1
|
Ghaffarzadegan R, Akhondzadeh S, Nikasa Z, Hajizamani S, Mehrabanifar S, Cheraghi I, Vaseghi S. New Insights into Contradictory Changes in Brain-Derived Neurotrophic Factor (BDNF) in Rodent Models of Posttraumatic Stress Disorder (PTSD). Neurochem Res 2024; 49:3226-3243. [PMID: 39283581 DOI: 10.1007/s11064-024-04242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder that may develop after experiencing traumatic events. Preclinical studies use various methods to induce PTSD-like models such as fear-conditioning, single-prolonged stress (SPS), restraint stress, and social defeat. Brain-derived neurotrophic factor (BDNF) is a crucial neurotrophin in mood regulation. Evidence shows BDNF changes in different neuropsychiatric disorders particularly PTSD. This review examined BDNF alterations in preclinical rodent models of PTSD where we demonstrated a wide range of paradoxical changes in BDNF. We found that the fear-conditioning model produced the most inconsistent alterations in BDNF, and suggest that conclusions drawn from these changes be approached with caution. We suggest that BDNF maladaptive changes in social defeat and restraint stress models may be related to the duration of stress, while the SPS model appears to have more consistent results. Ultimately, we propose that evaluating BDNF alterations in the process of treating PTSD symptoms may not be a reliable factor.
Collapse
Affiliation(s)
- Reza Ghaffarzadegan
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Nikasa
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shadi Hajizamani
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Iman Cheraghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
2
|
Oga K, Fuchikami M, Kobayashi H, Miyagi T, Fujita S, Fujita S, Okada S, Morinobu S. Involvement of dysregulated hippocampal histone H3K9 methylation at the promoter of the BDNF gene in impaired memory extinction. Psychopharmacology (Berl) 2024; 241:2363-2374. [PMID: 38940908 PMCID: PMC11513706 DOI: 10.1007/s00213-024-06640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
RATIONALE Since the precise mechanisms of posttraumatic stress disorder (PTSD) remain unknown, effective treatment interventions have not yet been established. Impaired extinction of fear memory (EFM) is one of the core symptoms of PTSD and is associated with stress-induced epigenetic change in gene expression. OBJECTIVES In this study, we examined whether the involvement of histone H3 lysine 9 dimethylation (H3K9me2) in EFM is mediated through brain-derived neurotrophic factor (BDNF) expression in the hippocampus, and whether BIX01294, a selective G9a and GLP histone methyltransferase inhibitor, could be treatment for impaired EFM in an animal model of PTSD. METHODS The single prolonged stress (SPS) paradigm was used to model PTSD. We measured BDNF mRNA levels by RT-PCR, and H3K9me2 levels in the BDNF gene promoters by chromatin immunoprecipitation-qPCR. After undergoing contextual fear conditioning and hippocampal injection of BIX01294, male rats were subjected to extinction training and extinction testing and their freezing times and BDNF mRNA levels were measured. RESULTS Compared to sham rats, SPS rats showed decreased BDNF mRNA levels 2 h after extinction training, no significant changes in levels of global H3K9me2 prior to extinction training, and increased levels of H3K9me2 in BDNF gene promoter IV, but not in BDNF gene promoter I. Administration of BIX01294 ameliorated the decrease in BDNF mRNA levels 2 h after extinction training and subsequently alleviated impaired EFM in extinction tests in SPS rats. CONCLUSION We conclude that reduced hippocampal levels of BDNF mRNA due to increase in H3K9me2 levels may play a role in PTSD-associated EFM impairment, and BIX01294 could be a PTSD treatment option.
Collapse
Affiliation(s)
- Kenichi Oga
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Manabu Fuchikami
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan.
| | - Hironori Kobayashi
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Tatsuhiro Miyagi
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Sho Fujita
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Satoshi Fujita
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Satoshi Okada
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Shigeru Morinobu
- Department of Psychology, School of Faculty of Health and Wellness Sciences, Hiroshima International University, Kure, Japan
| |
Collapse
|
3
|
Kaminskaya YP, Ilchibaeva TV, Shcherbakova AI, Allayarova ER, Popova NK, Naumenko VS, Tsybko AS. Brain-Derived Neurotrophic Factor (BDNF) in the Frontal Cortex Enhances Social Interest in the BTBR Mouse Model of Autism. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1509-1518. [PMID: 39245458 DOI: 10.1134/s0006297924080091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 09/10/2024]
Abstract
A large body of evidence implies the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of autism spectrum disorders (ASDs). A deficiency of BDNF in the hippocampus and frontal cortex of BTBR mice (a model of autism) has been noted in a number of studies. Earlier, we showed that induction of BDNF overexpression in the hippocampus of BTBR mice reduced anxiety and severity of stereotyped behavior, but did not affect social interest. Here, we induced BDNF overexpression in the frontal cortex neurons of BTBR mice using an adeno-associated viral vector, which resulted in a significant increase in the social interest in the three-chamber social test. At the same time, the stereotypy, exploratory behavior, anxiety-like behavior, and novel object recognition were not affected. Therefore, we have shown for the first time that the presence of BDNF in the frontal cortex is critical for the expression of social interest in BTBR mice, since compensation for its deficiency in this structure eliminated the autism-like deficiencies in the social behavior characteristic for these animals.
Collapse
Affiliation(s)
- Yana P Kaminskaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Tatiana V Ilchibaeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alexandra I Shcherbakova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Elina R Allayarova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nina K Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vladimir S Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Anton S Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| |
Collapse
|
4
|
Xie P, Chen L, Wang J, Wang X, Yang S, Zhu G. Polysaccharides from Polygonatum cyrtonema Hua prevent post-traumatic stress disorder behaviors in mice: Mechanisms from the perspective of synaptic injury, oxidative stress, and neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117165. [PMID: 37696440 DOI: 10.1016/j.jep.2023.117165] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to traditional Chinese medicine (TCM) theory, post-traumatic stress disorder (PTSD) is a kind of depression syndrome, and its occurrence is related to deficiencies of the heart and kidney. Polygonatum cyrtonema Hua replenishes Qi and blood and tonifies the five zang organs, so it is widely used in TCM as a prescription for the treatment of depression syndrome. The polysaccharides in P. cyrtonema Hua (PSP) are the main active components of the herb, but the effects of PSP on PTSD and the mechanisms remain unclear. AIM OF THE STUDY To investigate the preventive effect of PSP on PTSD-like behaviors and to determine the mechanisms. METHODS We used behavioral tests to evaluate PTSD-like behaviors in mice. Synaptic changes were assessed by transmission electron microscopy. Hematoxylin-eosin staining was used to assess pathological changes to the hippocampus, and immunofluorescence staining was used to observe changes in astrocytes. Serum corticosterone (CORT), cytokine, and hippocampal oxidation-related indicator levels were evaluated by ELISA. We detected the expression levels of synaptic, oxidative, and inflammation-related proteins in the hippocampus by western blotting. RESULTS Single prolonged stress (SPS)-modeled mice exhibited significant PTSD-like phenotypes, including increased fear memory acquisition and anxiety-like behaviors. These behavioral changes were prevented by PSP administration. Compared to controls, SPS modeling increased serum CORT, cytokine, and hippocampal malondialdehyde levels; decreased superoxide dismutase activity; and caused losses in pyramidal neurons, astrocytes, and synapses in the CA1 region. At the molecular level, the expression of brain-derived neurotrophic factor, postsynaptic density protein 95, nuclear factor erythroid 2-related factor 2 (Nrf2), phospho-tyrosine kinase receptor B, activity-regulated cytoskeleton-associated protein, heme oxygenase-1 (HO-1), and GluA1 decreased in SPS mice compared with the control group, while the expression of NOD-like receptor protein 3 (NLRP3), GluN2B, and apoptosis-associated speck-like protein increased in SPS mice. Treatment with PSP counteracted these abnormal changes. Importantly, ML385, an Nrf2 inhibitor, blocked PSP's ability to ameliorate PTSD behaviors and abnormal protein expression. The NLRP3 inhibitor MCC950 reduced the PTSD-like behaviors and normalized protein expression in SPS mice. CONCLUSION PSP prevents SPS-induced PTSD-like behaviors and synaptic damage by regulating oxidative stress and NLRP3-mediated inflammation, probably in an Nrf2/HO-1 signaling pathway-dependent manner.
Collapse
Affiliation(s)
- Pan Xie
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Lixia Chen
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China; The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230061, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.
| |
Collapse
|
5
|
Rahimi-Danesh M, Samizadeh MA, Sajadi AE, Rezvankhah T, Vaseghi S. Sex difference affects fear extinction but not lithium efficacy in rats following fear-conditioning with respect to the hippocampal level of BDNF. Pharmacol Biochem Behav 2024; 234:173675. [PMID: 37972713 DOI: 10.1016/j.pbb.2023.173675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
In rodents, exposure to electrical shock and creating a strong fear memory using fear-conditioning model can induce PTSD-like behavior. In this study, we induced a fear-conditioning model in rats and investigated freezing (PTSD-like) behavior, 21 days after three shocks exposure (0.6 mA, 3 s, 30 seconds interval) in both male and female rats. Lithium was injected intraperitoneally (100 mg/kg) in three protocols: (1) 1 h after fear-conditioning (2) 1 h, 24 h, and 48 h after fear-conditioning (3), 1 h, 24 h, 48 h, 72 h, and 96 h after fear-conditioning. Extinction training (20 sounds without shocks, 75 dB, 3 s, 30 seconds interval) was performed in three protocols: (1) 1 h after fear-conditioning (one session), (2) 1 h, 24 h, and 48 h after fear-conditioning (three sessions), (3), 1 h, 24 h, 48 h, 72 h, and 96 h after fear-conditioning (five sessions). Forced swim test (FST) and hot plate were used to assess behavior. Results showed that lithium in all protocols had no effect on freezing behavior, FST, and pain subthreshold in all rats. Extinction training decreased freezing behavior, with more efficacy in females. In males, only 5-session training was effective, while in females all protocols were effective. Extinction training also altered pain perception and the results of FST, depending on the sessions and was different in males and females. Brain-derived neurotrophic factor (BDNF) mRNA level was increased in females following 3 and 5 sessions, and in males following 5 sessions extinction training. In conclusion, we suggested that there is a sex difference for the effect of extinction training on freezing behavior and BDNF mRNA level in a rat model of fear-conditioning.
Collapse
Affiliation(s)
- Mehrsa Rahimi-Danesh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Mohammad-Ali Samizadeh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Amir-Ehsan Sajadi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Tara Rezvankhah
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
6
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front Neurosci 2023; 17:1281401. [PMID: 38116070 PMCID: PMC10728304 DOI: 10.3389/fnins.2023.1281401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Shafia S, Nikkhah F, Akhoundzadeh K. Effect of combination fluoxetine and exercise on prefrontal BDNF, anxiety-like behavior and fear extinction in a female rat model of post-traumatic stress disorder (PTSD): a comparison with male animals. Behav Brain Funct 2023; 19:1. [PMID: 36647145 PMCID: PMC9843848 DOI: 10.1186/s12993-023-00204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023] Open
Abstract
Despite significant differences between men and women in the symptoms of PTSD and the response to therapeutic interventions, most PTSD studies have been done on male subjects. Continuing our previous study in male rats, this study aimed at better understanding the effect of a combination therapy of exercise with fluoxetine on female PTSD rats. The results were then compared with our past findings in male animals. Female adult Wistar rats subjected to PTSD were treated with moderate treadmill exercise or fluoxetine, or a combination of both. PTSD was induced by the single prolonged stress (SPS) model. Elevated plus-maze (EPM), serum and prefrontal BDNF, and fear extinctions were evaluated. The results showed that exercise plus fluoxetine decreased anxiety-like behavior, improved fear extinction, and increased BDNF changes in female rats. The effects of exercise alone were comparable with those of combination therapy except that combination therapy was more effective on OAT (open arm entry). The majority of results in female rats, except for those of prefrontal BDNF, 4th extinction, and OAT, were similar to those of male rats as shown in our previous study. According to our findings, exercise as a safe and cost-effective intervention can be considered as a complementary efficient option for PTSD treatment in both sexes. To achieve better treatment outcomes in PTSD patient, considering sex differences is recommended.
Collapse
Affiliation(s)
- Sakineh Shafia
- grid.411623.30000 0001 2227 0923Immunogenetics Research Center, Department of Physiology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farkhonde Nikkhah
- grid.411623.30000 0001 2227 0923Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kobra Akhoundzadeh
- grid.444830.f0000 0004 0384 871XFaculty of Nursing and Midwifery, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
8
|
Torres-Rodriguez O, Ortiz-Nazario E, Rivera-Escobales Y, Velazquez B, Colón M, Porter JT. Sex-dependent effects of microglial reduction on impaired fear extinction induced by single prolonged stress. Front Behav Neurosci 2023; 16:1014767. [PMID: 36699653 PMCID: PMC9868263 DOI: 10.3389/fnbeh.2022.1014767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Single prolonged stress (SPS) is a preclinical rodent model for studying post-traumatic stress disorder (PTSD)-like behaviors. Previously we found that increased expression of the microglial marker Iba-1 in the ventral hippocampus after SPS exposure was associated with impaired fear extinction, suggesting that microglial activity contributed to the SPS-induced behavioral changes. To test this, we examined whether reducing microglia with the colony-stimulating factor 1 receptor blocker, PLX3397, in the diet would prevent the SPS-induced extinction impairment. Male rats exposed to SPS showed enhanced fear acquisition and impaired fear extinction memory. Adding PLX3397 to the diet prevented these behavioral changes. In contrast, PLX3397 did not prevent SPS from impairing fear extinction memory in the female rats. Despite the sex-dependent behavioral effects, we found a reduced number and area fraction of Iba-1+ microglia in both male and female rats suggesting that PLX3397 had similar effects on microglia in both sexes. Altogether, these results suggest that microglia contribute to the behavioral changes induced by SPS in male but not female rats.
Collapse
Affiliation(s)
- Orlando Torres-Rodriguez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Emily Ortiz-Nazario
- Department of Biomedical Sciences, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | - Yesenia Rivera-Escobales
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Bethzaly Velazquez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - María Colón
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - James T. Porter
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
9
|
Glavonic E, Mitic M, Adzic M. Hallucinogenic drugs and their potential for treating fear-related disorders: Through the lens of fear extinction. J Neurosci Res 2022; 100:947-969. [PMID: 35165930 DOI: 10.1002/jnr.25017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Fear-related disorders, mainly phobias and post-traumatic stress disorder, are highly prevalent, debilitating disorders that pose a significant public health problem. They are characterized by aberrant processing of aversive experiences and dysregulated fear extinction, leading to excessive expression of fear and diminished quality of life. The gold standard for treating fear-related disorders is extinction-based exposure therapy (ET), shown to be ineffective for up to 35% of subjects. Moreover, ET combined with traditional pharmacological treatments for fear-related disorders, such as selective serotonin reuptake inhibitors, offers no further advantage to patients. This prompted the search for ways to improve ET outcomes, with current research focused on pharmacological agents that can augment ET by strengthening fear extinction learning. Hallucinogenic drugs promote reprocessing of fear-imbued memories and induce positive mood and openness, relieving anxiety and enabling the necessary emotional engagement during psychotherapeutic interventions. Mechanistically, hallucinogens induce dynamic structural and functional neuroplastic changes across the fear extinction circuitry and temper amygdala's hyperreactivity to threat-related stimuli, effectively mitigating one of the hallmarks of fear-related disorders. This paper provides the first comprehensive review of hallucinogens' potential to alleviate symptoms of fear-related disorders by focusing on their effects on fear extinction and the underlying molecular mechanisms. We overview both preclinical and clinical studies and emphasize the advantages of hallucinogenic drugs over current first-line treatments. We highlight 3,4-methylenedioxymethamphetamine and ketamine as the most effective therapeutics for fear-related disorders and discuss the potential molecular mechanisms responsible for their potency with implications for improving hallucinogen-assisted psychotherapy.
Collapse
Affiliation(s)
- Emilija Glavonic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Sottile RJ, Vida T. A proposed mechanism for the MDMA-mediated extinction of traumatic memories in PTSD patients treated with MDMA-assisted therapy. Front Psychiatry 2022; 13:991753. [PMID: 36311515 PMCID: PMC9596814 DOI: 10.3389/fpsyt.2022.991753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a devastating psychiatric disorder afflicting millions of people around the world. Characterized by severe anxiety, intrusive thoughts, pervasive nightmares, an assortment of somatic symptoms, associations with severe long-term health problems, and an elevated risk of suicide, as much as 40-70% of patients suffer from refractory disease. 3,4-Methylenedioxy-methamphetamine (MDMA), like classic psychedelics such as psilocybin, have been used to enhance the efficacy of psychotherapy almost since their discovery, but due to their perceived potential for abuse and inclusion on USFDA (United States Food and Drug Administration) schedule 1, research into the mechanism by which they produce improvements in PTSD symptomology has been limited. Nevertheless, several compelling rationales have been explored, with the pro-social effects of MDMA thought to enhance therapeutic alliance and thus facilitate therapist-assisted trauma processing. This may be insufficient to fully explain the efficacy of MDMA in the treatment of psychiatric illness. Molecular mechanisms such as the MDMA mediated increase of brain-derived neurotrophic factor (BDNF) availability in the fear memory learning pathways combined with MDMA's pro-social effects may provide a more nuanced explanation for the therapeutic actions of MDMA.
Collapse
Affiliation(s)
- Robert J Sottile
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Thomas Vida
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
11
|
Lesnikova A, Casarotto P, Moliner R, Fred SM, Biojone C, Castrén E. Perineuronal Net Receptor PTPσ Regulates Retention of Memories. Front Synaptic Neurosci 2021; 13:672475. [PMID: 34366821 PMCID: PMC8339997 DOI: 10.3389/fnsyn.2021.672475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022] Open
Abstract
Perineuronal nets (PNNs) have an important physiological role in the retention of learning by restricting cognitive flexibility. Their deposition peaks after developmental periods of intensive learning, usually in late childhood, and they help in long-term preservation of newly acquired skills and information. Modulation of PNN function by various techniques enhances plasticity and regulates the retention of memories, which may be beneficial when memory persistence entails negative symptoms such as post-traumatic stress disorder (PTSD). In this study, we investigated the role of PTPσ [receptor-type tyrosine-protein phosphatase S, a phosphatase that is activated by binding of chondroitin sulfate proteoglycans (CSPGs) from PNNs] in retention of memories using Novel Object Recognition and Fear Conditioning models. We observed that mice haploinsufficient for PTPRS gene (PTPσ+/–), although having improved short-term object recognition memory, display impaired long-term memory in both Novel Object Recognition and Fear Conditioning paradigm, as compared to WT littermates. However, PTPσ+/– mice did not show any differences in behavioral tests that do not heavily rely on cognitive flexibility, such as Elevated Plus Maze, Open Field, Marble Burying, and Forced Swimming Test. Since PTPσ has been shown to interact with and dephosphorylate TRKB, we investigated activation of this receptor and its downstream pathways in limbic areas known to be associated with memory. We found that phosphorylation of TRKB and PLCγ are increased in the hippocampus, prefrontal cortex, and amygdaloid complex of PTPσ+/– mice, but other TRKB-mediated signaling pathways are not affected. Our data suggest that PTPσ downregulation promotes TRKB phosphorylation in different brain areas, improves short-term memory performance but disrupts long-term memory retention in the tested animal models. Inhibition of PTPσ or disruption of PNN-PTPσ-TRKB complex might be a potential target for disorders where negative modulation of the acquired memories can be beneficial.
Collapse
Affiliation(s)
| | - Plinio Casarotto
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Rafael Moliner
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Senem Merve Fred
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Caroline Biojone
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Omura J, Fuchikami M, Araki M, Miyagi T, Okamoto Y, Morinobu S. Chemogenetic activation of the mPFC alleviates impaired fear memory extinction in an animal model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110090. [PMID: 32896603 DOI: 10.1016/j.pnpbp.2020.110090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/19/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIM Although impaired extinction of fear memory (EFM) is a hallmark symptom of posttraumatic stress disorder (PTSD), the mechanisms underlying the impairment are unknown. Activation of the infralimbic cortex (IL) in the medial prefrontal cortex (mPFC) has been reported to predict successful fear extinction, whereas functionally disrupting this region impairs extinction. We examined whether chemogenetic activation of the IL could alleviate impaired EFM in a single prolonged stress (SPS) rat model of PTSD. METHODS Chemogenetic activation of IL and prelimbic (PL) excitatory neurons was undertaken to evaluate EFM using a contextual fear conditioning paradigm. Neuronal activity in the IL was recorded using a 32-multichannel silicon electrode. To examine histological changes in the mPFC, apoptosis was measured by TUNEL staining. RESULTS Chemogenetic activation of excitatory neurons in the IL, but not the PL, enhanced EFM in sham rats and resulted in alleviation of EFM impairment in SPS rats. The alleviation of impaired EFM in SPS rats was observed during the extinction test session. Neuronal activity in the IL of SPS rats was lower than that of sham rats after clozapine-n-oxide administration. Increased apoptosis was found in the IL of SPS rats. CONCLUSIONS These findings suggest that a decreased excitatory response in the IL due, at least in part, to an increase in apoptosis in SPS rats leads to impaired EFM, and that neuronal activation during extinction training could be useful for the treatment of impaired EFM in PTSD patients.
Collapse
Affiliation(s)
- Jun Omura
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Manabu Fuchikami
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Motoaki Araki
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsuhiro Miyagi
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Morinobu
- Department of Occupational Therapy, School of Health Science and Social Welfare, Kibi International University, Takahashi, Japan
| |
Collapse
|
13
|
Ferland-Beckham C, Chaby LE, Daskalakis NP, Knox D, Liberzon I, Lim MM, McIntyre C, Perrine SA, Risbrough VB, Sabban EL, Jeromin A, Haas M. Systematic Review and Methodological Considerations for the Use of Single Prolonged Stress and Fear Extinction Retention in Rodents. Front Behav Neurosci 2021; 15:652636. [PMID: 34054443 PMCID: PMC8162789 DOI: 10.3389/fnbeh.2021.652636] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a mental health condition triggered by experiencing or witnessing a terrifying event that can lead to lifelong burden that increases mortality and adverse health outcomes. Yet, no new treatments have reached the market in two decades. Thus, screening potential interventions for PTSD is of high priority. Animal models often serve as a critical translational tool to bring new therapeutics from bench to bedside. However, the lack of concordance of some human clinical trial outcomes with preclinical animal efficacy findings has led to a questioning of the methods of how animal studies are conducted and translational validity established. Thus, we conducted a systematic review to determine methodological variability in studies that applied a prominent animal model of trauma-like stress, single prolonged stress (SPS). The SPS model has been utilized to evaluate a myriad of PTSD-relevant outcomes including extinction retention. Rodents exposed to SPS express an extinction retention deficit, a phenotype identified in humans with PTSD, in which fear memory is aberrantly retained after fear memory extinction. The current systematic review examines methodological variation across all phases of the SPS paradigm, as well as strategies for behavioral coding, data processing, statistical approach, and the depiction of data. Solutions for key challenges and sources of variation within these domains are discussed. In response to methodological variation in SPS studies, an expert panel was convened to generate methodological considerations to guide researchers in the application of SPS and the evaluation of extinction retention as a test for a PTSD-like phenotype. Many of these guidelines are applicable to all rodent paradigms developed to model trauma effects or learned fear processes relevant to PTSD, and not limited to SPS. Efforts toward optimizing preclinical model application are essential for enhancing the reproducibility and translational validity of preclinical findings, and should be conducted for all preclinical psychiatric research models.
Collapse
Affiliation(s)
| | - Lauren E Chaby
- Cohen Veterans Bioscience, New York City, NY, United States
| | - Nikolaos P Daskalakis
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,McLean Hospital, Belmont, MA, United States
| | - Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, TX, United States
| | - Miranda M Lim
- Departments of Neurology, Behavioral Neuroscience, Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States.,Sleep Disorders Clinic, VA Portland Health Care System, Portland, OR, United States
| | - Christa McIntyre
- Department of Neuroscience, The University of Texas at Dallas, Richardson, TX, United States
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.,Research Service, John. D. Dingell VA Medical Center, Detroit, MI, United States
| | - Victoria B Risbrough
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,Center for Excellence in Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | | | - Magali Haas
- Cohen Veterans Bioscience, New York City, NY, United States
| |
Collapse
|
14
|
BDNF Protein and BDNF mRNA Expression of the Medial Prefrontal Cortex, Amygdala, and Hippocampus during Situational Reminder in the PTSD Animal Model. Behav Neurol 2021; 2021:6657716. [PMID: 33763156 PMCID: PMC7964114 DOI: 10.1155/2021/6657716] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Whether BDNF protein and BDNF mRNA expression of the medial prefrontal cortex (mPFC; cingulated cortex area 1 (Cg1), prelimbic cortex (PrL), and infralimbic cortex (IL)), amygdala, and hippocampus (CA1, CA2, CA3, and dentate gyrus (DG)) was involved in fear of posttraumatic stress disorder (PTSD) during the situational reminder of traumatic memory remains uncertain. Footshock rats experienced an inescapable footshock (3 mA, 10 s), and later we have measured fear behavior for 2 min in the footshock environment on the situational reminder phase. In the final retrieval of situational reminder, BDNF protein and mRNA levels were measured. The results showed that higher BDNF expression occurred in the Cg1, PrL, and amygdala. Lower BDNF expression occurred in the IL, CA1, CA2, CA3, and DG. BDNF mRNA levels were higher in the mPFC and amygdala but lower in the hippocampus. The neural connection analysis showed that BDNF protein and BDNF mRNA exhibited weak connections among the mPFC, amygdala, and hippocampus during situational reminders. The present data did not support the previous viewpoint in neuroimaging research that the mPFC and hippocampus revealed hypoactivity and the amygdala exhibited hyperactivity for PTSD symptoms. These findings should be discussed with the previous evidence and provide clinical implications for PTSD.
Collapse
|
15
|
Torrisi SA, Lavanco G, Maurel OM, Gulisano W, Laudani S, Geraci F, Grasso M, Barbagallo C, Caraci F, Bucolo C, Ragusa M, Papaleo F, Campolongo P, Puzzo D, Drago F, Salomone S, Leggio GM. A novel arousal-based individual screening reveals susceptibility and resilience to PTSD-like phenotypes in mice. Neurobiol Stress 2020; 14:100286. [PMID: 33392367 PMCID: PMC7772817 DOI: 10.1016/j.ynstr.2020.100286] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Translational animal models for studying post-traumatic stress disorder (PTSD) are valuable for elucidating the poorly understood neurobiology of this neuropsychiatric disorder. These models should encompass crucial features, including persistence of PTSD-like phenotypes triggered after exposure to a single traumatic event, trauma susceptibility/resilience and predictive validity. Here we propose a novel arousal-based individual screening (AIS) model that recapitulates all these features. The AIS model was designed by coupling the traumatization (24 h restraint) of C57BL/6 J mice with a novel individual screening. This screening consists of z-normalization of post-trauma changes in startle reactivity, which is a measure of arousal depending on neural circuits conserved across mammals. Through the AIS model, we identified susceptible mice showing long-lasting hyperarousal (up to 56 days post-trauma), and resilient mice showing normal arousal. Susceptible mice further showed persistent PTSD-like phenotypes including exaggerated fear reactivity and avoidance of trauma-related cue (up to 75 days post-trauma), increased avoidance-like behavior and social/cognitive impairment. Conversely, resilient mice adopted active coping strategies, behaving like control mice. We further uncovered novel transcriptional signatures driven by PTSD-related genes as well as dysfunction of hypothalamic–pituitary–adrenal axis, which corroborated the segregation in susceptible/resilient subpopulations obtained through the AIS model and correlated with trauma susceptibility/resilience. Impaired hippocampal synaptic plasticity was also observed in susceptible mice. Finally, chronic treatment with paroxetine ameliorated the PTSD-like phenotypes of susceptible mice. These findings indicate that the AIS model might be a new translational animal model for the study of crucial features of PTSD. It might shed light on the unclear PTSD neurobiology and identify new pharmacological targets for this difficult-to-treat disorder. The AIS model includes highly requested features necessary to shape a translational PTSD animal model. Susceptible mice identified through the AIS model exhibited persistent PTSD-like phenotypes. Resilient mice identified through the AIS model adopted active coping strategies. The AIS model revealed molecular adaptations underlying trauma susceptibility/resilience. The AIS model meets the criterion of predictive validity by exclusively using susceptible mice.
Collapse
Key Words
- 5-trial SM, 5-trial social memory
- AIS, arousal-based individual screening
- ASR, acoustic startle reactivity
- Amy, amygdala
- Animal model
- BDNF, brain derived neurotropic factor
- BST, basal synaptic transmission
- C, control
- CORT, corticosterone
- DSM-5, Diagnostic and Statistical Manual of Mental Disorders
- EPM, elevated plus maze
- FDA, Food and Drug Administration
- FKBP5, FK506 binding protein 5
- FST, forced swim test
- Fear conditioning
- HIP, hippocampus
- HPA, hypothalamic–pituitary–adrenal
- HT, hypothalamus
- OF, open field
- PTSD, post-traumatic stress disorder
- Resilience
- SGK1, serum/glucocorticoid-regulated kinase 1
- SSRIs, selective serotonin reuptake inhibitors
- Stress
- Susceptibility
- TE, trauma-exposed
- Z-score
- fEPSPs, field excitatory post-synaptic potentials
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Sebastiano A Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gianluca Lavanco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,INSERM, U1215 Neurocentre Magendie and University of Bordeaux, Bordeaux, France
| | - Oriana M Maurel
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Margherita Grasso
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
16
|
Li Y, Lv Q, Li B, Luo D, Sun X, Xu J. The role of trauma experiences, personality traits, and genotype in maintaining posttraumatic stress disorder symptoms among child survivors of the Wenchuan earthquake. BMC Psychiatry 2020; 20:439. [PMID: 32894097 PMCID: PMC7487586 DOI: 10.1186/s12888-020-02844-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is the most prevalent type of psychiatric disorder among children after an earthquake. This study investigated the role of trauma experiences, personality traits, and genotype in the maintenance of PTSD symptoms. METHODS In a previous large-scale epidemiological investigation 1 year after the Wenchuan earthquake, 215 children with PTSD symptoms were selected at random with their blood samples collected. All of them were followed up, and their PTSD symptoms were assessed 3 years later. The adolescent version of the UCLA PTSD Reaction Index, the earthquake exposure scale, and the Junior Eysenck Personality Questionnaire were used to determine PTSD symptoms, trauma experiences, and personality traits, respectively. We sequenced candidate genes involved in the regulation of long-term potentiation via NMDA-type receptors to identify the related SNP variations. RESULTS Being trapped for a longer period of time, feeling one's own or a family member's life to be in danger, losing a close family member or friend, extraversion, neuroticism, TrkB, G72 and CNTF were found to be associated with the maintenance of PTSD symptoms. CONCLUSIONS Experiences, personality traits, and genotype influenced the maintenance of PTSD in child survivors who were considered to be followed up without medicine. This result could help to identify potential targets for treatment and promote the rational allocation of medical resources.
Collapse
Affiliation(s)
- Yuwei Li
- grid.13291.380000 0001 0807 1581Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuyue Lv
- grid.13291.380000 0001 0807 1581Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Li
- grid.13291.380000 0001 0807 1581Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Luo
- grid.13291.380000 0001 0807 1581Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xueli Sun
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiajun Xu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Hastings MH, Gauthier JM, Mabry K, Tran A, Man HY, Kantak KM. Facilitative effects of environmental enrichment for cocaine relapse prevention are dependent on extinction training context and involve increased TrkB signaling in dorsal hippocampus and ventromedial prefrontal cortex. Behav Brain Res 2020; 386:112596. [PMID: 32194188 DOI: 10.1016/j.bbr.2020.112596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Abstract
Cocaine-cue extinction training combined with brief interventions of environmental enrichment (EE) was shown previously to facilitate extinction and attenuate reacquisition of cocaine self-administration in rats. It is unknown whether or not the usefulness of this approach would be undermined if extinction training took place in a novel rather than familiar context. Drawing on previous studies involving pharmacological interventions, we hypothesized that the facilitative effects of EE for cocaine relapse prevention would be independent of the context used for extinction training. Rats trained to self-administer cocaine underwent cocaine-cue extinction training in either the familiar self-administration context or a novel context, with or without EE. Rats then were tested for reacquisition of cocaine self-administration in the familiar context. Target brain regions were lysed and probed for memory-related changes in receptors for glutamate and BDNF by western blotting. Contrary to our hypothesis, the facilitative effects of EE for cocaine relapse prevention were dependent on the context used for extinction training. While EE facilitated extinction regardless of context used, it inhibited cocaine relapse only after extinction training in the familiar context. EE was associated with increased GluA2 in nucleus accumbens, TrkB in dorsal hippocampus and activated TrkB in ventromedial prefrontal cortex. Of these, the changes in dorsal hippocampus and ventromedial prefrontal cortex mirrored outcomes of the cocaine relapse tests in that these changes were specific to rats receiving EE plus extinction training in the familiar context. These findings support a role for hippocampal-prefrontal BDNF-TrkB signaling in extinction-based relapse prevention strategies involving EE.
Collapse
Affiliation(s)
- Margaret H Hastings
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, USA; Department of Biology, Boston University, Boston, USA
| | - Jamie M Gauthier
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, USA
| | - Kyle Mabry
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, USA
| | - Audrey Tran
- Department of Biology, Boston University, Boston, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, USA; Center for Systems Neuroscience, Boston University, Boston, USA
| | - Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, USA; Center for Systems Neuroscience, Boston University, Boston, USA.
| |
Collapse
|
18
|
Hori H, Itoh M, Yoshida F, Lin M, Niwa M, Hakamata Y, Ino K, Imai R, Ogawa S, Matsui M, Kamo T, Kunugi H, Kim Y. The BDNF Val66Met polymorphism affects negative memory bias in civilian women with PTSD. Sci Rep 2020; 10:3151. [PMID: 32081932 PMCID: PMC7035249 DOI: 10.1038/s41598-020-60096-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/07/2020] [Indexed: 11/09/2022] Open
Abstract
Memory abnormalities are considered a core feature of posttraumatic stress disorder (PTSD). Studies attempting to quantify such memory dysfunction in PTSD have reported that individuals with this disorder exhibit selective memory bias toward negative material. The low expression Met allele of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism has been associated with the aetiology of PTSD and with memory abnormalities. It is therefore possible that the BDNF Val66Met polymorphism can moderate the relationship between PTSD and memory bias. Here we examined this association in 50 civilian women with PTSD and 70 non-trauma-exposed healthy control women. All subjects were genotyped for the BDNF Val66Met (rs6265) polymorphism. Negative memory bias was assessed using a recognition memory task. Patients showed significantly greater negative memory bias compared to controls. In patients, negative memory bias significantly increased with increasing numbers of Met alleles; while no significant relationship was seen in controls. Further pairwise analyses revealed that patients with the Met allele had significantly greater negative memory bias than controls. These results suggest that the relationship between PTSD and negative memory bias can be moderated by the BDNF Val66Met polymorphism. More studies are needed to further clarify the relationship between this polymorphism and memory abnormalities in PTSD.
Collapse
Affiliation(s)
- Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Mariko Itoh
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Fuyuko Yoshida
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mingming Lin
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Madoka Niwa
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Hakamata
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Keiko Ino
- Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Risa Imai
- Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sei Ogawa
- Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mie Matsui
- Department of Clinical Cognitive Neuroscience, Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
| | - Toshiko Kamo
- Wakamatsu-cho Mental and Skin Clinic, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
19
|
Yang SJ, Song ZJ, Wang XC, Zhang ZR, Wu SB, Zhu GQ. Curculigoside facilitates fear extinction and prevents depression-like behaviors in a mouse learned helplessness model through increasing hippocampal BDNF. Acta Pharmacol Sin 2019; 40:1269-1278. [PMID: 31028292 PMCID: PMC6786307 DOI: 10.1038/s41401-019-0238-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
Curculigoside (CUR) is the main active component of traditional Chinese medicine Curculigoorchioides Gaertn (Xianmao in Chinese), which exhibits a variety of pharmacological activities. In this study we investigated the effects of CUR on fear extinction and related depression-like behaviors in mice. In fear conditioning task, we found that administration of CUR (1.6, 8, 40 mg·kg-1·d-1, ip, for 7 days) did not affect memory consolidation, but CUR at higher doses (8, 40 mg·kg-1·d-1) significantly facilitated fear extinction, especially on D3 and D4. Moreover, CUR administration significantly ameliorated the fear conditioning-induced depression-like behaviors, likely through promoting fear extinction. We showed that CUR increased the expression of brain-derived neurotrophic factor (BDNF) and phosphorylation of tropomyosin receptor kinase B (TrkB) in the hippocampus, and activated protein kinase B (Akt)-mammalian target of the rapamycin (mTOR) signaling pathway. Administration of the selective TrkB agonist 7,8-dihydroxyflavone (7,8-DHF, 5 mg·kg-1·d-1, ip) also facilitated fear extinction, ameliorated depression-like behaviors. We established a mouse learned helplessness (LH) model to evaluate the antidepressant activity of CUR. The spatial memory was assessed in Morris water maze. We showed that LH-induced depression-like behaviors, including prolonged immobility times in forced swim and tail suspension tests as well as spatial memory impairments; LH also downregulated BDNF expression and the Akt-mTOR signaling pathway in the hippocampus. Administration of CUR (1.6, 8, 40 mg·kg-1·d-1, ip, for 14 days) or 7,8-DHF (5 mg·kg-1·d-1, ip, for 3 days) prevented LH-induced depression-like behaviors and promoted BDNF expression and the Akt-mTOR signaling pathway. In conclusion, CUR can accelerate the fear memory extinction and ameliorate depression-like behaviors in mice via promoting BDNF expression and activating the Akt-mTOR signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- San-Juan Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Zhu-Jin Song
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Xun-Cui Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Zheng-Rong Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Sheng-Bing Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
- Anhui Academy of Chinese Medicine, Hefei, 230038, China
| | - Guo-Qi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China.
- Anhui Academy of Chinese Medicine, Hefei, 230038, China.
| |
Collapse
|
20
|
Ji LL, Ye Y, Nie PY, Peng JB, Fu CH, Wang ZY, Tong L. Dysregulation of miR-142 results in anxiety-like behaviors following single prolonged stress. Behav Brain Res 2019; 365:157-163. [PMID: 30857769 DOI: 10.1016/j.bbr.2019.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a prevalent mental disorder that is classified as a trauma- and stressor-related disorder. While numerous epigenetic factors are related to the risk for PTSD, the precise mechanisms underlying this disorder remain unclear. However, accumulating evidence has demonstrated that dysregulation of microRNAs is involved in stress-related psychiatric disorders, resulting in anxiety-like behavior, memory-related deficits and aberrant neuronal plasticity. Here, rats exposed to single prolonged stress showed increased microRNA-142-5p levels in the amygdala and a concurrent reduction in the levels of its predicted target Npas4, an activity-regulated transcription factor, which was implicated in stress-related psychopathologies. In addition, the inhibition of microRNA-142 following exposure to single prolonged stress exhibited decreased anxiety-like behaviors and memory deficits, as well as increased expression of Npas4 and BDNF. Furthermore, a dual-luciferase reporter assay indicated that Npas4 was a direct downstream target of miR-142. Taken together, these data suggest that miR-142 may play a key role in the pathogenesis of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Yao Ye
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Peng-Yin Nie
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Jun-Bo Peng
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Chang-Hai Fu
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Zhen-Yu Wang
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|