1
|
Favier M, Martin Garcia E, Icick R, de Almeida C, Jehl J, Desplanque M, Zimmermann J, Henrion A, Mansouri-Guilani N, Mounier C, Ribeiro S, Henderson F, Geoffroy A, Mella S, Poirel O, Bernard V, Fabre V, Li Y, Rosenmund C, Jamain S, Vorspan F, Mourot A, Duriez P, Pinhas L, Maldonado R, Pietrancosta N, Daumas S, El Mestikawy S. The human VGLUT3-pT8I mutation elicits uneven striatal DA signaling, food or drug maladaptive consumption in male mice. Nat Commun 2024; 15:5691. [PMID: 38971801 PMCID: PMC11227582 DOI: 10.1038/s41467-024-49371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/07/2024] [Indexed: 07/08/2024] Open
Abstract
Cholinergic striatal interneurons (ChIs) express the vesicular glutamate transporter 3 (VGLUT3) which allows them to regulate the striatal network with glutamate and acetylcholine (ACh). In addition, VGLUT3-dependent glutamate increases ACh vesicular stores through vesicular synergy. A missense polymorphism, VGLUT3-p.T8I, was identified in patients with substance use disorders (SUDs) and eating disorders (EDs). A mouse line was generated to understand the neurochemical and behavioral impact of the p.T8I variant. In VGLUT3T8I/T8I male mice, glutamate signaling was unchanged but vesicular synergy and ACh release were blunted. Mutant male mice exhibited a reduced DA release in the dorsomedial striatum but not in the dorsolateral striatum, facilitating habit formation and exacerbating maladaptive use of drug or food. Increasing ACh tone with donepezil reversed the self-starvation phenotype observed in VGLUT3T8I/T8I male mice. Our study suggests that unbalanced dopaminergic transmission in the dorsal striatum could be a common mechanism between SUDs and EDs.
Collapse
Affiliation(s)
- Mathieu Favier
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada.
| | - Elena Martin Garcia
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Romain Icick
- Département de Psychiatrie et de Médecine Addictologique, DMU Neurosciences, APHP.Nord, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, F-75010, France
- INSERM U1144, "Therapeutic optimization in neuropsychopharmacology", Paris, F-75006, France
- Université Paris Cité, Inserm UMR-S1144, Paris, F-75006, France
- Neurobiologie Intégrative des Systèmes Cholinergiques, Département de Neurosciences, Institut Pasteur, Paris, F-75015, France
| | - Camille de Almeida
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Joachim Jehl
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
- Brain Plasticity Unit, CNRS UMR 8249, ESPCI Paris, PSL Research University, 75005, Paris, France
| | - Mazarine Desplanque
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Johannes Zimmermann
- Neurocure NWFZ, Charite Universitaetsmedizin, Institut für Neurophysiologie, Charitéplatz 1, 10117, Berlin, Germany
| | - Annabelle Henrion
- Fondation FondaMental, Créteil, France
- Université Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, F-94010, Créteil, France
| | - Nina Mansouri-Guilani
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Coline Mounier
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada
| | - Svethna Ribeiro
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada
| | - Fiona Henderson
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Andrea Geoffroy
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Sebastien Mella
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Odile Poirel
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Véronique Bernard
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Véronique Fabre
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Christian Rosenmund
- Neurocure NWFZ, Charite Universitaetsmedizin, Institut für Neurophysiologie, Charitéplatz 1, 10117, Berlin, Germany
| | - Stéphane Jamain
- Fondation FondaMental, Créteil, France
- Université Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, F-94010, Créteil, France
| | - Florence Vorspan
- Département de Psychiatrie et de Médecine Addictologique, DMU Neurosciences, APHP.Nord, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, F-75010, France
- INSERM U1144, "Therapeutic optimization in neuropsychopharmacology", Paris, F-75006, France
- Université Paris Cité, Inserm UMR-S1144, Paris, F-75006, France
| | - Alexandre Mourot
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
- Brain Plasticity Unit, CNRS UMR 8249, ESPCI Paris, PSL Research University, 75005, Paris, France
| | - Philibert Duriez
- GHU Paris Psychiatrie et Neurosciences (CMME, Hospital Sainte-Anne), Institute of Psychiatry and Neuroscience of Paris (INSERM UMR1266), Paris, France
| | - Leora Pinhas
- PHLIP Mental Health and Painless Medicine clinic, Toronto, Canada
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Nicolas Pietrancosta
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
- LCBPT, Université Paris Descartes, Sorbonne Paris Cité, UMR 8601, CNRS, Paris, 75006, France
| | - Stéphanie Daumas
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Salah El Mestikawy
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada.
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France.
| |
Collapse
|
2
|
Fazekas CL, Török B, Correia P, Chaves T, Bellardie M, Sipos E, Horváth HR, Gaszner B, Dóra F, Dobolyi Á, Zelena D. The Role of Vesicular Glutamate Transporter Type 3 in Social Behavior, with a Focus on the Median Raphe Region. eNeuro 2024; 11:ENEURO.0332-23.2024. [PMID: 38839305 PMCID: PMC11154661 DOI: 10.1523/eneuro.0332-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024] Open
Abstract
Social behavior is important for our well-being, and its dysfunctions impact several pathological conditions. Although the involvement of glutamate is undeniable, the relevance of vesicular glutamate transporter type 3 (VGluT3), a specific vesicular transporter, in the control of social behavior is not sufficiently explored. Since midbrain median raphe region (MRR) is implicated in social behavior and the nucleus contains high amount of VGluT3+ neurons, we compared the behavior of male VGluT3 knock-out (KO) and VGluT3-Cre mice, the latter after chemogenetic MRR-VGluT3 manipulation. Appropriate control groups were included. Behavioral test battery was used for social behavior (sociability, social discrimination, social interaction, resident intruder test) and possible confounding factors (open field, elevated plus maze, Y-maze tests). Neuronal activation was studied by c-Fos immunohistochemistry. Human relevance was confirmed by VGluT3 gene expression in relevant human brainstem areas. VGluT3 KO mice exhibited increased anxiety, social interest, but also aggressive behavior in anxiogenic environment and impaired social memory. For KO animals, social interaction induced lower cell activation in the anterior cingulate, infralimbic cortex, and medial septum. In turn, excitation of MRR-VGluT3+ neurons was anxiolytic. Inhibition increased social interest 24 h later but decreased mobility and social behavior in aggressive context. Chemogenetic activation increased the number of c-Fos+ neurons only in the MRR. We confirmed the increased anxiety-like behavior and impaired memory of VGluT3 KO strain and revealed increased, but inadequate, social behavior. MRR-VGluT3 neurons regulated mobility and social and anxiety-like behavior in a context-dependent manner. The presence of VGluT3 mRNA on corresponding human brain areas suggests clinical relevance.
Collapse
Affiliation(s)
- Csilla Lea Fazekas
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest 1085, Hungary
| | - Bibiána Török
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest 1085, Hungary
| | - Tiago Chaves
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest 1085, Hungary
| | - Manon Bellardie
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
| | - Eszter Sipos
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
| | - Hanga Réka Horváth
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
| | - Balázs Gaszner
- Department of Anatomy, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary
| | - Fanni Dóra
- Human Brain Bank and Microdissection Laboratory, Semmelweis University, Budapest 1085, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest 1085, Hungary
| | - Árpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest 1085, Hungary
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, Pécs 7624, Hungary
- Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest 1084, Hungary
| |
Collapse
|
3
|
Chemogenetic activation of VGLUT3-expressing neurons decreases movement. Eur J Pharmacol 2022; 935:175298. [PMID: 36198338 DOI: 10.1016/j.ejphar.2022.175298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) are responsible for the storage of glutamate into secretory vesicles. The VGLUT3 isoform is mainly expressed in neurons that secrete other classical neurotransmitters, including the cholinergic interneurons in the striatum, and VGLUT3-expressing neurons often secrete two distinct neurotransmitters. VGLUT3 is discretely distributed throughout the brain and is found in subpopulations of spinal cord interneurons, in subset of neurons in the dorsal root ganglion, and in Merkel cells. Mice with a global loss of VGLUT3 are hyperactive and the modulation of specific VGLUT3-expressing circuits can lead to changes in movement. In this study, we tested the hypothesis that increased activity of VGLUT3-expressing neurons is associated with decreased movement. Using a mouse line expressing excitatory designer receptor exclusively activated by designer drugs (hM3Dq-DREADD) on VGLUT3-expressing neurons, we showed that activation of hM3Dq signalling acutely decreased locomotor activity. This decreased locomotion was likely not due to circuit changes mediated by glutamate nor acetylcholine released from VGLUT3-expressing neurons, as activation of hM3Dq signalling in mice that do not release glutamate or acetylcholine from VGLUT3-expressing neurons also decreased locomotor activity. This suggests that other neurotransmitters are likely driving this hypoactive phenotype. We used these mouse lines to compare the effects of DREADD agonists in vivo. We observed that clozapine-N-oxide (CNO), clozapine, compound 21 and perlapine show small differences in the speed at which they prompt behavioural responses but the four of them are selective DREADD ligands.
Collapse
|
4
|
Fazekas CL, Szabó A, Török B, Bánrévi K, Correia P, Chaves T, Daumas S, Zelena D. A New Player in the Hippocampus: A Review on VGLUT3+ Neurons and Their Role in the Regulation of Hippocampal Activity and Behaviour. Int J Mol Sci 2022; 23:790. [PMID: 35054976 PMCID: PMC8775679 DOI: 10.3390/ijms23020790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/05/2023] Open
Abstract
Glutamate is the most abundant excitatory amino acid in the central nervous system. Neurons using glutamate as a neurotransmitter can be characterised by vesicular glutamate transporters (VGLUTs). Among the three subtypes, VGLUT3 is unique, co-localising with other "classical" neurotransmitters, such as the inhibitory GABA. Glutamate, manipulated by VGLUT3, can modulate the packaging as well as the release of other neurotransmitters and serve as a retrograde signal through its release from the somata and dendrites. Its contribution to sensory processes (including seeing, hearing, and mechanosensation) is well characterised. However, its involvement in learning and memory can only be assumed based on its prominent hippocampal presence. Although VGLUT3-expressing neurons are detectable in the hippocampus, most of the hippocampal VGLUT3 positivity can be found on nerve terminals, presumably coming from the median raphe. This hippocampal glutamatergic network plays a pivotal role in several important processes (e.g., learning and memory, emotions, epilepsy, cardiovascular regulation). Indirect information from anatomical studies and KO mice strains suggests the contribution of local VGLUT3-positive hippocampal neurons as well as afferentations in these events. However, further studies making use of more specific tools (e.g., Cre-mice, opto- and chemogenetics) are needed to confirm these assumptions.
Collapse
Affiliation(s)
- Csilla Lea Fazekas
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Adrienn Szabó
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Bibiána Török
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Krisztina Bánrévi
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
| | - Pedro Correia
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Tiago Chaves
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Stéphanie Daumas
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Dóra Zelena
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
5
|
Beecher K, Wang J, Jacques A, Chaaya N, Chehrehasa F, Belmer A, Bartlett SE. Sucrose Consumption Alters Serotonin/Glutamate Co-localisation Within the Prefrontal Cortex and Hippocampus of Mice. Front Mol Neurosci 2021; 14:678267. [PMID: 34262435 PMCID: PMC8273284 DOI: 10.3389/fnmol.2021.678267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
The overconsumption of sugar-sweetened food and beverages underpins the current rise in obesity rates. Sugar overconsumption induces maladaptive neuroplasticity to decrease dietary control. Although serotonin and glutamate co-localisation has been implicated in reward processing, it is still unknown how chronic sucrose consumption changes this transmission in regions associated with executive control over feeding—such as the prefrontal cortex (PFC) and dentate gyrus (DG) of the hippocampus. To address this, a total of 16 C57Bl6 mice received either 5% w/v sucrose or water as a control for 12 weeks using the Drinking-In-The-Dark paradigm (n = 8 mice per group). We then examined the effects of chronic sucrose consumption on the immunological distribution of serotonin (5-HT), vesicular glutamate transporter 3 (VGLUT3) and 5-HT+/VGLUT3+ co-localised axonal varicosities. Sucrose consumption over 12 weeks decreased the number of 5-HT–/VGLUT3+ and 5-HT+/VGLUT3+ varicosities within the PFC and DG. The number of 5-HT+/VGLUT3– varicosities remained unchanged within the PFC but decreased in the DG following sucrose consumption. Given that serotonin mediates DG neurogenesis through microglial migration, the number of microglia within the DG was also assessed in both experimental groups. Sucrose consumption decreased the number of DG microglia. Although the DG and PFC are associated with executive control over rewarding activities and emotional memory formation, we did not detect a subsequent change in DG neurogenesis or anxiety-like behaviour or depressive-like behaviour. Overall, these findings suggest that the chronic consumption of sugar alters serotonergic neuroplasticity within neural circuits responsible for feeding control. Although these alterations alone were not sufficient to induce changes in neurogenesis or behaviour, it is proposed that the sucrose consumption may predispose individuals to these cognitive deficits which ultimately promote further sugar intake.
Collapse
Affiliation(s)
- Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua Wang
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jacques
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas Chaaya
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Fatemeh Chehrehasa
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Arnauld Belmer
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Selena E Bartlett
- Addiction Neuroscience and Obesity Laboratory, Faculty of Health, School of Clinical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Leveraging VGLUT3 Functions to Untangle Brain Dysfunctions. Trends Pharmacol Sci 2021; 42:475-490. [PMID: 33775453 DOI: 10.1016/j.tips.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) were long thought to be specific markers of glutamatergic excitatory transmission. The discovery, two decades ago, of the atypical VGLUT3 has thoroughly modified this oversimplified view. VGLUT3 is strategically expressed in discrete populations of glutamatergic, cholinergic, serotonergic, and even GABAergic neurons. Recent reports show the subtle, but critical, implications of VGLUT3-dependent glutamate co-transmission and its roles in the regulation of diverse brain functions and dysfunctions. Progress in the neuropharmacology of VGLUT3 could lead to decisive breakthroughs in the treatment of Parkinson's disease (PD), addiction, eating disorders, anxiety, presbycusis, or pain. This review summarizes recent findings on VGLUT3 and its vesicular underpinnings as well as on possible ways to target this atypical transporter for future therapeutic strategies.
Collapse
|
7
|
Kozlenkov A, Vermunt MW, Apontes P, Li J, Hao K, Sherwood CC, Hof PR, Ely JJ, Wegner M, Mukamel EA, Creyghton MP, Koonin EV, Dracheva S. Evolution of regulatory signatures in primate cortical neurons at cell-type resolution. Proc Natl Acad Sci U S A 2020; 117:28422-28432. [PMID: 33109720 PMCID: PMC7668098 DOI: 10.1073/pnas.2011884117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The human cerebral cortex contains many cell types that likely underwent independent functional changes during evolution. However, cell-type-specific regulatory landscapes in the cortex remain largely unexplored. Here we report epigenomic and transcriptomic analyses of the two main cortical neuronal subtypes, glutamatergic projection neurons and GABAergic interneurons, in human, chimpanzee, and rhesus macaque. Using genome-wide profiling of the H3K27ac histone modification, we identify neuron-subtype-specific regulatory elements that previously went undetected in bulk brain tissue samples. Human-specific regulatory changes are uncovered in multiple genes, including those associated with language, autism spectrum disorder, and drug addiction. We observe preferential evolutionary divergence in neuron subtype-specific regulatory elements and show that a substantial fraction of pan-neuronal regulatory elements undergoes subtype-specific evolutionary changes. This study sheds light on the interplay between regulatory evolution and cell-type-dependent gene-expression programs, and provides a resource for further exploration of human brain evolution and function.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- Research & Development, James J. Peters VA Medical Center, Bronx, NY 10468
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Marit W Vermunt
- Hubrecht Institute, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Pasha Apontes
- Research & Development, James J. Peters VA Medical Center, Bronx, NY 10468
| | - Junhao Li
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92037
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - John J Ely
- Alamogordo Primate Facility, Holloman Air Force Base, Alamogordo, NM 88330
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92037
| | - Menno P Creyghton
- Hubrecht Institute, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands;
- Department of Developmental Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Stella Dracheva
- Research & Development, James J. Peters VA Medical Center, Bronx, NY 10468;
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
8
|
Belmer A, Beecher K, Jacques A, Patkar OL, Sicherre F, Bartlett SE. Axonal Non-segregation of the Vesicular Glutamate Transporter VGLUT3 Within Serotonergic Projections in the Mouse Forebrain. Front Cell Neurosci 2019; 13:193. [PMID: 31133811 PMCID: PMC6523995 DOI: 10.3389/fncel.2019.00193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/17/2019] [Indexed: 11/13/2022] Open
Abstract
A subpopulation of raphe 5-HT neurons expresses the vesicular glutamate transporter VGLUT3 with the co-release of glutamate and serotonin proposed to play a pivotal role in encoding reward- and anxiety-related behaviors. Serotonin axons are identifiable by immunolabeling of either serotonin (5-HT) or the plasma membrane 5-HT transporter (SERT), with SERT labeling demonstrated to be only partially overlapping with 5-HT staining. Studies investigating the colocalization or segregation of VGLUT3 within SERT or 5-HT immunolabeled boutons have led to inconsistent results. Therefore, we combined immunohistochemistry, high resolution confocal imaging, and 3D-reconstruction techniques to map and quantify the distribution of VGLUT3 immunoreactive boutons within 5-HT vs. SERT-positive axons in various regions of the mouse forebrain, including the prefrontal cortex, nucleus accumbens core and shell, bed nucleus of the stria terminalis, dorsal striatum, lateral septum, basolateral and central amygdala, and hippocampus. Our results demonstrate that about 90% of 5-HT boutons are colocalized with SERT in almost all the brain regions studied, which therefore reveals that VGLUT3 and SERT do not segregate. However, in the posterior part of the NAC shell, we confirmed the presence of a subtype of 5-HT immunoreactive axons that lack the SERT. Interestingly, about 90% of the 5-HT/VGLUT3 boutons were labeled for the SERT in this region, suggesting that VGLUT3 is preferentially located in SERT immunoreactive 5-HT boutons. This work demonstrates that VGLUT3 and SERT cannot be used as specific markers to classify the different subtypes of 5-HT axons.
Collapse
Affiliation(s)
- Arnauld Belmer
- Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kate Beecher
- Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jacques
- Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Omkar L Patkar
- QIMR Berghofer Medical Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Florian Sicherre
- Biologie Integrative et Physiologie, Université Pierre et Marie Curie, Paris, France
| | - Selena E Bartlett
- Translational Research Institute, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|