old adults with BD from the same area. The genetic methodology consisted of blood sampling, DNA extraction, real-time PCR jointly with FRET probes, and the SANGER sequencing method. The genetic variant RS1006737 of CACNA1C, found to be associated with bipolar disorder diagnosis, was investigated. Results The frequency of the RS1006737 genetic variant in the study group (H/NS) is not higher than in the BD group and is statistically significantly higher than in all the control groups found in the literature. However, the familiarity for BD is higher in old adults with BD than in the H/NS sample without BD. The risk of BD in the family (also considering those without BD but with family members with BD) is not associated with the presence of the genetic variant examined. Conclusion The study suggests that the gene examined is associated with characteristics of hyperactivity rather than just BD. Nevertheless, choosing to participate in an exercise program is an excessively general way to identify H/NS. The next step would be to identify the old adults with well-defined H/NS features with an adequate tool.
Collapse
Affiliation(s)
- Goce Kalcev
- Department of Innovation Sciences and Technology, University of Cagliari, Cagliari, Italy
| | - Alessandra Scano
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Germano Orrù
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Diego Primavera
- Azienda Regionale della Salute (ARES, Sardegna), Medio Campidano, University of Cagliari, Cagliari, Italy
| | - Giulia Cossu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonio Egidio Nardi
- Laboratory Panic and Respiration, Institute of Psychiatry (Ipub), Federal University of Rio De Janeiro (Ufrj), Rio De Janeiro, Brazil
| | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
6
|
Novaes de Oliveira Roldan AC, Fernandes Júnior LCC, de Oliveira CEC, Nunes SOV. Impact of ZNF804A rs1344706 or CACNA1C rs1006737 polymorphisms on cognition in patients with severe mental disorders: A systematic review and meta-analysis. World J Biol Psychiatry 2023; 24:195-208. [PMID: 35786202 DOI: 10.1080/15622975.2022.2097308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES This systematic review and meta-analysis focussed on insights into the relationship between CACNA1C-rs1006737 and ZNF804A-rs1344706 polymorphisms and cognitive performance in schizophrenia (SCZ) spectrum and bipolar disorder (BD) and provide some contributions for clinical practice. METHODS We searched the websites databases (PubMED, PsycINFO, Web of Science, EMBASE and Cochrane Library) using eligibility and exclusion criteria to capture all potential studies, based on PICO model and according to the PRISMA. RESULTS Eight articles were included in this systematic review (five referring to CACNA1C-rs1006737 and three related to ZNF804A-rs1344706 polymorphisms), with a total of 5759 participants (1751 SCZ patients, 348 BD patients, 3626 controls and 34 first-degree relatives). The results demonstrated that the pooled effect of CACNA1C-rs1006737 (risk difference RD = 0.08; 95% CI 0.02-0.15) was associated with altered cognitive function in patients with severe mental disorders, but not ZNF804A-rs1344706 polymorphism (RD = 0.19; 95% CI 0.09-0.48. CONCLUSION The present meta-analysis provides evidence regarding slight association between CACNA1C-rs1006737 polymorphisms and cognitive performance in severe mental disorders, indicating that cognitive impairment in severe mental disorders associated with the CACNA1C rs1006737 risk variants could only be expressed when interacting with environmental exposures. This study is registered with PROSPERO, number CRD42021246726.
Collapse
|
7
|
Luo L, You W, DelBello MP, Gong Q, Li F. Recent advances in psychoradiology. Phys Med Biol 2022; 67. [PMID: 36279868 DOI: 10.1088/1361-6560/ac9d1e] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022]
Abstract
Abstract
Psychiatry, as a field, lacks objective markers for diagnosis, progression, treatment planning, and prognosis, in part due to difficulties studying the brain in vivo, and diagnoses are based on self-reported symptoms and observation of patient behavior and cognition. Rapid advances in brain imaging techniques allow clinical investigators to noninvasively quantify brain features at the structural, functional, and molecular levels. Psychoradiology is an emerging discipline at the intersection of psychiatry and radiology. Psychoradiology applies medical imaging technologies to psychiatry and promises not only to improve insight into structural and functional brain abnormalities in patients with psychiatric disorders but also to have potential clinical utility. We searched for representative studies related to recent advances in psychoradiology through May 1, 2022, and conducted a selective review of 165 references, including 75 research articles. We summarize the novel dynamic imaging processing methods to model brain networks and present imaging genetics studies that reveal the relationship between various neuroimaging endophenotypes and genetic markers in psychiatric disorders. Furthermore, we survey recent advances in psychoradiology, with a focus on future psychiatric diagnostic approaches with dimensional analysis and a shift from group-level to individualized analysis. Finally, we examine the application of machine learning in psychoradiology studies and the potential of a novel option for brain stimulation treatment based on psychoradiological findings in precision medicine. Here, we provide a summary of recent advances in psychoradiology research, and we hope this review will help guide the practice of psychoradiology in the scientific and clinical fields.
Collapse
|
8
|
Guardiola-Ripoll M, Almodóvar-Payá C, Lubeiro A, Sotero A, Salvador R, Fuentes-Claramonte P, Salgado-Pineda P, Papiol S, Ortiz-Gil J, Gomar JJ, Guerrero-Pedraza A, Sarró S, Maristany T, Molina V, Pomarol-Clotet E, Fatjó-Vilas M. A functional neuroimaging association study on the interplay between two schizophrenia genome-wide associated genes (CACNA1C and ZNF804A). Eur Arch Psychiatry Clin Neurosci 2022; 272:1229-1239. [PMID: 35796825 DOI: 10.1007/s00406-022-01447-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/07/2022] [Indexed: 12/23/2022]
Abstract
The CACNA1C and the ZNF804A genes are among the most relevant schizophrenia GWAS findings. Recent evidence shows that the interaction of these genes with the schizophrenia diagnosis modulates brain functional response to a verbal fluency task. To better understand how these genes might influence the risk for schizophrenia, we aimed to study the interplay between CACNA1C and ZNF804A on working memory brain functional correlates. The analyses included functional and behavioural N-back task data (obtained from an fMRI protocol) and CACNA1C-rs1006737 and ZNF804A-rs1344706 genotypes for 78 healthy subjects and 78 patients with schizophrenia (matched for age, sex and premorbid IQ). We tested the effects of the epistasis between these genes as well as of the three-way interaction (CACNA1C × ZNAF804A × diagnosis) on working memory-associated activity (N-back: 2-back vs 1-back). We detected a significant CACNA1C × ZNAF804A interaction on working memory functional response in regions comprising the ventral caudate medially and within the left hemisphere, the superior and inferior orbitofrontal gyrus, the superior temporal pole and the ventral-anterior insula. The individuals with the GWAS-identified risk genotypes (CACNA1C-AA/AG and ZNF804A-AA) displayed a reduced working memory modulation response. This genotypic combination was also associated with opposite brain activity patterns between patients and controls. While further research will help to comprehend the neurobiological mechanisms of this interaction, our data highlight the role of the epistasis between CACNA1C and ZNF804A in the functional mechanisms underlying the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
| | - Alejandro Sotero
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Pilar Salgado-Pineda
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Sergi Papiol
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Jordi Ortiz-Gil
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
- Hospital General de Granollers, Barcelona, Spain
| | - Jesús J Gomar
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- The Litwin-Zucker Alzheimer's Research Center, Manhasset, NY, USA
| | | | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Teresa Maristany
- Diagnostic Imaging Department, Hospital Sant Joan de Déu Research Foundation, Barcelona, Spain
| | - Vicente Molina
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
- Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Psychiatry Service, University Hospital of Valladolid, Valladolid, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain.
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain.
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Vouga Ribeiro N, Tavares V, Bramon E, Toulopoulou T, Valli I, Shergill S, Murray R, Prata D. Effects of psychosis-associated genetic markers on brain volumetry: a systematic review of replicated findings and an independent validation. Psychol Med 2022; 52:1-16. [PMID: 36168994 PMCID: PMC9811278 DOI: 10.1017/s0033291722002896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Given psychotic illnesses' high heritability and associations with brain structure, numerous neuroimaging-genetics findings have been reported in the last two decades. However, few findings have been replicated. In the present independent sample we aimed to replicate any psychosis-implicated SNPs (single nucleotide polymorphisms), which had previously shown at least two main effects on brain volume. METHODS A systematic review for SNPs showing a replicated effect on brain volume yielded 25 studies implicating seven SNPs in five genes. Their effect was then tested in 113 subjects with either schizophrenia, bipolar disorder, 'at risk mental state' or healthy state, for whole-brain and region-of-interest (ROI) associations with grey and white matter volume changes, using voxel-based morphometry. RESULTS We found FWER-corrected (Family-wise error rate) (i.e. statistically significant) associations of: (1) CACNA1C-rs769087-A with larger bilateral hippocampus and thalamus white matter, across the whole brain; and (2) CACNA1C-rs769087-A with larger superior frontal gyrus, as ROI. Higher replication concordance with existing literature was found, in decreasing order, for: (1) CACNA1C-rs769087-A, with larger dorsolateral-prefrontal/superior frontal gyrus and hippocampi (both with anatomical and directional concordance); (2) ZNF804A-rs11681373-A, with smaller angular gyrus grey matter and rectus gyri white matter (both with anatomical and directional concordance); and (3) BDNF-rs6265-T with superior frontal and middle cingulate gyri volume change (with anatomical and allelic concordance). CONCLUSIONS Most literature findings were not herein replicated. Nevertheless, high degree/likelihood of replication was found for two genome-wide association studies- and one candidate-implicated SNPs, supporting their involvement in psychosis and brain structure.
Collapse
Affiliation(s)
- Nuno Vouga Ribeiro
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vânia Tavares
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Timothea Toulopoulou
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent University, Ankara, Turkey
| | - Isabel Valli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
10
|
Chen M, Jiang Q, Zhang L. CACNA1C Gene rs1006737 Polymorphism Affects Cognitive Performance in Chinese Han Schizophrenia. Neuropsychiatr Dis Treat 2022; 18:1697-1704. [PMID: 35975220 PMCID: PMC9376000 DOI: 10.2147/ndt.s373492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate the relationship between L-type calcium channel α1C subunit (CACNA1C) gene polymorphism and schizophrenia (SCZ) and cognitive function in the Han nationality, the main nationality in China. METHODS Genotyping of CACNA1C SNP (rs1006737, rs1024582, rs2007044) in SCZ patients (n = 312) and healthy controls (n = 305) was performed. Cognitive function was assessed in the SCZ patients using Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Then, the correlation between SNP and SCZ, as well as cognition, was calculated. RESULTS There was no significant difference in allele frequency and genotype distribution frequency of the three polymorphic loci of CACNA1C gene between the two groups. In cognitive tests, delayed memory scores in RBANS were significantly lower in rs1006737 "A" risk allele carriers than in non-carriers. CONCLUSION There is no significant difference in allele and genotype frequency of CANCA1C Gene rs1006737, rs1024582 and rs2007044 between the schizophrenia patients and healthy controls. The cognitive function of schizophrenia patients is correlated with the rs1006737, and the delayed memory of "A" allele carriers is significantly reduced.
Collapse
Affiliation(s)
- Mengyi Chen
- Department of Geriatric, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Qi Jiang
- Department of Geriatric, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lei Zhang
- Department of Geriatric, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Ethnicity-dependent effects of Zinc finger 804A variant on schizophrenia: a systematic review and meta-analysis. Psychiatr Genet 2021; 31:21-28. [PMID: 33395218 DOI: 10.1097/ypg.0000000000000275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Previous studies and meta-analysis indicated that rs1344706 was associated with schizophrenia in European population, whereas the conclusions in other populations were disputed. To further explore whether the allele A of rs1344706 would increase the risk of schizophrenia in different populations and update the original meta-analysis, we conducted a systematic review and meta-analysis worldwide. METHODS A literature search was performed in PubMed, Embase, Cochrane Library, PsycINFO and Web of Science (up to 10 July 2019) according to the inclusion criteria. RESULTS A total of 27 articles were included. Our meta-analysis showed an association between rs1344706 and schizophrenia in total populations [P = 0.000; odds ratio (OR) = 1.105; 95% confidence interval (CI), 1.048-1.165], Europe population (P = 0.025; OR = 1.108; 95% CI, 1.013-1.222) and Asian population(P = 0.005; OR = 1.094; 95% CI, 1.027-1.164). CONCLUSIONS Our findings suggested that the risk of single nucleotide polymorphism rs1344706 A-allele may increase the risk of schizophrenia worldwide. Also, this ethnicity-dependent effects of ZNF804A variant on schizophrenia may be related to the opposite allele direction. But to elucidate the underlying biological mechanism, further studies with large participant populations are needed.
Collapse
|
12
|
Zhou J, Bao Q, Liang S, Guo H, Meng X, Zhang G, Li P. rs1344706 polymorphism of zinc finger protein 804a (ZNF804a) gene related to the integrity of white matter fiber bundle in schizophrenics. Exp Ther Med 2021; 22:778. [PMID: 34055077 PMCID: PMC8145689 DOI: 10.3892/etm.2021.10210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022] Open
Abstract
Genetic factors play an important role in the pathogenesis of schizophrenia (SZ), and the zinc finger protein 804a (ZNF804a) gene has been considered to be a risk gene for schizophrenia. In the present study, the correlation between rs1344706 polymorphism of ZNF804a gene and the integrity of white matter in schizophrenic cases was explored. A total of 60 SZ patients and 100 healthy controls (HC) were included to undergo head MRI. According to the genotyping of rs1344706 in ZNF804a, the subjects in each group were divided into a normal allele and risk allele-carrying group. The imaging data were preprocessed by PANDA software, and thefractional anisotropy (FA) of each subject was calculated. With SPM8 software, age and years of education were considered as covariates, and diagnosis as well as genotype (AA, GG/AG) were considered as intergroup factors. Four groups of FA images were analyzed by two-factor analysis of variance. The FA value of the right posterior radiocrown in the patient group was lower than that in the control group, and the difference was statistically significant. The FA value of the right lower frontal occipital tract and the right upper radiocrown in the G allele carrier group was lower than that in the A allele homozygous group. There was detection of an interaction between the FA value of the splenium of corpus callosum, the body part of the corpus callosum and the right cingulate tract. In the present study, it was demonstrated that the rs1344706 GG/AG genotype of the ZNF804a gene locus in SZ patients suffered from abnormal structure in a specific region of the brain. This finding indicated that the rs1344706 single nucleotide polymorphism of the ZNF804a gene may affect the integrity of the white matter of the brain in SZ patients and may be involved in the pathophysiological mechanism of SZ.
Collapse
Affiliation(s)
- Jian Zhou
- Department of MRI, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Quan Bao
- Department of MRI, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Shuang Liang
- Department of Radiology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Hong Guo
- Department of Radiology, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| | - Xin Meng
- Department of MRI, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Guangfeng Zhang
- Department of MRI, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
13
|
Janiri D, Kotzalidis GD, di Luzio M, Giuseppin G, Simonetti A, Janiri L, Sani G. Genetic neuroimaging of bipolar disorder: a systematic 2017-2020 update. Psychiatr Genet 2021; 31:50-64. [PMID: 33492063 DOI: 10.1097/ypg.0000000000000274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is evidence of genetic polymorphism influences on brain structure and function, genetic risk in bipolar disorder (BD), and neuroimaging correlates of BD. How genetic influences related to BD could be reflected on brain changes in BD has been efficiently reviewed in a 2017 systematic review. We aimed to confirm and extend these findings through a Preferred Reporting Items for Systematic reviews and Meta-Analyses-based systematic review. Our study allowed us to conclude that there is no replicated finding in the timeframe considered. We were also unable to further confirm prior results of the BDNF gene polymorphisms to affect brain structure and function in BD. The most consistent finding is an influence of the CACNA1C rs1006737 polymorphism in brain connectivity and grey matter structure and function. There was a tendency of undersized studies to obtain positive results and large, genome-wide polygenic risk studies to find negative results in BD. The neuroimaging genetics in BD field is rapidly expanding.
Collapse
Affiliation(s)
- Delfina Janiri
- Department of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS
- Department of Psychiatry and Neurology, Sapienza University of Rome
| | - Georgios D Kotzalidis
- NESMOS Department, Sant'Andrea University Hospital, School of Medicine and Psychology, Sapienza University
| | - Michelangelo di Luzio
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Giuseppin
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessio Simonetti
- Department of Psychiatry and Neurology, Sapienza University of Rome
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Luigi Janiri
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
14
|
Abstract
Our previous genetic study identified a variant rs1344706 in the zinc finger protein 804A (ZNF804A) gene conferring susceptibility to bipolar disorder subtype I (BD-I) in Han Chinese. Literature documented that this variant may affect brain structure and function. As such, we attempted to identify whether the rs1344706 polymorphism influences cognitive function in patients with bipolar disorder I. We recruited 177 patients with bipolar disorder in remission period. Cognitive function was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The single nucleotide polymorphisms (SNP) rs1344706 was genotyped using TaqMan assays. Analysis of covariance (ANCOVA) analysis showed a significant genotypic effect on RBANS immediate memory (P = 0.002) and total score (P = 0.001). Post hoc analysis showed that the patients with T/T genotype have lower RBANS immediate memory and total scores than those with T/G or G/G genotypes. When the patients were stratified by sex, such significances are only seen in male patients, but not female patients. Our findings suggested a sex-specific effect of ZNF804A rs1344706 polymorphism on cognitive function in patients with bipolar disorder-I.
Collapse
|
15
|
Liu YP, Wu X, Xia X, Yao J, Wang BJ. The genome-wide supported CACNA1C gene polymorphisms and the risk of schizophrenia: an updated meta-analysis. BMC MEDICAL GENETICS 2020; 21:159. [PMID: 32770953 PMCID: PMC7414708 DOI: 10.1186/s12881-020-01084-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Background The CACNA1C gene was defined as a risk gene for schizophrenia in a large genome-wide association study of European ancestry performed by the Psychiatric Genomics Consortium. Previous meta-analyses focused on the association between the CACNA1C gene rs1006737 and schizophrenia. The present study focused on whether there was an ancestral difference in the effect of the CACNA1C gene rs1006737 on schizophrenia. rs2007044 and rs4765905 were analyzed for their effect on the risk of schizophrenia. Methods Pooled, subgroup, sensitivity, and publication bias analysis were conducted. Results A total of 18 studies met the inclusion criteria, including fourteen rs1006737 studies (15,213 cases, 19,412 controls), three rs2007044 studies (6007 cases, 6518 controls), and two rs4765905 studies (2435 cases, 2639 controls). An allele model study also related rs2007044 and rs4765905 to schizophrenia. The overall meta-analysis for rs1006737, which included the allele contrast, dominant, recessive, codominance, and complete overdominance models, showed significant differences between rs1006737 and schizophrenia. However, the ancestral-based subgroup analysis for rs1006737 found that the genotypes GG and GG + GA were only protective factors for schizophrenia in Europeans. In contrast, the rs1006737 GA genotype only reduced the risk of schizophrenia in Asians. Conclusions Rs1006737, rs2007044, and rs4765905 of the CACNA1C gene were associated with susceptibility to schizophrenia. However, the influence model for rs1006737 on schizophrenia in Asians and Europeans demonstrated both similarities and differences between the two ancestors.
Collapse
Affiliation(s)
- Yong-Ping Liu
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Xi Xia
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, China.
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, China.
| |
Collapse
|
16
|
Andrade A, Brennecke A, Mallat S, Brown J, Gomez-Rivadeneira J, Czepiel N, Londrigan L. Genetic Associations between Voltage-Gated Calcium Channels and Psychiatric Disorders. Int J Mol Sci 2019; 20:E3537. [PMID: 31331039 PMCID: PMC6679227 DOI: 10.3390/ijms20143537] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/23/2022] Open
Abstract
Psychiatric disorders are mental, behavioral or emotional disorders. These conditions are prevalent, one in four adults suffer from any type of psychiatric disorders world-wide. It has always been observed that psychiatric disorders have a genetic component, however, new methods to sequence full genomes of large cohorts have identified with high precision genetic risk loci for these conditions. Psychiatric disorders include, but are not limited to, bipolar disorder, schizophrenia, autism spectrum disorder, anxiety disorders, major depressive disorder, and attention-deficit and hyperactivity disorder. Several risk loci for psychiatric disorders fall within genes that encode for voltage-gated calcium channels (CaVs). Calcium entering through CaVs is crucial for multiple neuronal processes. In this review, we will summarize recent findings that link CaVs and their auxiliary subunits to psychiatric disorders. First, we will provide a general overview of CaVs structure, classification, function, expression and pharmacology. Next, we will summarize tools to study risk loci associated with psychiatric disorders. We will examine functional studies of risk variations in CaV genes when available. Finally, we will review pharmacological evidence of the use of CaV modulators to treat psychiatric disorders. Our review will be of interest for those studying pathophysiological aspects of CaVs.
Collapse
Affiliation(s)
- Arturo Andrade
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA.
| | - Ashton Brennecke
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Shayna Mallat
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Julian Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | - Natalie Czepiel
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Laura Londrigan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
17
|
Koch K, Stegmaier S, Schwarz L, Erb M, Thomas M, Scheffler K, Wildgruber D, Nieratschker V, Ethofer T. CACNA1C risk variant affects microstructural connectivity of the amygdala. Neuroimage Clin 2019; 22:101774. [PMID: 30909026 PMCID: PMC6434179 DOI: 10.1016/j.nicl.2019.101774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/29/2019] [Accepted: 03/10/2019] [Indexed: 11/28/2022]
Abstract
Deficits in perception of emotional prosody have been described in patients with affective disorders at behavioral and neural level. In the current study, we use an imaging genetics approach to examine the impact of CACNA1C, one of the most promising genetic risk factors for psychiatric disorders, on prosody processing on a behavioral, functional and microstructural level. Using functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) we examined key areas involved in prosody processing, i.e. the amygdala and voice areas, in a healthy population. We found stronger activation to emotional than neutral prosody in the voice areas and the amygdala, but CACNA1C rs1006737 genotype had no influence on fMRI activity. However, significant microstructural differences (i.e. mean diffusivity) between CACNA1C rs1006737 risk allele carriers and non carriers were found in the amygdala, but not the voice areas. These modifications in brain architecture associated with CACNA1C might reflect a neurobiological marker predisposing to affective disorders and concomitant alterations in emotion perception.
Collapse
Affiliation(s)
- Katharina Koch
- Department of General Psychiatry, University of Tuebingen, Tuebingen, Germany.
| | - Sophia Stegmaier
- Department of General Psychiatry, University of Tuebingen, Tuebingen, Germany
| | - Lena Schwarz
- Department of General Psychiatry, University of Tuebingen, Tuebingen, Germany
| | - Michael Erb
- Department of Biomedical Resonance, University of Tuebingen, Tuebingen, Germany
| | - Mara Thomas
- Department of General Psychiatry, University of Tuebingen, Tuebingen, Germany
| | - Klaus Scheffler
- Department of Biomedical Resonance, University of Tuebingen, Tuebingen, Germany; Max-Planck-Institute for Biological Cybernetics, University of Tuebingen, Tuebingen, Germany
| | - Dirk Wildgruber
- Department of General Psychiatry, University of Tuebingen, Tuebingen, Germany
| | - Vanessa Nieratschker
- Department of General Psychiatry, University of Tuebingen, Tuebingen, Germany; Werner Reichardt Center for Integrative Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Thomas Ethofer
- Department of General Psychiatry, University of Tuebingen, Tuebingen, Germany; Department of Biomedical Resonance, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
18
|
Cui L, Wang F, Chang M, Yin Z, Fan G, Song Y, Wei Y, Xu Y, Zhang Y, Tang Y, Gong X, Xu K. Spontaneous Regional Brain Activity in Healthy Individuals is Nonlinearly Modulated by the Interaction of ZNF804A rs1344706 and COMT rs4680 Polymorphisms. Neurosci Bull 2019; 35:735-742. [PMID: 30852803 DOI: 10.1007/s12264-019-00357-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022] Open
Abstract
ZNF804A rs1344706 has been identified as one of the risk genes for schizophrenia. However, the neural mechanisms underlying this association are unknown. Given that ZNF804A upregulates the expression of COMT, we hypothesized that ZNF804A may influence brain activity by interacting with COMT. Here, we genotyped ZNF804A rs1344706 and COMT rs4680 in 218 healthy Chinese participants. Amplitudes of low-frequency fluctuations (ALFFs) were applied to analyze the main and interaction effects of ZNF804A rs1344706 and COMT rs4680. The ALFFs of the bilateral dorsolateral prefrontal cortex showed a significant ZNF804A rs1344706 × COMT rs4680 interaction, manifesting as a U-shaped modulation, presumably by dopamine signaling. Significant main effects were also found. These findings suggest that ZNF804A affects the resting-state functional activation by interacting with COMT, and may improve our understanding of the neurobiological effects of ZNF804A and its association with schizophrenia.
Collapse
Affiliation(s)
- Lingling Cui
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhiyang Yin
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Guoguang Fan
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yanzhuo Song
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yange Wei
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yixiao Xu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yifan Zhang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
19
|
Kisko TM, Braun MD, Michels S, Witt SH, Rietschel M, Culmsee C, Schwarting RKW, Wöhr M. Sex‐dependent effects of
Cacna1c
haploinsufficiency on juvenile social play behavior and pro‐social 50‐kHz ultrasonic communication in rats. GENES BRAIN AND BEHAVIOR 2019; 19:e12552. [DOI: 10.1111/gbb.12552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Theresa M. Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Moria D. Braun
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
| | - Susanne Michels
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine MannheimRuprecht‐Karls‐Universität Heidelberg Mannheim Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical PharmacyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of PsychologyPhilipps‐Universität Marburg Marburg Germany
- Center for Mind, Brain, and Behavior (CMBB)Philipps‐Universität Marburg Marburg Germany
| |
Collapse
|
20
|
Tecelão D, Mendes A, Martins D, Fu C, Chaddock CA, Picchioni MM, McDonald C, Kalidindi S, Murray R, Prata DP. The effect of psychosis associated CACNA1C, and its epistasis with ZNF804A, on brain function. GENES BRAIN AND BEHAVIOR 2018; 18:e12510. [PMID: 30079586 DOI: 10.1111/gbb.12510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/23/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
CACNA1C-rs1006737 and ZNF804A-rs1344706 polymorphisms are among the most robustly associated with schizophrenia (SCZ) and bipolar disorder (BD), and recently with brain phenotypes. As these patients show abnormal verbal fluency (VF) and related brain activation, we asked whether the latter was affected by these polymorphisms (alone and in interaction)-to better understand how they might induce risk. We recently reported effects on functional VF-related (for ZNF804A-rs1344706) and structural (for both) connectivity. We genotyped and fMRI-scanned 54 SCZ, 40 BD and 80 controls during VF. With SPM, we assessed the main effect of CACNA1C-rs1006737, and its interaction with ZNF804A-rs1344706, and their interaction with diagnosis, on regional brain activation and functional connectivity (psychophysiological interactions-PPI). Using public data, we reported effects of CACNA1C-rs1006737 and diagnosis on brain expression. The CACNA1C-rs1006737 risk allele was associated with increased activation, particularly in the bilateral prefronto-temporal cortex and thalamus; decreased PPI, especially in the left temporal cortex; and gene expression in white matter and the cerebellum. We also found unprecedented evidence for epistasis (interaction between genetic polymorphisms) in the caudate nucleus, thalamus, and cingulate and temporal cortical activation; and CACNA1C up-regulation in SCZ and BD parietal cortices. Some effects were dependent on BD/SCZ diagnosis. All imaging results were whole-brain, voxel-wise, and familywise-error corrected. Our results support evidence implicating CACNA1C and ZNF804A in BD and SCZ, adding novel imaging evidence in clinical populations, and of epistasis-which needs further replication. Further scrutiny of the inherent neurobiological mechanisms may disclose their potential as putative drug targets.
Collapse
Affiliation(s)
- Diogo Tecelão
- Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Mendes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cynthia Fu
- School of Psychology, The University of East London, London, UK
| | - Christopher A Chaddock
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marco M Picchioni
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,St. Andrew's Academic Department, St Andrew's Healthcare, Northampton, UK
| | - Colm McDonald
- Centre for Neuroimaging and Cognitive Genomics (NICOG) & NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sridevi Kalidindi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa.,Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Instituto Universitário de Lisboa (ISCTE-IUL), Cis-IUL, Lisbon, Portugal
| |
Collapse
|
21
|
Zhou Y, Dong F, Mao Y. Control of CNS functions by RNA-binding proteins in neurological diseases. ACTA ACUST UNITED AC 2018; 4:301-313. [PMID: 30410853 DOI: 10.1007/s40495-018-0140-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review This review summarizes recent studies on the molecular mechanisms of RNA binding proteins (RBPs) that control neurological functions and pathogenesis in various neurodevelopmental and neurodegenerative diseases, including autism spectrum disorders, schizophrenia, Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and spinocerebellar ataxia. Recent Findings RBPs are critical players in gene expression that regulate every step of posttranscriptional modifications. Recent genome-wide approaches revealed that many proteins associate with RNA, but do not contain any known RNA binding motifs. Additionally, many causal and risk genes of neurodevelopmental and neurodegenerative diseases are RBPs. Development of high-throughput sequencing methods has mapped out the fingerprints of RBPs on transcripts and provides unprecedented potential to discover new mechanisms of neurological diseases. Insights into how RBPs modulate neural development are important for designing effective therapies for numerous neurodevelopmental and neurodegenerative diseases. Summary RBPs have diverse mechanisms for modulating RNA processing and, thereby, controlling neurogenesis. Understanding the role of disease-associated RBPs in neurogenesis is vital for developing novel treatments for neurological diseases.
Collapse
Affiliation(s)
- Yijing Zhou
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Fengping Dong
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
22
|
Affiliation(s)
- Kevin J. Mitchell
- Institutes of Genetics and Neuroscience; Trinity College Dublin; Dublin 2 Ireland
| |
Collapse
|
23
|
The common variants implicated in microstructural abnormality of first episode and drug-naïve patients with schizophrenia. Sci Rep 2017; 7:11750. [PMID: 28924203 PMCID: PMC5603592 DOI: 10.1038/s41598-017-10507-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/09/2017] [Indexed: 02/05/2023] Open
Abstract
Both post-mortem and neuroimaging studies have identified abnormal white matter (WM) microstructure in patients with schizophrenia. However, its genetic underpinnings and relevant biological pathways remain unclear. In order to unravel the genes and the pathways associated with abnormal WM microstructure in schizophrenia, we recruited 100 first-episode, drug-naïve patients with schizophrenia and 140 matched healthy controls to conduct genome-wide association analysis of fractional anisotropy (FA) value measured using diffusing tensor imaging (DTI), followed by multivariate association study and pathway enrichment analysis. The results showed that one intergenic SNP (rs11901793), which is 20 kb upstream of CXCR7 gene on chromosome 2, was associated with the total mean FA values with genome-wide significance (p = 4.37 × 10−8), and multivariate association analysis identified a strong association between one region-specific SNP (rs10509852), 400 kb upstream of SORCS1 gene on chromosome 10, and the global trait of abnormal WM microstructure (p = 1.89 × 10−7). Furthermore, one pathway that is involved in cell cycle regulation, REACTOME_CHROMOSOME _MAINTENANCE, was significantly enriched by the genes that were identified in our study (p = 1.54 × 10−17). In summary, our study provides suggestive evidence that abnormal WM microstructure in schizophrenia is associated with genes that are likely involved in diverse biological signals and cell-cycle regulation although further replication in a larger independent sample is needed.
Collapse
|
24
|
Pereira LP, Köhler CA, de Sousa RT, Solmi M, de Freitas BP, Fornaro M, Machado-Vieira R, Miskowiak KW, Vieta E, Veronese N, Stubbs B, Carvalho AF. The relationship between genetic risk variants with brain structure and function in bipolar disorder: A systematic review of genetic-neuroimaging studies. Neurosci Biobehav Rev 2017; 79:87-109. [DOI: 10.1016/j.neubiorev.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022]
|
25
|
Birur B, Kraguljac NV, Shelton RC, Lahti AC. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder-a systematic review of the magnetic resonance neuroimaging literature. NPJ SCHIZOPHRENIA 2017; 3:15. [PMID: 28560261 PMCID: PMC5441538 DOI: 10.1038/s41537-017-0013-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Abstract
Since Emil Kraepelin's conceptualization of endogenous psychoses as dementia praecox and manic depression, the separation between primary psychotic disorders and primary affective disorders has been much debated. We conducted a systematic review of case-control studies contrasting magnetic resonance imaging studies in schizophrenia and bipolar disorder. A literature search in PubMed of studies published between January 2005 and December 2016 was conducted, and 50 structural, 29 functional, 7 magnetic resonance spectroscopy, and 8 combined imaging and genetic studies were deemed eligible for systematic review. Structural neuroimaging studies suggest white matter integrity deficits that are consistent across the illnesses, while gray matter reductions appear more widespread in schizophrenia compared to bipolar disorder. Spectroscopy studies in cortical gray matter report evidence of decreased neuronal integrity in both disorders. Functional neuroimaging studies typically report similar functional architecture of brain networks in healthy controls and patients across the psychosis spectrum, but find differential extent of alterations in task related activation and resting state connectivity between illnesses. The very limited imaging-genetic literature suggests a relationship between psychosis risk genes and brain structure, and possible gene by diagnosis interaction effects on functional imaging markers. While the existing literature suggests some shared and some distinct neural markers in schizophrenia and bipolar disorder, it will be imperative to conduct large, well designed, multi-modal neuroimaging studies in medication-naïve first episode patients that will be followed longitudinally over the course of their illness in an effort to advance our understanding of disease mechanisms.
Collapse
Affiliation(s)
- Badari Birur
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Richard C. Shelton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|