1
|
Corley E, Gleeson C, Godfrey E, Cowman M, Patlola SR, Cannon DM, McKernan DP, Kelly JP, Hallahan B, McDonald C, Morris DW, Burke T, Donohoe G. Corpus callosum microstructural organization mediates the effects of physical neglect on social cognition in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110875. [PMID: 37844774 DOI: 10.1016/j.pnpbp.2023.110875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Exposure to early life adversity is associated with both increased risk of developing schizophrenia and poorer performance on measures of social cognitive functioning. In this study, we examined whether interleukin-6 (IL-6) and Corpus Callosum (CC) microstructure mediated the association between childhood physical neglect and social cognition. Fifty-eight patients with a diagnosis of schizophrenia were included. The CANTAB emotion recognition task (unbiased hit rate) was used to assess social cognition. We found that the microstructural organization of the CC significantly mediated the association between physical neglect and emotion recognition. Furthermore, in a sequential mediation analysis that also considered the role of inflammatory response, the association between physical neglect, and lower emotion recognition performance was sequentially mediated by higher IL-6 and lower fractional anisotropy of the CC. This mediating effect of IL-6 was only present when simultaneously considering the effects of CC microstructural organization and remained significant while controlling for the effects of sex, BMI and medication dosage (but not age). Overall, the findings suggest that the association between physical neglect and poorer emotion recognition in schizophrenia occurs, at least in part, via its association with white matter microstructure.
Collapse
Affiliation(s)
- Emma Corley
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland
| | - Christina Gleeson
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland
| | - Emmet Godfrey
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland
| | - Megan Cowman
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland
| | | | - Dara M Cannon
- Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland; Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Ireland
| | - Declan P McKernan
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Ireland
| | - John P Kelly
- Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Ireland
| | - Brian Hallahan
- Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland; Department of Psychiatry, Clinical Science Institute, University of Galway, Ireland
| | - Colm McDonald
- Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland; Department of Psychiatry, Clinical Science Institute, University of Galway, Ireland
| | - Derek W Morris
- Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Tom Burke
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland
| | - Gary Donohoe
- School of Psychology, University of Galway, Ireland; Center for Neuroimaging Cognition and Genomics, University of Galway, Ireland.
| |
Collapse
|
2
|
Corley E, Patlola SR, Laighneach A, Corvin A, McManus R, Kenyon M, Kelly JP, Mckernan DP, King S, Hallahan B, Mcdonald C, Morris DW, Donohoe G. Genetic and inflammatory effects on childhood trauma and cognitive functioning in patients with schizophrenia and healthy participants. Brain Behav Immun 2024; 115:26-37. [PMID: 37748567 DOI: 10.1016/j.bbi.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Recent studies have reported a negative association between exposure to childhood trauma, including physical neglect, and cognitive functioning in patients with schizophrenia. Childhood trauma has been found to influence immune functioning, which may contribute to the risk of schizophrenia and cognitive symptoms of the disorder. In this study, we aimed to test the hypothesis that physical neglect is associated with cognitive ability, and that this association is mediated by a combined latent measure of inflammatory response, and moderated by higher genetic risk for schizophrenia. The study included 279 Irish participants, comprising 102 patients and 177 healthy participants. Structural equation modelling was used to perform mediation and moderation analyses. Inflammatory response was measured via basal plasma levels of IL-6, TNF-α, and CRP, and cognitive performance was assessed across three domains: full-scale IQ, logical memory, and the emotion recognition task. Genetic variation for schizophrenia was estimated using a genome-wide polygenic score based on genome-wide association study summary statistics. The results showed that inflammatory response mediated the association between physical neglect and all measures of cognitive functioning, and explained considerably more variance than any of the inflammatory markers alone. Furthermore, genetic risk for schizophrenia was observed to moderate the direct pathway between physical neglect and measures of non-social cognitive functioning in both patient and healthy participants. However, genetic risk did not moderate the mediated pathway associated with inflammatory response. Therefore, we conclude that the mediating role of inflammatory response and the moderating role of higher genetic risk may independently influence the association between adverse early life experiences and cognitive function in patients and healthy participants.
Collapse
Affiliation(s)
- Emma Corley
- School of Psychology, University of Galway, Ireland; Centre for Neuroimaging, Cognition, and Genomics (NICOG), University of Galway, Ireland
| | - Saahithh Redddi Patlola
- Centre for Neuroimaging, Cognition, and Genomics (NICOG), University of Galway, Ireland; Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Ireland
| | - Aodán Laighneach
- Centre for Neuroimaging, Cognition, and Genomics (NICOG), University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Ireland
| | - Ross McManus
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Ireland
| | - Marcus Kenyon
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Ireland
| | - John P Kelly
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Ireland
| | - Declan P Mckernan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Ireland
| | - Sinead King
- School of Psychology, University of Galway, Ireland; Centre for Neuroimaging, Cognition, and Genomics (NICOG), University of Galway, Ireland
| | - Brian Hallahan
- Department of Psychiatry, Clinical Science Institute, University of Galway, Ireland
| | - Colm Mcdonald
- Department of Psychiatry, Clinical Science Institute, University of Galway, Ireland
| | - Derek W Morris
- Centre for Neuroimaging, Cognition, and Genomics (NICOG), University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Gary Donohoe
- School of Psychology, University of Galway, Ireland; Centre for Neuroimaging, Cognition, and Genomics (NICOG), University of Galway, Ireland.
| |
Collapse
|
3
|
Severance EG, Prandovszky E, Yang S, Leister F, Lea A, Wu CL, Tamouza R, Leboyer M, Dickerson F, Yolken RH. Prospects and Pitfalls of Plasma Complement C4 in Schizophrenia: Building a Better Biomarker. Dev Neurosci 2023; 45:349-360. [PMID: 37734326 DOI: 10.1159/000534185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Complex brain disorders like schizophrenia may have multifactorial origins related to mis-timed heritable and environmental factors interacting during neurodevelopment. Infections, inflammation, and autoimmune diseases are over-represented in schizophrenia leading to immune system-centered hypotheses. Complement component C4 is genetically and neurobiologically associated with schizophrenia, and its dual activity peripherally and in the brain makes it an exceptional target for biomarker development. Studies to evaluate the biomarker potential of plasma or serum C4 in schizophrenia do so to understand how peripheral C4 might reflect central nervous system-derived neuroinflammation, synapse pruning, and other mechanisms. This effort, however, has produced mostly conflicting results, with peripheral C4 sometimes elevated, reduced, or unchanged between comparison groups. We undertook a pilot biomarker development study to systematically identify sociodemographic, genetic, and immune-related variables (autoimmune, infection-related, gastrointestinal, inflammatory), which may be associated with plasma C4 levels in schizophrenia (SCH; n = 335) and/or in nonpsychiatric comparison subjects (NCs; n = 233). As with previously inconclusive studies, we detected no differences in plasma C4 levels between SCH and NCs. In contrast, levels of general inflammation, C-reactive protein (CRP), were significantly elevated in SCH compared to NCs (ANOVA, F = 20.74, p < 0.0001), suggestive that plasma C4 and CRP may reflect different sources or causes of inflammation. In multivariate regressions of C4 gene copy number variants, plasma C4 levels were correlated only for C4A (not C4B, C4L, C4S) and only in NCs (R Coeff = 0.39, CI = 0.01-0.77, R2 = 0.18, p < 0.01; not SCH). Other variables associated with plasma C4 levels only in NCs included sex, double-stranded DNA IgG, tissue-transglutaminase (TTG) IgG, and cytomegalovirus IgG. Toxoplasma gondii IgG was the only variable significantly correlated with plasma C4 in SCH but not in NCs. Many variables were associated with plasma C4 in both groups (body mass index, race, CRP, N-methyl-D-aspartate receptor (NMDAR) NR2 subunit IgG, TTG IgA, lipopolysaccharide-binding protein (LBP), and soluble CD14 (sCD14). While the direction of most C4 associations was positive, autoimmune markers tended to be inverse, and associated with reduced plasma C4 levels. When NMDAR-NR2 autoantibody-positive individuals were removed, plasma C4 was elevated in SCH versus NCs (ANOVA, F = 5.16, p < 0.02). Our study was exploratory and confirmation of the many variables associated with peripheral C4 requires replication. Our preliminary results point toward autoimmune factors and exposure to the pathogen, T. gondii, as possibly significant contributors to variability of total C4 protein levels in plasma of individuals with schizophrenia.
Collapse
Affiliation(s)
- Emily G Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emese Prandovszky
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuojia Yang
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Flora Leister
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ashley Lea
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ching-Lien Wu
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpital Universitaire Henri Mondor, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Fondation FondaMental, Créteil, France
| | - Ryad Tamouza
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpital Universitaire Henri Mondor, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Fondation FondaMental, Créteil, France
| | - Marion Leboyer
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpital Universitaire Henri Mondor, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Fondation FondaMental, Créteil, France
| | - Faith Dickerson
- Stanley Research Program, Sheppard Pratt, Baltimore, Maryland, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Zhuo C, Tian H, Song X, Jiang D, Chen G, Cai Z, Ping J, Cheng L, Zhou C, Chen C. Microglia and cognitive impairment in schizophrenia: translating scientific progress into novel therapeutic interventions. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:42. [PMID: 37429882 DOI: 10.1038/s41537-023-00370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Cognitive impairment is a core clinical feature of schizophrenia, exerting profound adverse effects on social functioning and quality of life in a large proportion of patients with schizophrenia. However, the mechanisms underlying the pathogenesis of schizophrenia-related cognitive impairment are not well understood. Microglia, the primary resident macrophages in the brain, have been shown to play important roles in psychiatric disorders, including schizophrenia. Increasing evidence has revealed excessive microglial activation in cognitive deficits related to a broad range of diseases and medical conditions. Relative to that about age-related cognitive deficits, current knowledge about the roles of microglia in cognitive impairment in neuropsychiatric disorders, such as schizophrenia, is limited, and such research is in its infancy. Thus, we conducted this review of the scientific literature with a focus on the role of microglia in schizophrenia-associated cognitive impairment, aiming to gain insight into the roles of microglial activation in the onset and progression of such impairment and to consider how scientific advances could be translated to preventive and therapeutic interventions. Research has demonstrated that microglia, especially those in the gray matter of the brain, are activated in schizophrenia. Upon activation, microglia release key proinflammatory cytokines and free radicals, which are well-recognized neurotoxic factors contributing to cognitive decline. Thus, we propose that the inhibition of microglial activation holds potential for the prevention and treatment of cognitive deficits in patients with schizophrenia. This review identifies potential targets for the development of new treatment strategies and eventually the improvement of care for these patients. It might also help psychologists and clinical investigators in planning future research.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China.
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, 300222, Tianjin, China.
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China.
| | - Hongjun Tian
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Xueqin Song
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Ziyao Cai
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Jing Ping
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Langlang Cheng
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Chunmian Chen
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| |
Collapse
|
5
|
Zhang L, Lizano P, Xu Y, Rubin LH, Lee AM, Lencer R, Reilly JL, Keefe RSE, Keedy SK, Pearlson GD, Clementz BA, Keshavan MS, Gershon ES, Tamminga CA, Sweeney JA, Hill SK, Bishop JR. Peripheral inflammation is associated with impairments of inhibitory behavioral control and visual sensorimotor function in psychotic disorders. Schizophr Res 2023; 255:69-78. [PMID: 36965362 PMCID: PMC10175233 DOI: 10.1016/j.schres.2023.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/08/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023]
Abstract
Elevated markers of peripheral inflammation are common in psychosis spectrum disorders and have been associated with brain anatomy, pathology, and physiology as well as clinical outcomes. Preliminary evidence suggests a link between inflammatory cytokines and C-reactive protein (CRP) with generalized cognitive impairments in a subgroup of individuals with psychosis. Whether these patients with elevated peripheral inflammation demonstrate deficits in specific cognitive domains remains unclear. To examine this, seventeen neuropsychological and sensorimotor tasks and thirteen peripheral inflammatory and microvascular markers were quantified in a subset of B-SNIP consortium participants (129 psychosis, 55 healthy controls). Principal component analysis was conducted across the inflammatory markers, resulting in five inflammation factors. Three discrete latent cognitive domains (Visual Sensorimotor, General Cognitive Ability, and Inhibitory Behavioral Control) were characterized based on the neurobehavioral battery and examined in association with inflammation factors. Hierarchical clustering analysis identified cognition-sensitive high/low inflammation subgroups. Among persons with psychotic disorders but not healthy controls, higher inflammation scores had significant associations with impairments of Inhibitory Control (R2 = 0.100, p-value = 2.69e-4, q-value = 0.004) and suggestive associations with Visual Sensorimotor function (R2 = 0.039, p-value = 0.024, q-value = 0.180), but not with General Cognitive Ability (R2 = 0.015, p-value = 0.162). Greater deficits in Inhibitory Control were observed in the high inflammation patient subgroup, which represented 30.2 % of persons with psychotic disorders, as compared to the low inflammation psychosis subgroup. These findings indicate that inflammation dysregulation may differentially impact specific neurobehavioral domains across psychotic disorders, particularly performance on tasks requiring ongoing behavioral monitoring and control.
Collapse
Affiliation(s)
- Lusi Zhang
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Yanxun Xu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, United States
| | - Leah H Rubin
- Department of Neurology, Psychiatry, and Epidemiology, Johns Hopkins University, Baltimore, MD, United States
| | - Adam M Lee
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - James L Reilly
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, United States
| | - Richard S E Keefe
- Departments of Psychiatry, Neuroscience, and Psychology, Duke University, Durham, NC, United States
| | - Sarah K Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, United States
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neurobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Brett A Clementz
- Department of Psychology and Neuroscience, University of Georgia, Athens, GA, United States
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, United States
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center Dallas, TX, United States
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - S Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States; Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, United States.
| |
Collapse
|
6
|
Parker SE, Bellingham MC, Woodruff TM. Complement drives circuit modulation in the adult brain. Prog Neurobiol 2022; 214:102282. [DOI: 10.1016/j.pneurobio.2022.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
|
7
|
Complement as a powerful "influencer" in the brain during development, adulthood and neurological disorders. Adv Immunol 2021; 152:157-222. [PMID: 34844709 DOI: 10.1016/bs.ai.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complement system was long considered as only a powerful effector arm of the immune system that, while critically protective, could lead to inflammation and cell death if overactivated, even in the central nervous system (CNS). However, in the past decade it has been recognized as playing critical roles in key physiological processes in the CNS, including neurogenesis and synaptic remodeling in the developing and adult brain. Inherent in these processes are the interactions with cells in the brain, and the cascade of interactions and functional consequences that ensue. As a result, investigations of therapeutic approaches for both suppressing excessive complement driven neurotoxicity and aberrant sculpting of neuronal circuits, require broad (and deep) knowledge of the functional activities of multiple components of this highly evolved and regulated system to avoid unintended negative consequences in the clinic. Advances in basic science are beginning to provide a roadmap for translation to therapeutics, with both small molecule and biologics. Here, we present examples of the critical roles of proper complement function in the development and sculpting of the nervous system, and in enabling rapid protection from infection and clearance of dying cells. Microglia are highlighted as important command centers that integrate signals from the complement system and other innate sensors that are programed to provide support and protection, but that direct detrimental responses to aberrant activation and/or regulation of the system. Finally, we present promising research areas that may lead to effective and precision strategies for complement targeted interventions to promote neurological health.
Collapse
|
8
|
Early life Adversity, functional connectivity and cognitive performance in Schizophrenia: The mediating role of IL-6. Brain Behav Immun 2021; 98:388-396. [PMID: 34242739 DOI: 10.1016/j.bbi.2021.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Exposure to childhood trauma (CT) is associated with cognitive impairment in schizophrenia, and deficits in social cognition in particular. Here, we sought to test whether IL-6 mediated the association between CT and social cognition both directly, and sequentially via altered default mode network (DMN) connectivity. METHODS Three-hundred-and-eleven participants (104 patients and 207 healthy participants) were included, with MRI data acquired in a subset of n = 147. CT was measured using the childhood trauma questionnaire (CTQ). IL-6 was measured in both plasma and in toll like receptor (TLR) stimulated whole blood. The CANTAB emotion recognition task (ERT) was administered to assess social cognition, and cortical connectivity was assessed based on resting DMN connectivity. RESULTS Higher IL-6 levels, measured both in plasma and in toll-like receptor (TLR-2) stimulated blood, were significantly correlated with higher CTQ scores and lower cognitive and social cognitive function. Plasma IL-6 was further observed to partly mediate the association between higher CT scores and lower emotion recognition performance (CTQ total: βindirect -0.0234, 95% CI: -0.0573 to -0.0074; CTQ physical neglect: βindirect = -0.0316, 95% CI: -0.0741 to -0.0049). Finally, sequential mediation was observed between plasma IL-6 levels and DMN connectivity in mediating the effects of higher CTQ on lower social cognitive function (βindirect = -0.0618, 95% CI: -0.1523 to -0.285). CONCLUSION This work suggests that previous associations between CT and social cognition may be partly mediated via an increased inflammatory response. IL-6's association with changes in DMN activity further suggest at least one cortical network via which CT related effects on cognition may be transmitted.
Collapse
|
9
|
Mothersill D, King S, Holleran L, Dauvermann M, Patlola S, Rokita K, McManus R, Keynon M, McDonald C, Hallahan B, Corvin A, Morris D, Kelly J, McKernan D, Donohoe G. Interleukin 6 predicts increased neural response during face processing in a sample of individuals with schizophrenia and healthy participants: A functional magnetic resonance imaging study. NEUROIMAGE-CLINICAL 2021; 32:102851. [PMID: 34634589 PMCID: PMC8515297 DOI: 10.1016/j.nicl.2021.102851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/12/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023]
Abstract
IL-6 has been associated with poorer facial emotion recognition. fMRI was performed during a faces task and IL-6 measured from blood samples. IL-6 predicted increased neural response during facial emotion recognition.
Background Deficits in facial emotion recognition are a core feature of schizophrenia and predictive of functional outcome. Higher plasma levels of the cytokine interleukin 6 (IL-6) have recently been associated with poorer facial emotion recognition in individuals with schizophrenia and healthy participants, but the neural mechanisms affected remain poorly understood. Methods Forty-nine individuals with schizophrenia or schizoaffective disorder and 158 healthy participants were imaged using functional magnetic resonance imaging during a dynamic facial emotion recognition task. Plasma IL-6 was measured from blood samples taken outside the scanner. Multiple regression was used in statistical parametric mapping software to test whether higher plasma IL-6 predicted increased neural response during task performance. Results Higher plasma IL-6 predicted increased bilateral medial prefrontal response during neutral face processing compared to angry face processing in the total sample (N = 207, tmax = 5.67) and increased left insula response during angry face processing compared to neutral face processing (N = 207, tmax = 4.40) (p < 0.05, family-wise error corrected across the whole brain at the cluster level). Conclusions These findings suggest that higher peripheral IL-6 levels predict altered neural response within brain regions involved in social cognition and emotion during facial emotion recognition. This is consistent with recent neuroimaging research on IL-6 and suggesting a possible neural mechanism by which this cytokine might affect facial emotion recognition accuracy.
Collapse
Affiliation(s)
- David Mothersill
- Department of Psychology, School of Business, National College of Ireland, Dublin, Ireland; Center for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology, National University of Ireland Galway, Ireland; Department of Psychiatry, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Sinead King
- Center for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology, National University of Ireland Galway, Ireland
| | - Laurena Holleran
- Center for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology, National University of Ireland Galway, Ireland
| | - Maria Dauvermann
- Center for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology, National University of Ireland Galway, Ireland; Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, England, UK
| | - Saahithh Patlola
- Center for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology, National University of Ireland Galway, Ireland
| | - Karolina Rokita
- Center for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology, National University of Ireland Galway, Ireland
| | - Ross McManus
- Department of Psychiatry, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Marcus Keynon
- Department of Psychiatry, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Colm McDonald
- Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, Ireland
| | - Brian Hallahan
- Department of Psychiatry, Clinical Science Institute, National University of Ireland Galway, Ireland
| | - Aiden Corvin
- Department of Psychiatry, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | - Derek Morris
- School of Natural Sciences, National University of Ireland Galway, Ireland
| | - John Kelly
- Pharmacology & Therapeutics, National University of Ireland Galway, Ireland
| | - Declan McKernan
- Pharmacology & Therapeutics, National University of Ireland Galway, Ireland
| | - Gary Donohoe
- Center for Neuroimaging and Cognitive Genomics (NICOG), School of Psychology, National University of Ireland Galway, Ireland.
| |
Collapse
|
10
|
Corley E, Holleran L, Fahey L, Corvin A, Morris DW, Donohoe G. Microglial-expressed genetic risk variants, cognitive function and brain volume in patients with schizophrenia and healthy controls. Transl Psychiatry 2021; 11:490. [PMID: 34556640 PMCID: PMC8460789 DOI: 10.1038/s41398-021-01616-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 12/23/2022] Open
Abstract
Changes in immune function are associated with variance in cognitive functioning in schizophrenia. Given that microglia are the primary innate immune cells in the brain, we examined whether schizophrenia risk-associated microglial genes (measured via polygenic score analysis) explained variation in cognition in patients with schizophrenia and controls (n = 1,238) and tested whether grey matter mediated this association. We further sought to replicate these associations in an independent sample of UK Biobank participants (n = 134,827). We then compared the strength of these microglial associations to that of neuronal and astroglial (i.e., other brain-expressed genes) polygenic scores, and used MAGMA to test for enrichment of these gene-sets with schizophrenia risk. Increased microglial schizophrenia polygenic risk was associated with significantly lower performance across several measures of cognitive functioning in both samples; associations which were then found to be mediated via total grey matter volume in the UK Biobank. Unlike neuronal genes which did show evidence of enrichment, the microglial gene-set was not significantly enriched for schizophrenia, suggesting that the relevance of microglia may be for neurodevelopmental processes related more generally to cognition. Further, the microglial polygenic score was associated with performance on a range of cognitive measures in a manner comparable to the neuronal schizophrenia polygenic score, with fewer cognitive associations observed for the astroglial score. In conclusion, our study supports the growing evidence of the importance of immune processes to understanding cognition and brain structure in both patients and in the healthy population.
Collapse
Affiliation(s)
- Emma Corley
- School of Psychology, National University of Ireland, Galway, Ireland
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Laurena Holleran
- School of Psychology, National University of Ireland, Galway, Ireland
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
| | - Laura Fahey
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
- Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Derek W Morris
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland
- Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- School of Psychology, National University of Ireland, Galway, Ireland.
- Centre for Neuroimaging and Cognitive Genomics, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
11
|
Severance EG, Leister F, Lea A, Yang S, Dickerson F, Yolken RH. Complement C4 associations with altered microbial biomarkers exemplify gene-by-environment interactions in schizophrenia. Schizophr Res 2021; 234:87-93. [PMID: 33632634 PMCID: PMC8373622 DOI: 10.1016/j.schres.2021.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Schizophrenia is a complex brain disorder with genetic and environmental factors contributing to its etiology. Complement C4 genes are schizophrenia susceptibility loci and are activated in response to infections and gut microbiome imbalances. We hypothesize that C4 genetic susceptibility predisposes individuals to neuropathological effects from pathogen exposures or a microbiome in dysbiosis. In 214 individuals with schizophrenia and 123 non-psychiatric controls, we examined C4 gene copy number and haplotype groups for associations with schizophrenia and microbial plasma biomarkers. C4A copy number and haplotypes containing HERV-K insertions (C4A-long; C4AL-C4AL) conferred elevated odds ratios for schizophrenia diagnoses (OR 1.58-2.56, p < 0.0001), while C4B-short (C4BS) haplogroups conferred decreased odds (OR 0.43, p < 0.0001). Haplogroup-microbe combinations showed extensive associations with schizophrenia including C4AL with Candida albicans IgG (OR 2.16, p < 0.0005), C4AL-C4BL with cytomegalovirus (CMV) IgG (OR 1.79, p < 0.008), C4BS with lipopolysaccharide-binding protein (LBP) (OR 1.18, p < 0.0001), and C4AL-C4AL with Toxoplasma gondii IgG (OR = 17.67, p < 0.0001). In controls, only one haplogroup-microbe combination was significant: C4BS with CMV IgG (OR 0.52, p < 0.02). In schizophrenia only, LBP and CMV IgG levels were inversely correlated with C4A and C4S copy numbers, respectively (R2 = 0.13-0.16, p < 0.0001). C4 haplogroups were associated with altered scores of cognitive functioning in both cases and controls and with psychiatric symptom scores in schizophrenia. Our findings link complement C4 genes with a susceptibility to infections and a dysbiotic microbiome in schizophrenia. These results support immune system mechanisms by which gene-environmental interactions may be operative in schizophrenia.
Collapse
Affiliation(s)
- Emily G Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Flora Leister
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley Lea
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shuojia Yang
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Holland JF, Cosgrove D, Whitton L, Harold D, Corvin A, Gill M, Mothersill DO, Morris DW, Donohoe G. Effects of complement gene-set polygenic risk score on brain volume and cortical measures in patients with psychotic disorders and healthy controls. Am J Med Genet B Neuropsychiatr Genet 2020; 183:445-453. [PMID: 32918526 DOI: 10.1002/ajmg.b.32820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/26/2019] [Accepted: 08/12/2020] [Indexed: 12/14/2022]
Abstract
Multiple genome-wide association studies of schizophrenia have reported associations between genetic variants within the MHC region and disease risk, an association that has been partially accounted for by alleles of the complement component 4 (C4) gene. Following on previous findings of association between both C4 and other complement-related variants and memory function, we tested the hypothesis that polygenic scores calculated based on identified schizophrenia risk alleles within the "complement" system would be broadly associated with memory function and associated brain structure. We tested this using a polygenic risk score (PRS) calculated for complement genes, but excluding C4 variants. Higher complement-based PRS scores were observed to be associated with lower memory scores for the sample as a whole (N = 620, F change = 8.25; p = .004). A significant association between higher PRS and lower hippocampal volume was also observed (N = 216, R2 change = 0.016, p = .015). However, after correcting for further testing of association with the more general indices of cortical thickness, surface area or total brain volume, none of which were associated with complement, the association with hippocampal volume became non-significant. A post-hoc analysis of hippocampal subfields suggested an association between complement PRS and several hippocampal subfields, findings that appeared to be particularly driven by the patient sample. In conclusion, our study yielded suggestive evidence of association between complement-based schizophrenia PRS and variation in memory function and hippocampal volume.
Collapse
Affiliation(s)
- Jessica F Holland
- Cognitive Genetics & Cognitive Therapy Group, The Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Donna Cosgrove
- Cognitive Genetics & Cognitive Therapy Group, The Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Laura Whitton
- Cognitive Genetics & Cognitive Therapy Group, The Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Denise Harold
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland.,School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - David O Mothersill
- Cognitive Genetics & Cognitive Therapy Group, The Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Derek W Morris
- Cognitive Genetics & Cognitive Therapy Group, The Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- Cognitive Genetics & Cognitive Therapy Group, The Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
13
|
Coulthard LG, Woodruff TM. Commentary: Beyond C4: Analysis of the complement gene pathway shows enrichment for IQ in patients with psychotic disorders and healthy controls. Front Immunol 2019; 10:2853. [PMID: 31867012 PMCID: PMC6904300 DOI: 10.3389/fimmu.2019.02853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/20/2019] [Indexed: 11/26/2022] Open
Affiliation(s)
- Liam G. Coulthard
- Kenneth G Jamieson Department of Neurosurgery, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- *Correspondence: Liam G. Coulthard
| | - Trent M. Woodruff
- Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|