1
|
Greer D, Lei T, Kryshtal A, Jessen ZF, Schwartz GW. Visual identification of conspecifics shapes social behavior in mice. Curr Biol 2024:S0960-9822(24)01582-3. [PMID: 39706174 DOI: 10.1016/j.cub.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/07/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024]
Abstract
Recognizing conspecifics-others of the same species-in order to determine how to interact with them appropriately is a fundamental goal of animal sensory systems. It has undergone selective pressure in nearly all species. Mice have a large repertoire of social behaviors that are the subject of a rapidly growing field of study in neuroscience. Mouse social interactions likely incorporate all available sensory modalities, and the vast majority of studies have not attempted to isolate them. Our understanding of the role of vision in mouse social interactions remains overlooked, given the prominence of olfactory research in this area. To address this, we developed a behavioral platform that allowed us to present a subject mouse with the visual information of stimulus mice in isolation from olfactory, acoustic, and tactile cues. Our results indicate that the visual identification of the sex or individual identity of other mice influences behavior. These findings highlight the underappreciated role of vision in mouse social interactions and open new avenues to study the visual circuits underlying social behavior.
Collapse
Affiliation(s)
- Devon Greer
- Northwestern Interdepartmental Neuroscience Graduate Program, Northwestern University, Chicago, IL 60611, USA.
| | - Tianhao Lei
- Northwestern Interdepartmental Neuroscience Graduate Program, Northwestern University, Chicago, IL 60611, USA
| | - Anna Kryshtal
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zachary F Jessen
- Northwestern Interdepartmental Neuroscience Graduate Program, Northwestern University, Chicago, IL 60611, USA; Medical Scientist Training Program, Northwestern University, Chicago, IL 60611, USA.
| | - Gregory William Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Zaini A, Morgan PK, Cardwell B, Vlassopoulos E, Sgro M, Li CN, Salberg S, Mellett NA, Christensen J, Meikle PJ, Murphy AJ, Marsland BJ, Mychasiuk R, Yamakawa GR. Time restricted feeding alters the behavioural and physiological outcomes to repeated mild traumatic brain injury in male and female rats. Exp Neurol 2024; 385:115108. [PMID: 39662793 DOI: 10.1016/j.expneurol.2024.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Affiliation(s)
- A Zaini
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - P K Morgan
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - B Cardwell
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - E Vlassopoulos
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - M Sgro
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - C N Li
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - S Salberg
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - N A Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - J Christensen
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - P J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| | - A J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - B J Marsland
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia
| | - R Mychasiuk
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - G R Yamakawa
- Gastroenterology, Immunology, and Neuroscience Discovery Program, Monash University, Melbourne, Victoria, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Battivelli D, Boldrini L, Jaiswal M, Patil P, Torchia S, Engelen E, Spagnoletti L, Kaspar S, Gross CT. Induction of territorial dominance and subordination behaviors in laboratory mice. Sci Rep 2024; 14:28655. [PMID: 39562806 PMCID: PMC11577026 DOI: 10.1038/s41598-024-75545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024] Open
Abstract
Territorial behaviors comprise a set of coordinated actions and response patterns found across animal species that promote the exclusive access to resources. House mice are highly territorial with a subset of males consistently attacking and chasing competing males to expel them from their territories and performing urine marking behaviors to signal the extent of their territories. Natural variation in territorial behaviors within a mouse colony leads to the formation of dominance hierarchies in which subordinate males can reside within the territory of a dominant male. While the full repertoire of such territorial behaviors and hierarchies has been extensively studied in wild-derived mice in semi-natural enclosures, so far they have not been established in the smaller enclosures and with the genetically-defined laboratory strains required for the application of neural recording and manipulation methods. Here, we present a protocol to rapidly induce an extensive repertoire of territorial behaviors in pairs of laboratory mice in an enclosure compatible with tethered neurocircuit techniques, including a method for the simultaneous tracking of urine marking behavior in mouse pairs. Using this protocol we describe the emergence of robust dominant-subordinate hierarchies between pairs of CD1 outbred or CD1xB6 F1 hybrid mice, but unexpectedly not in C57BL/6 inbred animals. Our behavioral paradigm opens the door for neurocircuit studies of territorial behaviors and social hierarchy in the laboratory.
Collapse
Affiliation(s)
- Dorian Battivelli
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015, Monterotondo, RM, Italy
| | - Lucas Boldrini
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015, Monterotondo, RM, Italy
| | - Mohit Jaiswal
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015, Monterotondo, RM, Italy
| | - Pradnya Patil
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015, Monterotondo, RM, Italy
| | - Sofia Torchia
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015, Monterotondo, RM, Italy
| | - Elizabeth Engelen
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015, Monterotondo, RM, Italy
| | - Luca Spagnoletti
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015, Monterotondo, RM, Italy
| | - Sarah Kaspar
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015, Monterotondo, RM, Italy
| | - Cornelius T Gross
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015, Monterotondo, RM, Italy.
| |
Collapse
|
4
|
Charron V, Talbot J, Labelle PR, Konkle ATM, Plamondon H. In search of prosociality in rodents: A scoping review. PLoS One 2024; 19:e0310771. [PMID: 39509367 PMCID: PMC11542798 DOI: 10.1371/journal.pone.0310771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 09/06/2024] [Indexed: 11/15/2024] Open
Abstract
Studying prosociality in rodents can provide insight into brain mechanisms potentially related to neurodevelopmental disorders known to impact social behaviors (e.g., autism spectrum disorder). While many studies have been published suggesting promising models, current knowledge remains scattered, including potential factors mediating prosocial behaviors in rodents. Prosocial behavior is characterized by an action done to benefit another or promote their well-being. The goal of this scoping review is to characterize current findings regarding prosocial paradigms in rodents, highlight current gaps in reporting, and identify factors shown to be important in mediating prosocial responses in rodents. Five databases were consulted in search of relevant studies published between 2000 and 2020 (APA PsycInfo, Embase, MEDLINE, Scopus, Web of Science). An update using a semi-supervised machine learning approach (ASReview) was then conducted to collect studies from 2021-2023. In total, 80 articles were included. Findings were the following: (1) Three categories of prosocial paradigm were extracted: cooperation, helping, and sharing tasks, (2) Rodents showed the ability to perform prosocial actions in all three categories, (3) Significant gaps in reported methodologies (e.g., failure to report animals' characteristics, housing conditions, and/or experimental protocol) and mediating factors (e.g., sex, strain, housing, food restriction) were found, and (4) Behaviors are determinant when investigating prosociality in rodents, however many studies omitted to include such analyses. Together these results inform future studies on the impact of mediating factors and the importance of behavioral analyses on the expression of prosocial behaviors in rodents.
Collapse
Affiliation(s)
- Valérie Charron
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Joey Talbot
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick R. Labelle
- University of Ottawa Library, University of Ottawa, Ottawa, Ontario, Canada
| | - Anne T. M. Konkle
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Hélène Plamondon
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Medina J, De Guzman RM, Workman JL. Prolactin mitigates chronic stress-induced maladaptive behaviors and physiology in ovariectomized female rats. Neuropharmacology 2024; 258:110095. [PMID: 39084597 DOI: 10.1016/j.neuropharm.2024.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Stress is a major risk factor for several neuropsychiatric disorders in women, including postpartum depression. During the postpartum period, diminished ovarian hormone secretion increases susceptibility to developing depressive symptoms. Pleiotropic peptide hormones, like prolactin, are markedly released during lactation and suppress hypothalamic-pituitary-adrenal axis responses in women and acute stress-induced behavioral responses in female rodents. However, the effects of prolactin on chronic stress-induced maladaptive behaviors remain unclear. Here, we used chronic variable stress to induce maladaptive physiology in ovariectomized female rats and concurrently administered prolactin to assess its effects on several depression-relevant behavioral, endocrine, and neural characteristics. We found that chronic stress increased sucrose anhedonia and passive coping in saline-treated, but not prolactin-treated rats. Prolactin treatment did not alter stress-induced thigmotaxis, corticosterone (CORT) concentrations, hippocampal cell activation or survival. However, prolactin treatment reduced basal CORT concentrations and increased dopaminergic cells in the ventral tegmental area. Further, prolactin-treated rats had reduced microglial activation in the ventral hippocampus following chronic stress exposure. Together, these data suggest prolactin mitigates chronic stress-induced maladaptive behaviors and physiology in hypogonadal females. Moreover, these findings imply neuroendocrine-immune mechanisms by which peptide hormones confer stress resilience during periods of low ovarian hormone secretion.
Collapse
Affiliation(s)
- Joanna Medina
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY, 12222, USA.
| | - Rose M De Guzman
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY, 12222, USA
| | - Joanna L Workman
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY, 12222, USA; Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY, 12222, USA
| |
Collapse
|
6
|
Wenner J, Wood RI. Chronic high-dose testosterone disrupts social cognition and enhances social dominance in male long-Evans rats. Horm Behav 2024; 166:105657. [PMID: 39509806 PMCID: PMC11602337 DOI: 10.1016/j.yhbeh.2024.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
While increased aggression is the most consistent behavioral effect of anabolic androgenic steroid (AAS) abuse, its cause remains unclear. AAS may promote aggression by disrupting social behaviors which maintain dominance hierarchies. To model AAS abuse, we treated male rats with chronic high-dose testosterone and tested social recognition, social learning, and competitive and aggressive dominance. Rats received daily injections s.c. of testosterone (7.5 mg/kg) or vehicle (n = 8/group). We tested social recognition by measuring investigation of a novel or familiar stimulus animal, social learning with the social transmission of food preference (STFP) test, aggressive dominance with the tube test, and competitive dominance with a food competition task. For social recognition, testosterone-treated rats did not prefer the novel stimulus rat (72.8 ± 9.3 s) over the familiar rat (68.8 ± 8.0 s, N.S.) rat. In the STFP test, testosterone-treated rats did not show a significant preference for the demonstrated flavor (59.9 ± 9.4 %, N.S.) compared with controls (70.1 ± 5.4 %, p < 0.05). In the tube test, testosterone did not increase the number of rounds won. However, when the testosterone-treated rat won, they were more likely to be lighter than their vehicle-treated opponent, χ2(1,N = 63) = 6.56, p < 0.05, Φ2 = 0.32. In the food competition task, testosterone-treated subjects won more often (48 rounds) than their vehicle-treated partners (15 rounds; p < 0.05). These results suggest that AAS disrupt recognizing and learning from the social hierarchy and increase the likelihood of challenging it. Collectively, these behavioral changes may contribute to AAS-induced aggression.
Collapse
Affiliation(s)
- Jay Wenner
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Ruth I Wood
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, United States of America.
| |
Collapse
|
7
|
Huang J, Yang W, Bao L, Yin B. Effects of Peripubertal Experiences on Competitive Behavior in Male Rats at Different Stages of Adulthood. Dev Psychobiol 2024; 66:e22544. [PMID: 39236223 DOI: 10.1002/dev.22544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Past studies in animal models have extensively investigated the impact of early life experiences on behavioral development, yet relatively few have specifically examined the implications of peripubertal experiences on the evolution of competitive behavior across distinct stages of adulthood. In the current research, we probed potential differences in competitive behavior during emerging adulthood (3 months old) and middle adulthood (12 months old) in 81 Sprague-Dawley male rats exposed to three different peripubertal (postnatal Days 37-60) environments: an enriched environment (EE), a chronic unpredictable mild stress (CUMS) condition, and a control condition. Anxiety-like behavior served as a positive control in our study. Results revealed significant variations in competitive behavior among the groups during emerging adulthood. The EE group displayed the least anxiety and outperformed their peers in food-reward-oriented competition, whereas the CUMS group excelled in status-driven, agonistic competition. However, these behavioral differentiations gradually attenuated by middle adulthood, at which point the control group began to show an advantage. Our findings suggest that although peripubertal experiences significantly shape competitive behavior in the emerging adulthood stage, this effect diminishes over time and is nearly non-detectable during mid-adulthood, underscoring the fluidity of behavioral development and demonstrating that the effects of peripubertal experiences can be modulated by subsequent life experiences.
Collapse
Affiliation(s)
- Jinkun Huang
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| | - Wenjia Yang
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| | - Lili Bao
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| | - Bin Yin
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Cum M, Santiago Pérez JA, Iwata RL, Lopez N, Higgs A, Li A, Ye C, Wangia E, Wright ES, García Restrepo C, Padilla-Coreano N. A Multiparadigm Approach to Characterize Dominance Behaviors in CD1 and C57BL6 Male Mice. eNeuro 2024; 11:ENEURO.0342-24.2024. [PMID: 39500574 PMCID: PMC11599796 DOI: 10.1523/eneuro.0342-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Social status and dominance are critical factors influencing well-being and survival across multiple species. However, dominance behaviors vary widely across species, from elaborate feather displays in birds to aggression in chimps. To effectively study dominance, it is essential to clearly define and reliably measure dominance behaviors. In laboratory settings, C57BL/6 mice are commonly used to study dominance due to their stable and linear social hierarchies. However, other mouse strains are also used for laboratory research. Despite substantial evidence for strain effects on behavioral repertoires, the impact of strain on dominance in mice remains largely unstudied. To address this gap, we compared dominance behaviors between CD1 and C57BL/6 male mice across four assays: observation of agonistic behaviors, urine marking, tube test, and a reward competition. We found that CD1 mice demonstrate increased fighting, increased territorial marking through urination, and increased pushing and resisting in the tube test. We used unsupervised machine learning and pose estimation data from the reward competitions to uncover behavioral differences across strains and across rank differences between competing pairs. Of the four assays, urine marking and agonistic behaviors showed the strongest correlation with dominance in both strains. Most notably, we found that CD1 dominance rankings based on the tube test negatively correlated with rankings from all three other assays, suggesting that the tube test may measure a different behavior in CD1 mice. Our results highlight that behaviors can be strain-specific in mice and studies that measure social rank should consider assays carefully to promote reproducibility.
Collapse
Affiliation(s)
- Meghan Cum
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | | | - Ryo L Iwata
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Naeliz Lopez
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Aidan Higgs
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Albert Li
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Charles Ye
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Erika Wangia
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | - Elizabeth S Wright
- Department of Neuroscience, University of Florida, Gainesville, Florida 32610
| | | | | |
Collapse
|
9
|
Orban Z, Gill MJ. Differential rearing alters Fos in the accumbens core and ventral palidum following reinstatement of cocaine seeking in male Sprague-Dawley rats. Pharmacol Biochem Behav 2024; 243:173837. [PMID: 39053857 DOI: 10.1016/j.pbb.2024.173837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Rearing rats in environmental enrichment produces a protective effect when exposed to stimulants, as enriched rats display attenuated cocaine seeking during reinstatement. However, less is known about what changes in the brain are responsible for this protective effect. The current study investigated differences in Fos protein expression following reinstatement of cocaine seeking in differentially reared rats. Rats were reared in either enriched (EC) or impoverished (IC) conditions for 30 days, after which rats self-administered cocaine in 2-h sessions. Following self-administration, rats underwent extinction and cue-induced or cocaine-primed reinstatement of cocaine seeking, brains were extracted, and Fos immunohistochemistry was performed. IC rats sought cocaine significantly more than EC rats during cue-induced reinstatement, and cocaine seeking was positively correlated with Fos expression in the nucleus accumbens core and ventral pallidum. IC rats displayed greater Fos expression than EC rats in the accumbens and ventral pallidum, suggesting a role of these areas in the enrichment-induced protective effect.
Collapse
Affiliation(s)
- Z Orban
- Department of Psychology and Neuroscience, North Central College, 30 N Brainard St, Naperville, IL 60540, United States of America
| | - M J Gill
- Department of Psychology and Neuroscience, North Central College, 30 N Brainard St, Naperville, IL 60540, United States of America.
| |
Collapse
|
10
|
Nagy M, Davidson JD, Vásárhelyi G, Ábel D, Kubinyi E, El Hady A, Vicsek T. Long-term tracking of social structure in groups of rats. Sci Rep 2024; 14:22857. [PMID: 39353967 PMCID: PMC11445254 DOI: 10.1038/s41598-024-72437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024] Open
Abstract
Rodents serve as an important model for examining both individual and collective behavior. Dominance within rodent social structures can determine access to critical resources, such as food and mating opportunities. Yet, many aspects of the intricate interplay between individual behaviors and the resulting group social hierarchy, especially its evolution over time, remain unexplored. In this study, we utilized an automated tracking system that continuously monitored groups of male rats for over 250 days to enable an in-depth analysis of individual behavior and the overarching group dynamic. We describe the evolution of social structures within a group and additionally investigate how past behaviors influence the emergence of new social hierarchies when group composition and experimental area changes. Notably, we find that conventional individual and pairwise tests exhibit a weak correlation with group behavior, highlighting their limited accuracy in predicting behavioral outcomes in a collective context. These results emphasize the context-dependence of social behavior as an emergent property of interactions within a group and highlight the need to measure and quantify social behavior in more naturalistic environments.
Collapse
Affiliation(s)
- Máté Nagy
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary.
- MTA-ELTE 'Lendület' Collective Behaviour Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
- MTA-ELTE Statistical and Biological Physics Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Constance, Germany.
- Department of Biology, University of Konstanz, Constance, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Constance, Germany.
| | - Jacob D Davidson
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Constance, Germany.
- Department of Biology, University of Konstanz, Constance, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Constance, Germany.
| | - Gábor Vásárhelyi
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Statistical and Biological Physics Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dániel Ábel
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
- MTA-ELTE Lendület 'Momentum' Companion Animal Research Group, Budapest, Hungary
| | - Ahmed El Hady
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Constance, Germany
- Department of Biology, University of Konstanz, Constance, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Constance, Germany
| | - Tamás Vicsek
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Statistical and Biological Physics Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
11
|
Choi TY, Jeong S, Koo JW. Mesocorticolimbic circuit mechanisms of social dominance behavior. Exp Mol Med 2024; 56:1889-1899. [PMID: 39218974 PMCID: PMC11447232 DOI: 10.1038/s12276-024-01299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024] Open
Abstract
Social animals, including rodents, primates, and humans, partake in competition for finite resources, thereby establishing social hierarchies wherein an individual's social standing influences diverse behaviors. Understanding the neurobiological underpinnings of social dominance is imperative, given its ramifications for health, survival, and reproduction. Social dominance behavior comprises several facets, including social recognition, social decision-making, and actions, indicating the concerted involvement of multiple brain regions in orchestrating this behavior. While extensive research has been dedicated to elucidating the neurobiology of social interaction, recent studies have increasingly delved into adverse social behaviors such as social competition and hierarchy. This review focuses on the latest advancements in comprehending the mechanisms of the mesocorticolimbic circuit governing social dominance, with a specific focus on rodent studies, elucidating the intricate dynamics of social hierarchies and their implications for individual well-being and adaptation.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
12
|
Johnson MC, Zweig JA, Zhang Y, Ryabinin AE. Effects of social housing on alcohol intake in mice depend on the non-social environment. Front Behav Neurosci 2024; 18:1380031. [PMID: 38817806 PMCID: PMC11137225 DOI: 10.3389/fnbeh.2024.1380031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Background Excessive alcohol consumption leads to serious health problems. Mechanisms regulating the consumption of alcohol are insufficiently understood. Previous preclinical studies suggested that non-social environmental and social environmental complexities can regulate alcohol consumption in opposite directions. However, previous studies did not include all conditions and/or did not include female rodents. Therefore, in this study, we examined the effects of social versus single housing in standard versus non-standard housing conditions in male and female mice. Methods Adult C57BL/6 J mice were housed in either standard shoebox cages or in automated Herdsman 2 (HM2) cages and exposed to a two-bottle choice procedure with 3% or 6% ethanol versus water for 5 days. The HM2 cages use radiotracking devices to measure the fluid consumption of individual mice in an undisturbed and automated manner. In both housing conditions, mice were housed either at one or at four per cage. Results In standard cages, group housing of animals decreased alcohol consumption and water consumption. In HM2 cages, group housing significantly increased ethanol preference and decreased water intake. There were no significant differences in these effects between male and female animals. These observations were similar for 3 and 6% ethanol solutions but were more pronounced for the latter. The effects of social environment on ethanol preference in HM2 cages were accompanied by an increase in the number of approaches to the ethanol solution and a decrease in the number of approaches to water. The differences in ethanol intake could not be explained by differences in locomotor or exploratory activity as socially housed mice showed fewer non-consummatory visits to the ethanol solutions than single-housed animals. In addition, we observed that significant changes in behaviors measuring the approach to the fluid were not always accompanied by significant changes in fluid consumption, and vice versa, suggesting that it is important to assess both measures of motivation to consume alcohol. Conclusion Our results indicate that the direction of the effects of social environment on alcohol intake in mice depends on the non-social housing environment. Understanding mechanisms by which social and non-social housing conditions modulate alcohol intake could suggest approaches to counteract environmental factors enhancing hazardous alcohol consumption.
Collapse
Affiliation(s)
| | | | | | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
13
|
Meloni EG, Carlezon WA, Bolshakov VY. Association between social dominance hierarchy and PACAP expression in the extended amygdala, corticosterone, and behavior in C57BL/6 male mice. Sci Rep 2024; 14:8919. [PMID: 38637645 PMCID: PMC11026503 DOI: 10.1038/s41598-024-59459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
The natural alignment of animals into social dominance hierarchies produces adaptive, and potentially maladaptive, changes in the brain that influence health and behavior. Aggressive and submissive behaviors assumed by animals through dominance interactions engage stress-dependent neural and hormonal systems that have been shown to correspond with social rank. Here, we examined the association between social dominance hierarchy status established within cages of group-housed mice and the expression of the stress peptide PACAP in the bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA). We also examined the relationship between social dominance rank and blood corticosterone (CORT) levels, body weight, motor coordination (rotorod) and acoustic startle. Male C57BL/6 mice were ranked as either Dominant, Submissive, or Intermediate based on counts of aggressive/submissive encounters assessed at 12 weeks-old following a change in homecage conditions. PACAP expression was significantly higher in the BNST, but not the CeA, of Submissive mice compared to the other groups. CORT levels were lowest in Submissive mice and appeared to reflect a blunted response following events where dominance status is recapitulated. Together, these data reveal changes in specific neural/neuroendocrine systems that are predominant in animals of lowest social dominance rank, and implicate PACAP in brain adaptations that occur through the development of social dominance hierarchies.
Collapse
Affiliation(s)
- Edward G Meloni
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, 02478, USA.
- McLean Hospital, Mailman Research Center, 115 Mill St., Belmont, MA, 02478, USA.
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, 02478, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, 02478, USA
| |
Collapse
|
14
|
Choi TY, Jeon H, Jeong S, Kim EJ, Kim J, Jeong YH, Kang B, Choi M, Koo JW. Distinct prefrontal projection activity and transcriptional state conversely orchestrate social competition and hierarchy. Neuron 2024; 112:611-627.e8. [PMID: 38086372 DOI: 10.1016/j.neuron.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 02/24/2024]
Abstract
Social animals compete for limited resources, resulting in a social hierarchy. Although different neuronal subpopulations in the medial prefrontal cortex (mPFC), which has been mechanistically implicated in social dominance behavior, encode distinct social competition behaviors, their identities and associated molecular underpinnings have not yet been identified. In this study, we found that mPFC neurons projecting to the nucleus accumbens (mPFC-NAc) encode social winning behavior, whereas mPFC neurons projecting to the ventral tegmental area (mPFC-VTA) encode social losing behavior. High-throughput single-cell transcriptomic analysis and projection-specific genetic manipulation revealed that the expression level of POU domain, class 3, transcription factor 1 (Pou3f1) in mPFC-VTA neurons controls social hierarchy. Optogenetic activation of mPFC-VTA neurons increases Pou3f1 expression and lowers social rank. Together, these data demonstrate that discrete activity and gene expression in separate mPFC projections oppositely orchestrate social competition and hierarchy.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hyoungseok Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eum Ji Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jeongseop Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 41988, Republic of Korea
| | - Yun Ha Jeong
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Byungsoo Kang
- Sysoft R&D Center, Daegu 41065, Republic of Korea; Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 41988, Republic of Korea.
| |
Collapse
|
15
|
Streiff C, Herrera A, Voelkl B, Palme R, Würbel H, Novak J. The impact of cage dividers on mouse aggression, dominance and hormone levels. PLoS One 2024; 19:e0297358. [PMID: 38324564 PMCID: PMC10849263 DOI: 10.1371/journal.pone.0297358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Home cage aggression in group-housed male mice is a major welfare concern and may compromise animal research. Conventional cages prevent flight or retreat from sight, increasing the risk that agonistic encounters will result in injury. Moreover, depending on social rank, mice vary in their phenotype, and these effects seem highly variable and dependent on the social context. Interventions that reduce aggression, therefore, may reduce not only injuries and stress, but also variability between cage mates. Here we housed male mice (Balb/c and SWISS, group sizes of three and five) with or without partial cage dividers for two months. Mice were inspected for wounding weekly and home cages were recorded during housing and after 6h isolation housing, to assess aggression and assign individual social ranks. Fecal boli and fur were collected to quantify steroid levels. We found no evidence that the provision of cage dividers improves the welfare of group housed male mice; The prevalence of injuries and steroid levels was similar between the two housing conditions and aggression was reduced only in Balb/c strain. However, mice housed with cage dividers developed less despotic hierarchies and had more stable social ranks. We also found a relationship between hormone levels and social rank depending on housing type. Therefore, addition of cage dividers may play a role in stabilizing social ranks and modulating the activation of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes, thus reducing phenotypic variability between mice of different ranks.
Collapse
Affiliation(s)
- Christina Streiff
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Adrian Herrera
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Bernhard Voelkl
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rupert Palme
- Unit of Physiology, Pathophysiology, and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Janja Novak
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Felix-Ortiz AC, Terrell JM, Gonzalez C, Msengi HD, Boggan MB, Ramos AR, Magalhães G, Burgos-Robles A. Prefrontal Regulation of Safety Learning during Ethologically Relevant Thermal Threat. eNeuro 2024; 11:ENEURO.0140-23.2024. [PMID: 38272673 PMCID: PMC10903390 DOI: 10.1523/eneuro.0140-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
Learning and adaptation during sources of threat and safety are critical mechanisms for survival. The prelimbic (PL) and infralimbic (IL) subregions of the medial prefrontal cortex (mPFC) have been broadly implicated in the processing of threat and safety. However, how these regions regulate threat and safety during naturalistic conditions involving thermal challenge still remains elusive. To examine this issue, we developed a novel paradigm in which adult mice learned that a particular zone that was identified with visuospatial cues was associated with either a noxious cold temperature ("threat zone") or a pleasant warm temperature ("safety zone"). This led to the rapid development of avoidance behavior when the zone was paired with cold threat or approach behavior when the zone was paired with warm safety. During a long-term test without further thermal reinforcement, mice continued to exhibit robust avoidance or approach to the zone of interest, indicating that enduring spatial-based memories were formed to represent the thermal threat and thermal safety zones. Optogenetic experiments revealed that neural activity in PL and IL was not essential for establishing the memory for the threat zone. However, PL and IL activity bidirectionally regulated memory formation for the safety zone. While IL activity promoted safety memory during normal conditions, PL activity suppressed safety memory especially after a stress pretreatment. Therefore, a working model is proposed in which balanced activity between PL and IL is favorable for safety memory formation, whereas unbalanced activity between these brain regions is detrimental for safety memory after stress.
Collapse
Affiliation(s)
- Ada C Felix-Ortiz
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Jaelyn M Terrell
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Carolina Gonzalez
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Hope D Msengi
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Miranda B Boggan
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Angelica R Ramos
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Gabrielle Magalhães
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215
| | - Anthony Burgos-Robles
- Department of Neuroscience, Developmental, and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
17
|
Lopez K, Baker MR, Toth M. Single cell transcriptomic representation of social dominance in prefrontal cortex and the influence of preweaning maternal and postweaning social environment. Sci Rep 2024; 14:2206. [PMID: 38272981 PMCID: PMC10810822 DOI: 10.1038/s41598-024-52200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Social dominance encompasses winning dyadic contests and gaining priority access to resources and reproduction. Dominance is influenced by environmental factors, particularly during early postnatal life and adolescence. A disinhibitory medial prefrontal cortex (mPFC) microcircuit has been implicated in the expression of dominance in the "tube test" social competition paradigm in mice, but the neuroplasticity underlying dominance is not known. We previously reported that male pups raised by physically active (wheel-running, as opposed to sedentary) dams exhibit tube test dominance and increased reproductive fitness, and here we show that social isolation from weaning also increases dominance. By using single cell transcriptomics, we tested if increased dominance in these models is associated with a specific transcriptional profile in one or more cell-types in the mPFC. The preweaning maternal effect, but not postweaning social isolation, caused gene expression changes in pyramidal neurons. However, both the effect of maternal exercise and social isolation induced the coordinated downregulation of synaptic channel, receptor, and adhesion genes in parvalbumin positive (PV) interneurons, suggesting that development of dominance is accompanied by impaired PV interneuron-mediated inhibition of pyramidal cells. This study may help understand environmentally induced transcriptional plasticity in the PFC and its relationship to tube test dominance.
Collapse
Affiliation(s)
- Katherine Lopez
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Ave, New York, NY, 10065, USA
| | - Madelyn R Baker
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Ave, New York, NY, 10065, USA
| | - Miklos Toth
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
18
|
Fulenwider HD, Zhang Y, Ryabinin AE. Characterization of social hierarchy formation and maintenance in same-sex, group-housed male and female C57BL/6 J mice. Horm Behav 2024; 157:105452. [PMID: 37977023 PMCID: PMC10841988 DOI: 10.1016/j.yhbeh.2023.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Social hierarchies are a prevalent feature of all animal groups, and an individual's rank within the group can significantly affect their overall health, typically at the greatest expense of the lowest-ranked individuals, or omegas. These subjects have been shown to exhibit various stress-related phenotypes, such as increased hypothalamic-pituitary axis activity and increased amygdalar corticotropin-releasing factor levels compared to higher-ranked subjects. However, these findings have been primarily characterized in males and in models requiring exhibition of severe aggression. The goals of the current study, therefore, were to characterize the formation and maintenance of social hierarchies using the tube test and palatable liquid competition in same-sex groups of male and female C57BL/6 J mice. We also aimed to examine the effects of tube test-determined social rank on plasma and hypothalamic oxytocin and vasopressin levels, peptides with established roles in social behaviors and the stress response. Lastly, we assessed the effects of environmental enrichment and length of testing on the measures outlined above. Overall, we demonstrated that males and females develop social hierarchies and that these hierarchies can be determined using the tube test. While we were unable to establish a consistent connection between peptide levels and social rank, we observed transient changes in these peptides reflecting complex interactions between social rank, sex, environment, and length of testing. We also found that many male and female omegas began to exhibit passive coping behavior after repeated tube test losses, demonstrating the potential of this assay to serve as a model of chronic, mild psychosocial stress.
Collapse
Affiliation(s)
- Hannah D Fulenwider
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Yangmiao Zhang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
19
|
Dalla C, Jaric I, Pavlidi P, Hodes GE, Kokras N, Bespalov A, Kas MJ, Steckler T, Kabbaj M, Würbel H, Marrocco J, Tollkuhn J, Shansky R, Bangasser D, Becker JB, McCarthy M, Ferland-Beckham C. Practical solutions for including sex as a biological variable (SABV) in preclinical neuropsychopharmacological research. J Neurosci Methods 2024; 401:110003. [PMID: 37918446 PMCID: PMC10842858 DOI: 10.1016/j.jneumeth.2023.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Recently, many funding agencies have released guidelines on the importance of considering sex as a biological variable (SABV) as an experimental factor, aiming to address sex differences and avoid possible sex biases to enhance the reproducibility and translational relevance of preclinical research. In neuroscience and pharmacology, the female sex is often omitted from experimental designs, with researchers generalizing male-driven outcomes to both sexes, risking a biased or limited understanding of disease mechanisms and thus potentially ineffective therapeutics. Herein, we describe key methodological aspects that should be considered when sex is factored into in vitro and in vivo experiments and provide practical knowledge for researchers to incorporate SABV into preclinical research. Both age and sex significantly influence biological and behavioral processes due to critical changes at different timepoints of development for males and females and due to hormonal fluctuations across the rodent lifespan. We show that including both sexes does not require larger sample sizes, and even if sex is included as an independent variable in the study design, a moderate increase in sample size is sufficient. Moreover, the importance of tracking hormone levels in both sexes and the differentiation between sex differences and sex-related strategy in behaviors are explained. Finally, the lack of robust data on how biological sex influences the pharmacokinetic (PK), pharmacodynamic (PD), or toxicological effects of various preclinically administered drugs to animals due to the exclusion of female animals is discussed, and methodological strategies to enhance the rigor and translational relevance of preclinical research are proposed.
Collapse
Affiliation(s)
- Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Georgia E Hodes
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece; First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Anton Bespalov
- Partnership for Assessment and Accreditation of Scientific Practice (PAASP GmbH), Heidelberg, Germany
| | - Martien J Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | | | - Mohamed Kabbaj
- Department of Biomedical Sciences & Neurosciences, College of Medicine, Florida State University, USA
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jordan Marrocco
- Department of Biology, Touro University, New York, NY 10027, USA
| | | | - Rebecca Shansky
- Department of Psychology, Northeastern University, Boston, MA 02128, USA
| | - Debra Bangasser
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Jill B Becker
- Department of Psychology and Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margaret McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore MD, USA
| | | |
Collapse
|
20
|
Li LF, Li ZL, Song BL, Jiang Y, Wang Y, Zou HW, Yao LG, Liu YJ. Dopamine D2 receptors in the dorsomedial prefrontal cortex modulate social hierarchy in male mice. Curr Zool 2023; 69:682-693. [PMID: 37876636 PMCID: PMC10591156 DOI: 10.1093/cz/zoac087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/01/2022] [Indexed: 10/26/2023] Open
Abstract
Social hierarchy greatly influences behavior and health. Both human and animal studies have signaled the medial prefrontal cortex (mPFC) as specifically related to social hierarchy. Dopamine D1 receptors (D1Rs) and D2 receptors (D2Rs) are abundantly expressed in the mPFC, modulating its functions. However, it is unclear how DR-expressing neurons in the mPFC regulate social hierarchy. Here, using a confrontation tube test, we found that most adult C57BL/6J male mice could establish a linear social rank after 1 week of cohabitation. Lower rank individuals showed social anxiety together with decreased serum testosterone levels. D2R expression was significantly downregulated in the dorsal part of mPFC (dmPFC) in lower rank individuals, whereas D1R expression showed no significant difference among the rank groups in the whole mPFC. Virus knockdown of D2Rs in the dmPFC led to mice being particularly prone to lose the contests in the confrontation tube test. Finally, simultaneous D2R activation in the subordinates and D2R inhibition in the dominants in a pair switched their dominant-subordinate relationship. The above results indicate that D2Rs in the dmPFC play an important role in social dominance. Our findings provide novel insights into the divergent functions of prefrontal D1Rs and D2Rs in social dominance, which may contribute to ameliorating social dysfunctions along with abnormal social hierarchy.
Collapse
Affiliation(s)
- Lai-Fu Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, Henan, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Zi-Lin Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Yan Wang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Hua-Wei Zou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Lun-Guang Yao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, Henan, China
| | - Ying-Juan Liu
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, Henan, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, Henan, China
| |
Collapse
|
21
|
Jiang Y, Zhou J, Song BL, Wang Y, Zhang DL, Zhang ZT, Li LF, Liu YJ. 5-HT1A receptor in the central amygdala and 5-HT2A receptor in the basolateral amygdala are involved in social hierarchy in male mice. Eur J Pharmacol 2023; 957:176027. [PMID: 37659688 DOI: 10.1016/j.ejphar.2023.176027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Most social animals self-organize into dominance hierarchies that strongly influence their behavior and health. The serotonin (5-HT) system is believed to play an important role in the formation of social hierarchy. 5-HT receptors are abundantly expressed in the amygdala, which is considered as the central node for the perception and learning of social hierarchy. In this study, we assessed the functions of various 5-HT receptor subtypes related to social rank determination in different subregions of the amygdala using the confrontation tube test in mice. We revealed that most adult C57BL/6 J male mice exhibited a linear social rank after a few days of cohousing. The tube test ranks were slightly related to anxiety-like behavioral performance. After the tube test, the amygdala and 5-HT neurons in the dorsal raphe nucleus were activated in lower-rank individuals. Quantitative real-time polymerase chain reaction analysis revealed that despite the high expression of 5-HT1A receptor mRNA in the central amygdala (CeA), 5-HT2A receptor mRNA expression was downregulated in the basolateral amygdala (BLA) in higher-rank individuals. The dominant-subordinate relationship between mouse pairs could be switched via pharmacological modulation of these receptors in CeA and BLA, suggesting that these expression changes are essential for establishing social ranks. Our findings provide novel insights into the divergent functions of 5-HT receptors in the amygdala related to social hierarchy, which is closely related to our health and welfare.
Collapse
Affiliation(s)
- Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Jie Zhou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Yan Wang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Dong-Lin Zhang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Zheng-Tian Zhang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China
| | - Lai-Fu Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| | - Ying-Juan Liu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
22
|
Reinhardt PR, Theis CDC, Juckel G, Freund N. Rodent models for mood disorders - understanding molecular changes by investigating social behavior. Biol Chem 2023; 404:939-950. [PMID: 37632729 DOI: 10.1515/hsz-2023-0190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Mood disorders, including depressive and bipolar disorders, are the group of psychiatric disorders with the highest prevalence and disease burden. However, their pathophysiology remains poorly understood. Animal models are an extremely useful tool for the investigation of molecular mechanisms underlying these disorders. For psychiatric symptom assessment in animals, a meaningful behavioral phenotype is needed. Social behaviors constitute naturally occurring complex behaviors in rodents and can therefore serve as such a phenotype, contributing to insights into disorder related molecular changes. In this narrative review, we give a fundamental overview of social behaviors in laboratory rodents, as well as their underlying neuronal mechanisms and their assessment. Relevant behavioral and molecular changes in models for mood disorders are presented and an outlook on promising future directions is given.
Collapse
Affiliation(s)
- Patrick R Reinhardt
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
- International Graduate School of Neuroscience, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Candy D C Theis
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| | - Georg Juckel
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany
| |
Collapse
|
23
|
Ferrara NC, Trask S, Padival M, Rosenkranz JA. Maturation of a cortical-amygdala circuit limits sociability in male rats. Cereb Cortex 2023; 33:8391-8404. [PMID: 37032624 PMCID: PMC10321102 DOI: 10.1093/cercor/bhad124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 04/11/2023] Open
Abstract
Prefrontal cortical maturation coincides with adolescent transitions in social engagement, suggesting that it influences social development. The anterior cingulate cortex (ACC) is important for social interaction, including ACC outputs to the basolateral amygdala (BLA). However, little is known about ACC-BLA sensitivity to the social environment and if this changes during maturation. Here, we used brief (2-hour) isolation to test the immediate impact of changing the social environment on the ACC-BLA circuit and subsequent shifts in social behavior of adolescent and adult rats. We found that optogenetic inhibition of the ACC during brief isolation reduced isolation-driven facilitation of social interaction across ages. Isolation increased activity of ACC-BLA neurons across ages, but altered the influence of ACC on BLA activity in an age-dependent manner. Isolation reduced the inhibitory impact of ACC stimulation on BLA neurons in a frequency-dependent manner in adults, but uniformly suppressed ACC-driven BLA activity in adolescents. This work identifies isolation-driven alterations in an ACC-BLA circuit, and the ACC itself as an essential region sensitive to social environment and regulates its impact on social behavior in both adults and adolescents.
Collapse
Affiliation(s)
- Nicole C Ferrara
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
| | - Sydney Trask
- Department of Psychological Sciences, Purdue University, 703 3rd Street, West Lafayette, IN, 47907, United States
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
| | - Jeremy Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, United States
| |
Collapse
|
24
|
George A, Padilla-Coreano N, Opendak M. For neuroscience, social history matters. Neuropsychopharmacology 2023; 48:979-980. [PMID: 36922626 PMCID: PMC10209051 DOI: 10.1038/s41386-023-01566-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/06/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Anne George
- Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Nancy Padilla-Coreano
- Evelyn F. & William McKnight Brain Institute and Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Maya Opendak
- Kennedy Krieger Institute, Baltimore, MD, 21205, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
25
|
Meloni EG, Carlezon WA, Bolshakov VY. Impact of social dominance hierarchy on PACAP expression in the extended amygdala, corticosterone, and behavior in C57BL/6 male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539254. [PMID: 37205328 PMCID: PMC10187259 DOI: 10.1101/2023.05.03.539254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The natural alignment of animals into social dominance hierarchies produces adaptive, and potentially maladaptive, changes in the brain that influence health and behavior. Aggressive and submissive behaviors assumed by animals through dominance interactions engage stress-dependent neural and hormonal systems that have been shown to correspond with social rank. Here, we examined the impact of social dominance hierarchies established within cages of group-housed laboratory mice on expression of the stress peptide pituitary adenylate cyclase-activating polypeptide (PACAP) in areas of the extended amygdala comprising the bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA). We also quantified the impact of dominance rank on corticosterone (CORT), body weight, and behavior including rotorod and acoustic startle response. Weight-matched male C57BL/6 mice, group-housed (4/cage) starting at 3 weeks of age, were ranked as either most-dominant (Dominant), least-dominant (Submissive) or in-between rank (Intermediate) based on counts of aggressive and submissive encounters assessed at 12 weeks-old following a change in homecage conditions. We found that PACAP expression was significantly higher in the BNST, but not the CeA, of Submissive mice compared to the other two groups. CORT levels were lowest in Submissive mice and appeared to reflect a blunted response following social dominance interactions. Body weight, motor coordination, and acoustic startle were not significantly different between the groups. Together, these data reveal changes in specific neural/neuroendocrine systems that are predominant in animals of lowest social dominance rank, and implicate PACAP in brain adaptations that occur through the development of social dominance hierarchies.
Collapse
Affiliation(s)
- Edward G. Meloni
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478
| | - William A. Carlezon
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478
| | - Vadim Y. Bolshakov
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478
| |
Collapse
|
26
|
Paton SEJ, Solano JL, Coulombe-Rozon F, Lebel M, Menard C. Barrier-environment interactions along the gut-brain axis and their influence on cognition and behaviour throughout the lifespan. J Psychiatry Neurosci 2023; 48:E190-E208. [PMID: 37253482 PMCID: PMC10234620 DOI: 10.1503/jpn.220218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/19/2023] [Indexed: 06/01/2023] Open
Abstract
Environment is known to substantially alter mental state and behaviour across the lifespan. Biological barriers such as the blood-brain barrier (BBB) and gut barrier (GB) are major hubs for communication of environmental information. Alterations in the structural, social and motor environment at different stages of life can influence function of the BBB and GB and their integrity to exert behavioural consequences. Importantly, each of these environmental components is associated with a distinct immune profile, glucocorticoid response and gut microbiome composition, creating unique effects on the BBB and GB. These barrier-environment interactions are sensitive to change throughout life, and positive or negative alterations at critical stages of development can exert long-lasting cognitive and behavioural consequences. Furthermore, because loss of barrier integrity is implicated in pathogenesis of mental disorders, the pathways of environmental influence represent important areas for understanding these diseases. Positive environments can be protective against stress- and age-related damage, raising the possibility of novel pharmacological targets. This review summarizes known mechanisms of environmental influence - such as social interactions, structural complexity and physical exercise - on barrier composition, morphology and development, and considers the outcomes and implications of these interactions in the context of psychiatric disorders.
Collapse
Affiliation(s)
- Sam E J Paton
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - José L Solano
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - François Coulombe-Rozon
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Manon Lebel
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Caroline Menard
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| |
Collapse
|
27
|
Smith-Osborne L, Duong A, Resendez A, Palme R, Fadok JP. Female dominance hierarchies influence responses to psychosocial stressors. Curr Biol 2023; 33:1535-1549.e5. [PMID: 37003262 PMCID: PMC10321215 DOI: 10.1016/j.cub.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/26/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
Abstract
Social species form dominance hierarchies to ensure survival and promote reproductive success. Traditionally studied in males, rodent hierarchies are considered despotic, and dominant social rank results from a history of winning agonistic encounters. By contrast, female hierarchies are thought to be less despotic, and rank is conferred by intrinsic traits. Both social buffering and elevated social status confer resilience to depression, anxiety, and other consequences of chronic stress. Here, we investigate whether female social hierarchies and individual traits related to social rank likewise influence stress resilience. We observe the formation of dyadic female hierarchies under varying conditions of ambient light and circadian phase and subject mice to two forms of chronic psychosocial stress: social isolation or social instability. We find that stable female hierarchies emerge rapidly in dyads. Individual behavioral and endocrinological traits are characteristic of rank, some of which are circadian phase dependent. Further, female social rank is predicted by behavior and stress status prior to social introduction. Other behavioral characteristics suggest that rank is motivation-based, indicating that female rank identity serves an evolutionarily relevant purpose. Rank is associated with alterations in behavior in response to social instability stress and prolonged social isolation, but the different forms of stress produce disparate rank responses in endocrine status. Histological examination of c-Fos protein expression identified brain regions that respond to social novelty or social reunion following chronic isolation in a rank-specific manner. Collectively, female rank is linked to neurobiology, and hierarchies exert context-specific influence upon stress outcomes.
Collapse
Affiliation(s)
- Lydia Smith-Osborne
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA; Tulane National Primate Research Center, Covington, LA 70433, USA.
| | - Anh Duong
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA; Neuroscience Program, Tulane University, New Orleans, LA 70118, USA
| | - Alexis Resendez
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Jonathan P Fadok
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
28
|
Powell JM, Garvin MM, Lee NS, Kelly AM. Behavioral trajectories of aging prairie voles (Microtus ochrogaster): Adapting behavior to social context wanes with advanced age. PLoS One 2022; 17:e0276897. [PMCID: PMC9665403 DOI: 10.1371/journal.pone.0276897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Several studies using mice have examined the effects of aging on cognitive tasks, as well as sensory and motor functions. However, few studies have examined the influence of aging on social behavior. Prairie voles (Microtus ochrogaster) are a socially monogamous and biparental rodent that live in small family groups and are now among the most popular rodent models for studies examining social behavior. Although the social behavioral trajectories of early-life development in prairie voles have been well-studied, how social behavior may change throughout adulthood remains unknown. Here we examined behavior in virgin male and female prairie voles in four different age groups: postnatal day (PND) 60–80, 140–160, 220–240, and 300–320. All animals underwent testing in a novel object task, a dominance test, a resident-intruder test, and several iterations of social approach and social interaction tests with varying types of social stimuli (i.e., novel same-sex conspecific, novel opposite-sex conspecific, familiar same-sex sibling/cagemate, small group of novel same-sex conspecifics). We found that age influenced neophobia and dominance, but not social approach behavior. Further, we found that young adult, but not older adult, prairie voles adapt prosocial and aggressive behavior relative to social context, and that selective aggression occurs in relation to age even in the absence of a pair bond. Our results suggest that prairie voles calibrate social phenotype in a context-dependent manner in young adulthood and stop adjusting behavior to social context in advanced age, demonstrating that social behavior is plastic not only throughout early development, but also well into adulthood. Together, this study provides insight into age-related changes in social behavior in prairie voles and shows that prairie voles may be a viable model for studying the cognitive and physiological benefits of social relationships and social engagement in advanced age.
Collapse
Affiliation(s)
- Jeanne M. Powell
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
| | - Madison M. Garvin
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
| | - Nicholas S. Lee
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
| | - Aubrey M. Kelly
- Department of Psychology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
29
|
Ryabinin AE. From basic social neurobiology to better understanding of neurodevelopmental disorders. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12818. [PMID: 35689355 PMCID: PMC9744557 DOI: 10.1111/gbb.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrey E. Ryabinin
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
30
|
Pellis SM, Pellis VC, Burke CJ, Stark RA, Ham JR, Euston DR, Achterberg EJM. Measuring Play Fighting in Rats: A Multilayered Approach. Curr Protoc 2022; 2:e337. [PMID: 35030300 DOI: 10.1002/cpz1.337] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rough-and-tumble play or play fighting is an important experience in the juvenile period of many species of mammals, as it facilitates the development of social skills, and for some species, play fighting is retained into adulthood as a tool for assessing and managing social relationships. Laboratory rats have been a model species for studying the neurobiology of play fighting and its key developmental and social functions. However, play fighting interactions are complex, involving competition and cooperation; therefore, no single measure to quantify this behavior is able to capture all its facets. Therefore, in this paper, we present a multilayered framework for scoring all the relevant facets of play that can be affected by experimental manipulations and the logic of how to match what is measured with the question being asked. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- S M Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - V C Pellis
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - C J Burke
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - R A Stark
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - J R Ham
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - D R Euston
- Department of Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - E J M Achterberg
- Division Behavioural Neuroscience, Unit Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
31
|
Backström T, Thörnqvist PO, Winberg S. Social effects on AVT and CRF systems. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1699-1709. [PMID: 34476683 PMCID: PMC8636423 DOI: 10.1007/s10695-021-00995-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Stress and aggression have negative effects on fish welfare and productivity in aquaculture. Thus, research to understand aggression and stress in farmed fish is required. The neuropeptides arginine-vasotocin (AVT) and corticotropin-releasing factor (CRF) are involved in the control of stress and aggression. Therefore, we investigated the effect of agonistic interactions on the gene expression of AVT, CRF and their receptors in juvenile rainbow trout (Oncorhynchus mykiss). The social interactions lead to a clear dominant-subordinate relationship with dominant fish feeding more and being more aggressive. Subordinate fish had an upregulation of the AVT receptor (AVT-R), an upregulation of CRF mRNA levels, and higher plasma cortisol levels. The attenuating effect of AVT on aggression in rainbow trout is proposed to be mediated by AVT-R, and the attenuating effect of the CRF system is proposed to be mediated by CRF.
Collapse
Affiliation(s)
- Tobias Backström
- Institute of Integrated Natural Sciences, University Koblenz-Landau, Koblenz, Universitätsstraße 1, 56070, Koblenz, Germany.
| | - Per-Ove Thörnqvist
- Behavioural Neuroendocrinology Lab, Department of Neuroscience, Biomedical Centre (BMC), Uppsala University, Box 572, SE-751 23, Uppsala, Sweden
| | - Svante Winberg
- Behavioural Neuroendocrinology Lab, Department of Neuroscience, Biomedical Centre (BMC), Uppsala University, Box 572, SE-751 23, Uppsala, Sweden
| |
Collapse
|