1
|
Zhang Y, Wang R, Gu B, Liu H, Dijkstra FA, Han X, Jiang Y. Plant growth strategies and microbial contributions to ecosystem nitrogen retention along a soil acidification gradient. Ecology 2025; 106:e4515. [PMID: 39865968 DOI: 10.1002/ecy.4515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/05/2024] [Indexed: 01/28/2025]
Abstract
Nitrogen (N) retention is a critical ecosystem function associated with sustainable N supply. Lack of experimental evidence limits our understanding of how grassland N retention can vary with soil acidification. A 15N-labeling experiment was conducted for 2 years to quantify N retention by soil pathways and plant functional groups across a soil-acidification gradient in a meadow. The 15N added to the ecosystem was mainly intercepted by the soil (up to 87.3%). Within the soil, 15N recovery in ammonium, dissolved organic N, microbial biomass, and amino sugars (a proxy for microbial necromass) represented approximately 46% of soil-retained 15N. 15N recovery in these N fractions increased with acidification, highlighting the complexity of microbial N transformations that affect ecosystem N retention. Plant 15N-retention increased in sedges, decreased in forbs, and was unaffected in grasses with acidification, reflecting their divergent associations with mycorrhizas and sensitivities to soil acidification. Soil microbial biomass was the key variable delineating soil N retention, while sedges were critical for plant N retention, resulting in a clear trade-off and competition in 15N retention between the two compartments. Overall, acidification might curb N losses by strengthening microbial retention and shifting plant N retention among different plant growth strategies.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Sciences, Hebei University, Baoding, China
- Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Ruzhen Wang
- School of Life Sciences, Hebei University, Baoding, China
- Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Baitao Gu
- Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Heyong Liu
- School of Life Sciences, Hebei University, Baoding, China
| | - Feike A Dijkstra
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camden, New South Wales, Australia
| | - Xingguo Han
- School of Life Sciences, Hebei University, Baoding, China
| | - Yong Jiang
- School of Life Sciences, Hebei University, Baoding, China
| |
Collapse
|
2
|
Lin Q, Zhu J, Wang Q, Zhang Q, Yu G. Patterns and drivers of atmospheric nitrogen deposition retention in global forests. GLOBAL CHANGE BIOLOGY 2024; 30:e17410. [PMID: 38978457 DOI: 10.1111/gcb.17410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Forests are the largest carbon sink in terrestrial ecosystems, and the impact of nitrogen (N) deposition on this carbon sink depends on the fate of external N inputs. However, the patterns and driving factors of N retention in different forest compartments remain elusive. In this study, we synthesized 408 observations from global forest 15N tracer experiments to reveal the variation and underlying mechanisms of 15N retention in plants and soils. The results showed that the average total ecosystem 15N retention in global forests was 63.04 ± 1.23%, with the soil pool being the main N sink (45.76 ± 1.29%). Plants absorbed 17.28 ± 0.83% of 15N, with more allocated to leaves (5.83 ± 0.63%) and roots (5.84 ± 0.44%). In subtropical and tropical forests, 15N was mainly absorbed by plants and mineral soils, while the organic soil layer in temperate forests retained more 15N. Additionally, forests retained moreN 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ thanN 15 O 3 - $$ {}^{15}\mathrm{N}{\mathrm{O}}_3^{-} $$ , primarily due to the stronger capacity of the organic soil layer to retainN 15 H 4 + $$ {}^{15}\mathrm{N}{\mathrm{H}}_4^{+} $$ . The mechanisms of 15N retention varied among ecosystem compartments, with total ecosystem 15N retention affected by N deposition. Plant 15N retention was influenced by vegetative and microbial nutrient demands, while soil 15N retention was regulated by climate factors and soil nutrient supply. Overall, this study emphasizes the importance of climate and nutrient supply and demand in regulating forest N retention and provides data to further explore the impacts of N deposition on forest carbon sequestration.
Collapse
Affiliation(s)
- Quanhong Lin
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jianxing Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Qiufeng Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qiongyu Zhang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Wang X, Li S, Wu D, Fan A, Yao X, Lyu M, Chen G, Yang Y. Soil microbes deal with the nitrogen deposition enhanced phosphorus limitation by shifting community structure in an old-growth subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172530. [PMID: 38631644 DOI: 10.1016/j.scitotenv.2024.172530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Elevated atmospheric nitrogen (N) deposition potentially enhances the degree of phosphorus (P) limitation in tropical and subtropical forests. However, it remains elusive that how soil microorganisms deal with the N deposition-enhanced P limitation. We collected soils experienced 9 years of manipulative N input at various rates (0, 40, and 80 kg N ha-1 y-1) in an old-growth subtropical natural forest. We measured soil total and available carbon (C), N and P, microbial biomass C, N and P, enzyme activities involved in C, N and P acquisition, microbial community structure, as well as net N and P mineralization. Additionally, we calculated element use efficiency and evaluated microbial homeostasis index. Our findings revealed that N input increased microbial biomass C:P (MBC:P) and N:P (MBN:P) ratios. The homeostasis indexes of MBC:P and MBN:P were 0.68 and 0.75, respectively, indicating stoichiometric flexibility. Interestingly, MBC:P and MBN:P correlated significantly with the fungi:bacteria ratio (F:B), not with N and P use efficiencies, net N and P mineralization, and enzyme C:P (EEAC:P) and N:P (EEAN:P) ratios. Furthermore, EEAC:P and EEAN:P correlated positively with F:B but did not negatively correlate with the C:P and N:P ratios of available resources and microbial biomass. The effects of N deposition on MBC:P, MBN:P and EEAN:P became insignificant when including F:B as a covariate. These findings suggest that microbes flexibly adapted to the N deposition enhanced P limitation by changing microbial community structure, which not only alter microbial biomass C:N:P stoichiometry, but also the enzyme production strategy. In summary, our research advances our understanding of how soil microorganisms deal with the N deposition-enhanced soil P limitation in subtropical forests.
Collapse
Affiliation(s)
- Xiaohong Wang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou 350117, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province Funded, Fuzhou 350117, China
| | - Shiyining Li
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou 350117, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province Funded, Fuzhou 350117, China
| | - Dongmei Wu
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou 350117, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province Funded, Fuzhou 350117, China
| | - Ailian Fan
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou 350117, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province Funded, Fuzhou 350117, China
| | - Xiaodong Yao
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou 350117, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province Funded, Fuzhou 350117, China
| | - Maokui Lyu
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou 350117, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province Funded, Fuzhou 350117, China
| | - Guangshui Chen
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou 350117, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province Funded, Fuzhou 350117, China.
| | - Yusheng Yang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou 350117, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province Funded, Fuzhou 350117, China
| |
Collapse
|
4
|
Tian Y, Zhou P, Zhou L, Zhang L, Lin Y, Wang Y, Wang J, Hui D, Ren H, Lu H. Multi-ecosystem services differently affected by over-canopy and understory nitrogen additions in a typical subtropical forest. GLOBAL CHANGE BIOLOGY 2024; 30:e17192. [PMID: 38369693 DOI: 10.1111/gcb.17192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Obtaining a holistic understanding of the impacts of atmospheric nitrogen deposition on multiple ecosystem services of forest is essential for developing comprehensive and sustainable strategies, particularly in heavy N deposition regions such as subtropical China. However, such impacts remain incompletely understood, with most previous studies focus on individual ecosystem function or service via understory N addition experiments. To address this knowledge gap, we quantified the effects of over-canopy and understory N additions on multiple ecosystem services based on a 7-year large-scale field experiment in a typical subtropical forest. Our results showed continued over-canopy N addition with 50 kg ha-1 year-1 over a period of 4-7 years significantly increased plant nutrient retention, but did not affect the services of soil nutrient accumulation, water yield, C sequestration (in plants and soil), or oxygen release. There were trade-offs between the soil and plant on providing the services of nutrient accumulation/retention and C sequestration under over-canopy N addition. However, without uptake and retention of tree canopy, the trade-off between soil and plant were more weaken under the understory N addition with 50 kg ha-1 year-1 , and their relationships were even synergetic under the understory N addition with 25 kg ha-1 year-1 . The results suggest that understory N addition cannot accurately simulate the effects of atmospheric N deposition on multiple services, along with mutual relationships. Interestingly, the services of plant N, P retention, and C sequestration exhibited a synergetic increase under the over-canopy N addition but a decrease under the understory N addition. Our results also found tree layer plays a primary role in providing plant nutrient retention service and is sensitive to atmospheric N deposition. Further studies are needed to investigate the generalized effects of forest canopy processes on alleviating the threaten of global change factors in different forest ecosystems.
Collapse
Affiliation(s)
- Yang Tian
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China
| | - Peng Zhou
- Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou National Field Station for Scientific Observation and Research of Urban Ecosystem, Guangzhou, China
| | - Lang Zhou
- Forestry Comprehensive Affairs Center of Baiyun District, Guangzhou, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yongbiao Lin
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yanjia Wang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Hai Ren
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hongfang Lu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
5
|
Choi WJ, Park HJ, Baek N, In Yang H, Kwak JH, Lee SI, Park SW, Shin ES, Lim SS. Patterns of δ 15N in forest soils and tree foliage and rings between climate zones in relation to atmospheric nitrogen deposition: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165866. [PMID: 37516182 DOI: 10.1016/j.scitotenv.2023.165866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The stable nitrogen (N) isotope ratio (δ15N) of forest samples (soils, tree foliage, and tree rings) has been used as a powerful indicator to explore the responses of forest N cycling to atmospheric N deposition. This review investigated the patterns of δ15N in forest samples between climate zones in relation to N deposition. Forest samples exhibited distinctive δ15N patterns between climate zones due to differences in site conditions (i.e., N availability and retention capacity) and the atmospheric N deposition characteristics (i.e., N deposition rate, N species, and δ15N of deposited N). For example, the δ15N of soil and foliage was higher for tropical forests than for other forests by >1.2 ‰ and 4 ‰, respectively due to the site conditions favoring N losses coupled with relatively low N deposition for tropical forests. This was further supported by the unchanged or increased δ15N of tree rings in tropical forests, which contrasts with other climate zones that exhibited a decreased wood δ15N since the 1920s. Subtropical forests under a high deposition of reduced N (NHy) had a lower δ15N by 2-5 ‰ in the organic layer compared with the other forests, reflecting high retention of 15N-depleted NHy deposition. At severely polluted sites in East Asia, the decreased δ15N in wood also reflected the consistent deposition of 15N-depleted NHy. Though our data analysis represents only a subset of global forest sites where atmospheric N deposition is of interest, the results suggest that the direction and magnitude of the changes in the δ15N of forest samples are related to both atmospheric N and site conditions particularly for tropical vs. subtropical forests. Site-specific information on the atmospheric N deposition characteristics would allow more accurate assessment of the variations in the δ15N of forest samples in relation to N deposition.
Collapse
Affiliation(s)
- Woo-Jung Choi
- Department of Rural & Biosystems Engineering (Brain Korea 21), Chonnam National University, Gwangju 61186, Republic of Korea; AgriBio Institute of Climate Change Management, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Hyun-Jin Park
- Crop Production & Physiology Division, National Institute of Crop Science, Rural Development Administration, Wanju, Jeollabukdo 55365, Republic of Korea
| | - Nuri Baek
- Department of Rural & Biosystems Engineering (Brain Korea 21), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hye In Yang
- Max Planck Institute for Biogeochemistry, Jena 07745, Germany
| | - Jin-Hyeob Kwak
- Department of Rural Construction Engineering, Jeonbuk National University, Jeonju, Jeollabukdo 57896, Republic of Korea
| | - Sun-Il Lee
- Climate Change Assessment Division, National Institute of Agricultural Science, Rural Development Administration, Wanju, Jeollabukdo 55365, Republic of Korea
| | - Seo-Woo Park
- Department of Rural & Biosystems Engineering (Brain Korea 21), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eun-Seo Shin
- Department of Rural & Biosystems Engineering (Brain Korea 21), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Sun Lim
- Bio R&D Center, CJ Cheiljedang, Suwon, Gyeonggi-do 16495, Republic of Korea
| |
Collapse
|
6
|
Tian Y, Wang J, Zhou L, Tao L, Lin Y, Hui D, Ren H, Lu H. Nitrogen budgets of a lower subtropical forest as affected by 6 years of over-canopy and understory nitrogen additions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158546. [PMID: 36067860 DOI: 10.1016/j.scitotenv.2022.158546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Although tropical and subtropical regions have replaced temperate regions as the global-change hotspots for increased atmosphere nitrogen (N) deposition, whether the regional forests reach N saturation is still unclear. Understory or floor N addition has been commonly used in N-deposition studies, but the results of such studies have recently been challenged because they fail to account for canopy interception, assimilation, and leaching processes. Here, we conducted a field experiment to quantify the effects of over-canopy and understory N addition on N budgets in a lower subtropical monsoon evergreen broadleaved (LSMEB) forest. We found that the LSMEB forest was not N saturated after receiving additional N at 25 and 50 kg ha-1 yr-1 for 6 years. Plants were able to absorb the added N by increasing the N concentrations in their organs, with 120-412 % increasing trend of plant N pools under N-addition treatments. Canopy absorption of N resulting from over-canopy N addition led to increases in N concentrations in tree organs but not to increases in tree biomass. Understory N addition could underestimate the effects of N deposition in forests due to neglecting canopy N interception and canopy effects on N redistribution. Additional experiments using over-canopy N addition are needed to assess the true effects of N deposition on different forest ecosystems in different climate zones.
Collapse
Affiliation(s)
- Yang Tian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jun Wang
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lang Zhou
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Forestry Comprehensive Affairs Center of Baiyun District, Guangzhou 510540, China
| | - Libin Tao
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Yongbiao Lin
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Hai Ren
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Hongfang Lu
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
7
|
Shen F, Liu W, Duan H, Wu J, Wu C, Liao Y, Yuan Y, Fan H. High N Storage but Low N Recovery After Long-Term N-Fertilization in a Subtropical Cunninghamia lanceolata Plantation Ecosystem: A 14-Year Case Study. FRONTIERS IN PLANT SCIENCE 2022; 13:914176. [PMID: 35800613 PMCID: PMC9255632 DOI: 10.3389/fpls.2022.914176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Forests are among the most important N pools of all terrestrial ecosystems. Elevated atmospheric N deposition in recent decades has led to increased interest in the influences of N application on forest N cycles. However, accurate assessments of N storage in forest ecosystems remain elusive. We used a 14-year experiment of a Chinese fir [Cunninghamia lanceolata (Lamb.) Hook] plantation to explore how long-term N fertilization affected N storage and recovery rates. Our study plots were located in a field that had been continuously fertilized over 14 years (2004-2017) with urea at rates of 0 (N0, control), 60 (N60, low-N), 120 (N120, medium-N), and 240 (N240, high-N) kg N hm-2a-1. Data were collected that included N content and biomass in the understory, litter, and various plant organs (i.e., leaves, branches, stems, roots, and bark), as well as soil N content and density at different depths. Results showed that the total ecosystem N storage in the N-fertilized plots was 1.1-1.4 times higher than that in the control plots. About 12.36% of the total ecosystem N was stored in vegetation (plant organs, litter, and understory) and 87.64% was stored in soil (0-60 cm). Plant organs, litter, and soil had higher N storage than the understory layer. Significantly higher plant N uptake was found in the medium-N (1.2 times) and high-N (1.4 times) treatments relative to the control. The N recovery rate of the understory layer in the N-fertilized treatments was negative and less than that in the control. Application of long-term N fertilizer to this stand led to a low N recovery rate (average 11.39%) and high loss of N (average 91.86%), which indicate low N use efficiency in the Chinese fir plantation ecosystem. Our findings further clarify the distribution of N in an important terrestrial ecosystem and improve our understanding of regional N cycles.
Collapse
Affiliation(s)
- Fangfang Shen
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
- Jiangxi Provincial Key Laboratory of Soil Erosion and Prevention, Jiangxi Academy of Water Science and Engineering, Nanchang, China
| | - Wenfei Liu
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Honglang Duan
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, China
| | - Jianping Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Chunsheng Wu
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Yingchun Liao
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Yinghong Yuan
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| | - Houbao Fan
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang, China
| |
Collapse
|
8
|
Gurmesa GA, Hobbie EA, Zhang S, Wang A, Zhu F, Zhu W, Koba K, Yoh M, Wang C, Zhang Q, Fang Y. Natural
15
N
abundance of ammonium and nitrate in soil profiles: New insights into forest ecosystem nitrogen saturation. Ecosphere 2022. [DOI: 10.1002/ecs2.3998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Geshere Abdisa Gurmesa
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
| | - Erik A. Hobbie
- Earth Systems Research Center, Morse Hall University of New Hampshire Durham New Hampshire USA
| | - Shasha Zhang
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science University of Vienna Vienna Austria
| | - Ang Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
- Qingyuan Forest Chinese Ecosystem Research Network (Qingyuan Forest CERN), Chinese Academy of Sciences Shenyang China
- Key Laboratory of Stable Isotope Technique Shenyang China
| | - Feifei Zhu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
- Qingyuan Forest Chinese Ecosystem Research Network (Qingyuan Forest CERN), Chinese Academy of Sciences Shenyang China
- Key Laboratory of Stable Isotope Technique Shenyang China
| | - Weixing Zhu
- Department of Biological Sciences Binghamton University, The State University of New York Binghamton New York USA
| | - Keisuke Koba
- Center for Ecological Research Kyoto University Shiga Japan
| | - Muneoki Yoh
- Institute of Agriculture Tokyo University of Agriculture and Technology Tokyo Japan
| | - Chuankuan Wang
- College of Forestry Northeast Forestry University Harbin China
| | - Qiuliang Zhang
- Forestry College Inner Mongolia Agricultural University Hohhot China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology Chinese Academy of Sciences Shenyang China
- Qingyuan Forest Chinese Ecosystem Research Network (Qingyuan Forest CERN), Chinese Academy of Sciences Shenyang China
- Key Laboratory of Stable Isotope Technique Shenyang China
| |
Collapse
|
9
|
Dong Y, Yang JL, Zhao XR, Yang SH, Mulder J, Dörsch P, Zhang GL. Nitrate runoff loss and source apportionment in a typical subtropical agricultural watershed. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20186-20199. [PMID: 34725759 DOI: 10.1007/s11356-021-16935-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Nitrate (NO3-) loss and enrichment in water bodies caused by fertilization are a major environmental problem in agricultural areas. However, the quantitative contribution of different NO3- sources, especially chemical fertilizers (CF) and soil organic nitrogen (SON), to NO3- runoff loss remains unclear. In this study, a systematic investigation of NO3- runoff and its sources was conducted in a subtropical agricultural watershed located in Yujiang County, Jiangxi Province, China. A semi-monthly sampling was performed at the inlet and outlet from March 2018 to February 2019. Hydrochemical and dual NO3- isotope (15 N and 18O) approaches were combined to estimate the NO3- runoff loss and quantify the contribution of different sources with a Bayesian isotope mixing model. Source apportionment by Stable Isotope Analysis in R (SIAR) suggested that NO3- in runoff was mainly derived from nitrification of ammonium (NH4+) mineralized from SON (37-52%) and manure/sewage (M&S) (25-47%), while the contribution of CF was relatively small (14-25%). The contribution of various sources showed seasonal variations, with a greater contribution of CF in the wet growing season (March to August). Compared with the inlet which contributed 37-40% to runoff NO3-, SON contributed more at the outlet (49-52%). Denitrification in the runoff was small and appeared to be confined to the dry season (September to February), with an estimated NO3- loss of 2.73 kg N ha-1. The net NO3- runoff loss of the watershed was 34.5 kg N ha-1 yr-1, accounting for 15% of the annual fertilization rate (229 kg N ha-1 yr-1). Besides M&S (22%), fertilization and remineralization of SON (CF + SON) were the main sources for the NO3- runoff loss (78%), suggesting accelerated nitrification of NH4+ from CF (24%) and SON mineralization (54%). Our study indicates that NO3- runoff loss in subtropical agricultural watersheds is dominated by nonpoint source pollution from fertilization. SON played a more important role than CF. Besides, the contribution of sewage should not be neglected. Our data suggest that a combination of more rational fertilizer N application (CF), better management of SON, and better treatment of domestic sewage could alleviate NO3- pollution in subtropical China.
Collapse
Affiliation(s)
- Yue Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100081, People's Republic of China
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, N-1432, Aas, Norway
| | - Jin-Ling Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100081, People's Republic of China
| | - Xiao-Rui Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Shun-Hua Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Jan Mulder
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, N-1432, Aas, Norway
| | - Peter Dörsch
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, N-1432, Aas, Norway
| | - Gan-Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100081, People's Republic of China.
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
10
|
Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink. Nat Commun 2022; 13:880. [PMID: 35169118 PMCID: PMC8847626 DOI: 10.1038/s41467-022-28345-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
The impacts of enhanced nitrogen (N) deposition on the global forest carbon (C) sink and other ecosystem services may depend on whether N is deposited in reduced (mainly as ammonium) or oxidized forms (mainly as nitrate) and the subsequent fate of each. However, the fates of the two key reactive N forms and their contributions to forest C sinks are unclear. Here, we analyze results from 13 ecosystem-scale paired 15N-labelling experiments in temperate, subtropical, and tropical forests. Results show that total ecosystem N retention is similar for ammonium and nitrate, but plants take up more labelled nitrate ([Formula: see text]%) ([Formula: see text]) than ammonium ([Formula: see text]%) while soils retain more ammonium ([Formula: see text]%) than nitrate ([Formula: see text]%). We estimate that the N deposition-induced C sink in forests in the 2010s is [Formula: see text] Pg C yr-1, higher than previous estimates because of a larger role for oxidized N and greater rates of global N deposition.
Collapse
|
11
|
Mao J, Mao Q, Gundersen P, Gurmesa GA, Zhang W, Huang J, Wang S, Li A, Wang Y, Guo Y, Liu R, Mo J, Zheng M. Unexpected high retention of 15 N-labeled nitrogen in a tropical legume forest under long-term nitrogen enrichment. GLOBAL CHANGE BIOLOGY 2022; 28:1529-1543. [PMID: 34800306 DOI: 10.1111/gcb.16005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The responses of forests to nitrogen (N) deposition largely depend on the fates of deposited N within the ecosystem. Nitrogen-fixing legume trees widely occur in terrestrial forests, but the fates of deposited N in legume-dominated forests remain unclear, which limit a global evaluation of N deposition impacts and feedbacks on carbon sequestration. Here, we performed the first ecosystem-scale 15 N labeling experiment in a typical legume-dominated forest as well as in a nearby non-legume forest to determine the fates of N deposition between two different forest types and to explore their underlying mechanisms. The 15 N was sprayed bimonthly for 1 year to the forest floor in control and N addition (50 kg N ha-1 year-1 for 10 years) plots in both forests. We unexpectedly found a strong capacity of the legume forest to retain deposited N, with 75 ± 5% labeled N recovered in plants and soils, which was higher than that in the non-legume forest (56 ± 4%). The higher 15 N recovery in legume forest was mainly driven by uptake by the legume trees, in which 15 N recovery was approximately 15% more than that in the nearby non-legume trees. This indicates higher N-demand by the legume than non-legume trees. Mineral soil was the major sink for deposited N, with 39 ± 4% and 34 ± 3% labeled N retained in the legume and non-legume forests, respectively. Moreover, N addition did not significantly change the 15 N recovery patterns of both forests. Overall, these findings indicate that legume-dominated forests act as a strong sink for deposited N regardless of high soil N availability under long-term atmospheric N deposition, which suggest a necessity to incorporate legume-dominated forests into N-cycling models of Earth systems to improve the understanding and prediction of terrestrial N budgets and the global N deposition effects.
Collapse
Affiliation(s)
- Jinhua Mao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Qinggong Mao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Per Gundersen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Geshere A Gurmesa
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Wei Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Juan Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Senhao Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Andi Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yufang Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yabing Guo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Rongzhen Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jiangming Mo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
12
|
The retention dynamics of early-spring N input in a temperate forest ecosystem: Implications for winter N deposition. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2021.e01966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Zhu F, Dai L, Hobbie EA, Qu Y, Huang D, Gurmesa GA, Zhou X, Wang A, Li Y, Fang Y. Quantifying nitrogen uptake and translocation for mature trees: an in situ whole-tree paired 15N labeling method. TREE PHYSIOLOGY 2021; 41:2109-2125. [PMID: 34014313 DOI: 10.1093/treephys/tpab060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen (N) is one of the major nutrients limiting plant growth in terrestrial ecosystems. To avoid plant-microbe competition, previous studies on plant N uptake preference often used hydroponic experiments on fine roots of seedlings and demonstrated ammonium preference for conifer species; however, we lack information about N uptake and translocation in the field. In this paper, we described a method of in situ paired 15N labeling and reported the rates and time course of N uptake and translocation by mature trees in situ. We added 15N-enriched ammonium or nitrate, together with the nitrification inhibitor dicyandiamide, to paired Larix kaempferi (Lamb.) Carr (larch) trees from 30-, 40- and 50-year-old plantations. Fine roots, coarse roots, leaves and small branches were collected 2, 4, 7, 14 and 30 days after labeling. Nitrate uptake and translocation averaged 1.59 ± 0.16 μg 15N g-1 day-1, which is slightly higher than ammonium (1.08 ± 0.10 μg 15N g-1 day-1), in all tree organs. Nitrate contributed 50-78% to N uptake and translocation, indicating efficient nitrate use by larch in situ. We observed no age effect. We suggest that sampling leaves after 4 days of 15N labeling is sufficient to detect mature tree N uptake preference in situ. Whole-tree 15N-ammonium recovery equaled that of 15N-nitrate 30 days after 15N addition, implying the importance of both ammonium and nitrate to mature larch N use in the long run. We conclude that our method is promising for studying mature tree N uptake preference in situ and can be applied to other conifer and broadleaf species. We suggest using highly enriched 15N tracer to overcome soil dilution and a nitrification inhibitor to minimize ammonium transformation to nitrate. Our study revealed mature tree N preference in situ and demonstrated the strong contribution of nitrate toward mature larch growth on soils rich in nitrate.
Collapse
Affiliation(s)
- Feifei Zhu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Qingyuan Forest CERN, Shenyang 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning Province 110016, China
| | - Luming Dai
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Erik A Hobbie
- Earth Systems Research Center, Morse Hall, University of New Hampshire, Durham, NH 03824-3525, USA
| | - Yuying Qu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning Province 110016, China
| | - Dan Huang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning Province 110016, China
| | - Geshere A Gurmesa
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning Province 110016, China
| | - Xulun Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ang Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Qingyuan Forest CERN, Shenyang 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning Province 110016, China
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Qingyuan Forest CERN, Shenyang 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning Province 110016, China
| |
Collapse
|
14
|
Wessel WW, Boxman AW, Cerli C, van Loon EE, Tietema A. Long-term stabilization of 15N-labeled experimental NH 4+ deposition in a temperate forest under high N deposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144356. [PMID: 33453534 DOI: 10.1016/j.scitotenv.2020.144356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
High nitrogen (N) deposition levels, currently present in many industrial and agricultural regions of the world, can strongly affect the functioning of forest ecosystems. In a pine forest with strong N leaching, located in the Netherlands, we studied the long-term fate of a year-long NH4+ deposition cohort labeled with 15N. A high ambient and a low N deposition treatment had been established at the site by means of a roof and sprinklers. Resampling the N pools 19 years after labeling and 11 years after the last sampling, we found similar 15N deltas in needles, twigs and the LF1 organic soil layer of each treatment, indicating intensive N cycling among these pools. In the last 11 years, label recovery decreased in these labile pools, while recovery remained constant in wood and increased in bark. Together these aboveground vegetation pools retained less than 3% of the labeled N. In the organic layers, label recovery after 19 years decreased to 23% in both treatments, while in the mineral soil it increased from 4% to 13% (high N) and from 3% to 29% (low N treatment). Within the mineral soil of the high N treatment the labeled N was mainly found in fine roots, while in the low N treatment most N was incorporated in the two soil density fractions, shifting to the high density fraction with depth. This suggests a low capacity of the mineral soil at high N deposition to incorporate N. After the labeled N had been lost substantially in previous years, especially in the first, its presence remained constant in the last 11 years at 38% (high N) and 54% (low N treatment). Apparently, even in this strongly N leaching ecosystem, N once incorporated, was retained well and did not affect the input-output fluxes of the system.
Collapse
Affiliation(s)
- Wim W Wessel
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O.Box 90240, 1090 GE Amsterdam, the Netherlands.
| | - Andries W Boxman
- Department of Aquatic Ecology and Environmental Biology, Radboud University Nijmegen, P.O.Box 9010, 6500 GL Nijmegen, the Netherlands.
| | - Chiara Cerli
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O.Box 90240, 1090 GE Amsterdam, the Netherlands.
| | - E Emiel van Loon
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O.Box 90240, 1090 GE Amsterdam, the Netherlands.
| | - Albert Tietema
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O.Box 90240, 1090 GE Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Wang A, Chen D, Phillips OL, Gundersen P, Zhou X, Gurmesa GA, Li S, Zhu W, Hobbie EA, Wang X, Fang Y. Dynamics and multi-annual fate of atmospherically deposited nitrogen in montane tropical forests. GLOBAL CHANGE BIOLOGY 2021; 27:2076-2087. [PMID: 33484031 DOI: 10.1111/gcb.15526] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
The effects of nitrogen (N) deposition on forests largely depend on its fate after entering the ecosystem. While several studies have addressed the forest fate of N deposition using 15 N tracers, the long-term fate and redistribution of deposited N in tropical forests remains unknown. Here, we applied 15 N tracers to examine the fates of deposited ammonium ( NH 4 + ) and nitrate ( NO 3 - ) separately over 3 years in a primary and a secondary tropical montane forest in southern China. Three months after 15 N tracer addition, over 60% of 15 N was retained in the forests studied. Total ecosystem retention did not change over the study period, but between 3 months and 3 years following deposition 15 N recovery in plants increased from 10% to 19% and 13% to 22% in the primary and secondary forests, respectively, while 15 N recovery in the organic soil declined from 16% to 2% and 9% to 2%. Mineral soil retained 50% and 35% of 15 N in the primary and secondary forests, with retention being stable over time. The total ecosystem retention of the two N forms did not differ significantly, but plants retained more 15 NO 3 - than 15 NH 4 + and the organic soil more 15 NH 4 + than NO 3 - . Mineral soil did not differ in 15 NH 4 + and 15 NO 3 - retention. Compared to temperate forests, proportionally more 15 N was distributed to mineral soil and plants in these tropical forests. Overall, our results suggest that atmospherically deposited NH 4 + and NO 3 - is rapidly lost in the short term (months) but thereafter securely retained within the ecosystem, with retained N becoming redistributed to plants and mineral soil from the organic soil. This long-term N retention may benefit tropical montane forest growth and enhance ecosystem carbon sequestration.
Collapse
Affiliation(s)
- Ang Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Dexiang Chen
- Hainan Jianfengling Forest Ecosystem National Field Science and Observation Station, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | | | - Per Gundersen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Xulun Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Geshere A Gurmesa
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Shanlong Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Weixing Zhu
- Department of Biological Sciences, Binghamton University, The State University of New York, Binghamton, NY, USA
| | - Erik A Hobbie
- Earth Systems Research Center, Morse Hall, University of New Hampshire, Durham, NH, USA
| | - Xueyan Wang
- School of Energy and Water Resources, Shenyang Institute of Technology, Fushun, China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Qingyuan Forest CERN, Shenyang, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning Province, China
| |
Collapse
|
16
|
Species Differences in Nitrogen Acquisition in Humid Subtropical Forest Inferred From 15N Natural Abundance and Its Response to Tracer Addition. FORESTS 2019. [DOI: 10.3390/f10110991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Differences in nitrogen (N) acquisition patterns between plant species are often reflected in the natural 15N isotope ratios (δ15N) of the plant tissues, however, such differences are poorly understood for co-occurring plants in tropical and subtropical forests. To evaluate species variation in N acquisition traits, we measured leaf N concentration (%N) and δ15N in tree and understory plant species under ambient N deposition (control) and after a decade of N addition at 50 kg N ha−1 yr−1 (N-plots) in an old-growth subtropical forest in southern China. We also measured changes in leaf δ15N after one-year of 15N addition in both the control and N-plots. The results show consistent significant species variation in leaf %N in both control and N-plots, but decadal N addition did not significantly affect leaf %N. Leaf δ15N values were also significantly different among the plant species both in tree and understory layers, and both in control and N-plots, suggesting differences in N acquisition strategies such as variation in N sources and dominant forms of N uptake and dependence on mycorrhizal associations among the co-occurring plant species. Significant differences between the plant species (in both control and N-plots) in changes in leaf δ15N after 15N addition were observed only in the understory plants, indicating difference in access (or use) of deposited N among the plants. Decadal N addition had species-dependent effects on leaf δ15N, suggesting the N acquisition patterns of these plant species are differently affected by N deposition. These results suggest that co-occurring plants in N-rich and subtropical forests vary in their N acquisition traits; these differences need to be accounted for when evaluating the impact of N deposition on N cycling in these ecosystems.
Collapse
|
17
|
Li S, Gurmesa GA, Zhu W, Gundersen P, Zhang S, Xi D, Huang S, Wang A, Zhu F, Jiang Y, Zhu J, Fang Y. Fate of atmospherically deposited NH 4+ and NO 3- in two temperate forests in China: temporal pattern and redistribution. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01920. [PMID: 31058370 DOI: 10.1002/eap.1920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 03/14/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
The impacts of anthropogenic nitrogen (N) deposition on forest ecosystems depend in large part on its fate. However, our understanding of the fates of different forms of deposited N as well as the redistribution over time within different ecosystems is limited. In this study, we used the 15 N-tracer method to investigate both the short-term (1 week to 3 months) and long-term (1-3 yr) fates of deposited NH4+ or NO3- by following the recovery of the 15 N in different ecosystem compartments in a larch plantation forest and a mixed forest located in northeastern China. The results showed similar total ecosystem retention for deposited NH4+ and NO3- , but their distribution within the ecosystems (plants vs. soil) differed distinctly particularly in the short-term, with higher 15 NO3- recoveries in plants (while lower recoveries in organic layer) than found for 15 NH4+ . The different short-term fate was likely related to the higher mobility of 15 NO3- than 15 NH4+ in soils instead of plant uptake preferences for NO3- over NH4+ . In the long-term, differences between N forms became less prevalent but higher recoveries in trees (particularly in the larch forest) of 15 NO3- than 15 NH4+ tracer persisted, suggesting that incoming NO3- may contribute more to plant biomass increment and forest carbon sequestration than incoming NH4+ . Differences between the two forests in recoveries were largely driven by a higher 15 N recovery in the organic layer (both N forms) and in trees (for 15 NO3- ) in the larch forest compared to the mixed forest. This was due to a more abundant organic layer and possibly higher tree N demand in the larch forest than in the mixed forest. Leachate 15 N loss was minor (<1% of the added 15 N) for both N forms and in both forests. Total 15 N recovery averaged 78% in the short-term and decreased to 55% in the long-term but with increasing amount of 15 N label (re)-redistributed into slow turn-over pools (e.g., trees and mineral soil). The different retention dynamics of deposited NH4+ and NO3- may have implications in environmental policy related to the anthropogenic emissions of the two N forms.
Collapse
Affiliation(s)
- Shanlong Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- Qingyuan Forest CERN, Shenyang, 110016, China
| | - Geshere Abdisa Gurmesa
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Weixing Zhu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- Department of Biological Sciences, Binghamton University, The State University of New York, Binghamton, New York, 13902, USA
| | - Per Gundersen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Shasha Zhang
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, 1090, Vienna, Austria
| | - Dan Xi
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaonan Huang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- Qingyuan Forest CERN, Shenyang, 110016, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ang Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- Qingyuan Forest CERN, Shenyang, 110016, China
- Key Laboratory of Isotope Techniques and Applications, Shenyang, 110016, China
| | - Feifei Zhu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- Qingyuan Forest CERN, Shenyang, 110016, China
- Key Laboratory of Isotope Techniques and Applications, Shenyang, 110016, China
| | - Yong Jiang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Jiaojun Zhu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- Qingyuan Forest CERN, Shenyang, 110016, China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
- Qingyuan Forest CERN, Shenyang, 110016, China
- Key Laboratory of Isotope Techniques and Applications, Shenyang, 110016, China
| |
Collapse
|
18
|
Huang J, Zhou K, Zhang W, Liu J, Ding X, Cai X, Mo J. Sulfur deposition still contributes to forest soil acidification in the Pearl River Delta, South China, despite the control of sulfur dioxide emission since 2001. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12928-12939. [PMID: 30891701 DOI: 10.1007/s11356-019-04831-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Sulfur dioxide emissions have been regulated at a global scale; sulfur (S) deposition no longer contributes to soil acidification instead of an alleviation effect in temperate regions; however, it remains unclear whether S deposition still contributes to soil acidification in the tropics. The Pearl River Delta (PRD), South China, has been suffering serious soil acidification, but the contribution of S deposition was ignored because of the regulation of S emission since 2001. Here, we chose the evergreen broadleaf forests, which are the typical forest type at the regional scale in PRD to examine the contribution of S deposition and its characteristics in this acidification, based on an established urban-rural gradient in the range of 260 km. A substantial acidification was evidenced by the significant decline of soil pH from rural to urban sites, with mean pH values decreased by more than 0.60 U through the whole 40-cm depths. However, there was no significant difference in soil pH from 0-10 cm, 10-20 cm, and to 20-40 cm at each site (P > 0.05). Acid-neutralizing capacity (ANC) showed a similar trend to soil pH, with a significant decline along the urbanization gradient and no significant effect of soil depths. Soil sulfate (SO42-), as the most abundant species in ANC, contributed greatly to soil acidification for the whole 40-cm depth, as shown by the significant positive relationships between it with soil pH and base cations. Soils also exhibited the depletion of base cations with low base saturation (< 20%) and the release of Al and Fe. Our research demonstrated that the severe soil acidification in the PRD region has extended to the subsoil level (40-cm depth), and S deposition is still an important driver to this acidification. Therefore, both recovering the acidified soils and controlling the acidifying pollutants, especially S, are particularly difficult in southern China.
Collapse
Affiliation(s)
- Juan Huang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Kaijun Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Juxiu Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xi'an Cai
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jiangming Mo
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
19
|
Effects of Experimental Nitrogen Addition on Nutrients and Nonstructural Carbohydrates of Dominant Understory Plants in a Chinese Fir Plantation. FORESTS 2019. [DOI: 10.3390/f10020155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Research Highlights: This study identifies the nitrogen (N) deposition effect on understory plants by altering directly soil nutrients or indirectly altering environmental factors in subtropical plantation. Background and Objectives: N deposition is a major environmental issue and has altered forest ecosystem components and their functions. The response of understory vegetation to N deposition is often neglected due to a small proportion of stand productivity. However, compared to overstory trees, understory species usually have a higher nutrient cycle rate and are more sensitive to environmental change, so should be of greater concern. Materials and Methods: The changes in plant biomass, N, phosphorus (P), and nonstructural carbohydrates (NSCs) of three dominant understory species, namely Dicranopteris dichotoma, Lophatherum gracile, and Melastoma dodecandrum, were determined following four years of experimental N addition (100 kg hm−2 year−1 of N) in a Chinese fir plantation. Results: N addition increased the tissue N concentrations of all the understory plants by increasing soil mineral N, while N addition decreased the aboveground biomass of D. dichotoma and L. gracile significantly—by 82.1% and 67.2%, respectively. The biomass of M. dodecandrum did not respond to N addition. In contrast, N addition significantly increased the average girth growth rates and litterfall productivity of overstory trees—by 18.28% and 36.71%, respectively. NSCs, especially soluble sugar, representing immediate products of photosynthesis and main energy sources for plant growth, decreased after N addition in two of the three species. The plant NSC/N and NSC/P ratios showed decreasing tendencies, but the N/P ratio in aboveground tissue did not change with N addition. Conclusions: N addition might inhibit the growth of understory plants by decreasing the nonstructural carbohydrates and light availability indirectly rather than by changing nutrients and N/P stoichiometry directly, although species-specific responses to N deposition occurred in the Chinese fir plantation.
Collapse
|
20
|
Du E, de Vries W. Nitrogen-induced new net primary production and carbon sequestration in global forests. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1476-1487. [PMID: 30142563 DOI: 10.1016/j.envpol.2018.08.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 05/11/2023]
Abstract
Nitrogen (N) deposition and biological N fixation (BNF) are main external N inputs into terrestrial ecosystems. However, few studies have simultaneously quantified the contribution of these two external N inputs to global NPP and consequent C sequestration. Based on literature analysis, we estimated new net primary production (NPP) due to external N inputs from BNF and N deposition and the consequent C sinks in global boreal, temperate and tropical forest biomes via a stoichiometric scaling approach. Nitrogen-induced new NPP is estimated to be 3.48 Pg C yr-1 in global established forests and contributes to a C sink of 1.83 Pg C yr-1. More specifically, the aboveground and belowground new NPP are estimated to be 2.36 and 1.12 Pg C yr-1, while the external N-induced C sinks in wood and soil are estimated to be 1.51 and 0.32 Pg C yr-1, respectively. BNF contributes to a major proportion of N-induced new NPP (3.07 Pg C yr-1) in global forest, and accounts for a C sink of 1.58 Pg C yr-1. Compared with BNF, N deposition only makes a minor contribution to new NPP (0.41 Pg C yr-1) and C sinks (0.25 Pg C yr-1) in global forests. At the biome scale, rates of N-induced new NPP and C sink show an increase from boreal forest towards tropical forest, as mainly driven by an increase of BNF. In contrast, N deposition leads to a larger C sink in temperate forest (0.11 Pg C yr-1) than boreal (0.06 Pg C yr-1) and tropical forest (0.08 Pg C yr-1). Our estimate of total C sink due to N-induced new NPP approximately matches an independent assessment of total C sink in global established forests, suggesting that external N inputs by BNF and atmospheric deposition are key drivers of C sinks in global forests.
Collapse
Affiliation(s)
- Enzai Du
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Wim de Vries
- Environmental Systems Analysis Group, Wageningen University, PO Box 47, 6700 AA, Wageningen, the Netherlands; Alterra, Wageningen University and Research Center, PO Box 47, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
21
|
Yu Q, Duan L, Yu L, Chen X, Si G, Ke P, Ye Z, Mulder J. Threshold and multiple indicators for nitrogen saturation in subtropical forests. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:664-673. [PMID: 29902749 DOI: 10.1016/j.envpol.2018.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 05/26/2023]
Abstract
The influence of nitrogen (N) deposition on forest ecosystems largely depend on the N status. Developing threshold and practical indicators for N saturation in subtropical forests, with extremely high N deposition, would both enhance forest management and the assessments of global N balance and carbon (C) sequestration. Here, we quantified the N mass balance and assessed current N status at a number of subtropical forest sites in South China, using both N content, C/N ratio, and 15N natural abundance (δ15N) as potential indicators of N saturation. Among the studied sites, N deposition ranged from 13.8 to 113 kg N ha-1 yr-1 in throughfall, and was dominated by ammonium (NH4+). The threshold for N leaching in subtropical forest was first found to be 26-36 kg N ha-1 yr-1, which was 160% higher than in temperate forest (based on prescribed minimum). This indicates that critical parameter inputs in global models of the impact of N deposition are in need of revision, based on specific ecosystem characteristics. We found a critical C/N ratio of 20 for the O/A horizon as indicator of N saturation. Foliar N content and δ15N were positively correlated with N deposition and were well suited to indicate regional N status. The δ15N enrichment factor (Ɛfoli/So2, δ15Nfoliage - δ15NSoil2) was between -10‰ and -1‰, and had similar trend to those obtained from other regions with increasing N deposition. These suggest that the enrichment factor could be used to investigate the influence of N deposition in forest ecosystems, regardless of spatial heterogeneity in δ15N of N input, soil N availability and geomorphology.
Collapse
Affiliation(s)
- Qian Yu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lei Duan
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Collaborative Innovation Centre for Regional Environmental Quality, Tsinghua University, Beijing, 100084, China.
| | - Longfei Yu
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Box 5003, NO-1432 Ås, Norway; Laboratory for Air Pollution & Environmental Technology, Empa, Ueberlandstr. 129, CH-8600 Duebendorf, Switzerland
| | - Xiao Chen
- Air Environmental Modeling and Pollution Controlling Key Laboratory of Sichuan Education Institutes, College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Gaoyue Si
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Piaopiao Ke
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhixiang Ye
- Air Environmental Modeling and Pollution Controlling Key Laboratory of Sichuan Education Institutes, College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Jan Mulder
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Box 5003, NO-1432 Ås, Norway
| |
Collapse
|
22
|
Impacts of a High Nitrogen Load on Foliar Nutrient Status, N Metabolism, and Photosynthetic Capacity in a Cupressus lusitanica Mill. Plantation. FORESTS 2018. [DOI: 10.3390/f9080483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
At present, anthropogenic nitrogen deposition has dramatically increased worldwide and has shown negative impacts on temperate/boreal forest ecosystems. However, it remains unclear how an elevated N load affects plant growth in the relatively N-rich subtropical forests of Southern China. To address this question, a study was conducted in a six-year-old Cupressus lusitanica Mill. plantation at the Scientific Research and Teaching Base of Nanjing Forestry University, with N addition levels of N0 (0 kg ha−1 year−1), N1 (24 kg ha−1 year−1), N2 (48 kg ha−1 year−1), N3 (72 kg ha−1 year−1), N4 (96 kg ha−1 year−1), and N5 (120 kg ha−1 year−1). Leaf physiological traits associated with foliar nutrient status, photosynthetic capacity, pigment, and N metabolites were measured. The results showed that (1) N addition led to significant effects on foliar N, but had no marked effects on K concentration. Furthermore, remarkable increases of leaf physiological traits including foliar P, Ca, Mg, and Mn concentration; photosynthetic capacity; pigment; and N metabolites were always observed under low and middle-N supply. (2) High N supply notably decreased foliar P, Ca, and Mg concentration, but increased foliar Mn content. Regarding the chlorophyll, photosynthetic capacity, and N metabolites, marked declines were also observed under high N inputs. (3) Redundancy analysis showed that the net photosynthesis rate was positively correlated with foliar N, P, Ca, Mg, and Mn concentration; the Mn/Mg ratio; and concentrations of chlorophyll and N metabolites, while the net photosynthesis rate was negatively correlated with foliar K concentration and N/P ratios. These findings suggest that excess N inputs can promote nutrient imbalances and inhibit the photosynthetic capacity of Cupressus lusitanica Mill., indicating that high N deposition could threaten plant growth in tropical forests in the future. Meanwhile, further study is merited to track the effects of high N deposition on the relationship between foliar Mn accumulation and photosynthesis in Cupressus lusitanica Mill.
Collapse
|
23
|
Han X, Shen W, Zhang J, Müller C. Microbial adaptation to long-term N supply prevents large responses in N dynamics and N losses of a subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:1175-1187. [PMID: 29898524 DOI: 10.1016/j.scitotenv.2018.01.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 06/08/2023]
Abstract
Atmospherically-deposited nitrogen (N) can stimulate complex soil N metabolisms and accumulations over time. Whether long-term (decadal) N deposition effects on soil N transformations and functional microbes differ from the short-term (annual) effects has rarely been assessed. Here we conducted a laboratory 15N tracing study with soil samples from a short-term (one year) N addition site and a long-term (12 years) site in a subtropical forest. The effects of simulated N deposition on soil N2O emissions, N transformation rates and microbial nitrifying and denitrifying genes were determined. Our results showed that: (1) long-term N addition did not change soil N2O fluxes significantly in comparison to the short-term N addition. Denitrification, heterotrophic nitrification and autotrophic nitrification contributed 53%, 28% and 18% to total N2O emissions, respectively. (2) Autotrophic nitrification was the dominant N transformation process, except for the high-N treatment at the long-term site. The magnitude of soil N transformation rates was significantly different among N addition treatments but not between short- and long-term N addition sites. However, long-term N addition changed the responses of specific N transformation rates to N addition markedly, especially for the rates of nitrification, organic N mineralization to NH4+, NO3- immobilization and dissimilatory NO3- reduction to NH4+ (DNRA). (3) Responses of ammonia oxidizing archaea and bacteria (AOA and AOB) were more variable than those of denitrifying N2O-producers (nirK) and denitrifying N2O-reducers (nosZ), particularly at the long-term site. (4) The close correlations among N2O flux, functional genes and soil properties observed at the short-term site were weakened at the long-term site, posing a decreased risk for N losses in the acid subtropical forest soil. There is evidence for an adaptation of functional microbial communities to the prevailing soil conditions and in response to long-term natural and anthropogenic N depositions.
Collapse
Affiliation(s)
- Xiaoge Han
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd., Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijun Shen
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Rd., Tianhe District, Guangzhou 510650, China.
| | - Jinbo Zhang
- School of Geography Sciences, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Christoph Müller
- Department of Plant Ecology, Justus Liebig University Giessen, Heinrich-Buff Ring 26, 35392 Giessen, Germany; School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
24
|
Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proc Natl Acad Sci U S A 2018; 115:5187-5192. [PMID: 29717039 DOI: 10.1073/pnas.1720777115] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anthropogenic nitrogen (N) deposition has accelerated terrestrial N cycling at regional and global scales, causing nutrient imbalance in many natural and seminatural ecosystems. How added N affects ecosystems where N is already abundant, and how plants acclimate to chronic N deposition in such circumstances, remains poorly understood. Here, we conducted an experiment employing a decade of N additions to examine ecosystem responses and plant acclimation to added N in an N-rich tropical forest. We found that N additions accelerated soil acidification and reduced biologically available cations (especially Ca and Mg) in soils, but plants maintained foliar nutrient supply at least in part by increasing transpiration while decreasing soil water leaching below the rooting zone. We suggest a hypothesis that cation-deficient plants can adjust to elevated N deposition by increasing transpiration and thereby maintaining nutrient balance. This result suggests that long-term elevated N deposition can alter hydrological cycling in N-rich forest ecosystems.
Collapse
|
25
|
Yu Z, Wang M, Huang Z, Lin TC, Vadeboncoeur MA, Searle EB, Chen HYH. Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China. GLOBAL CHANGE BIOLOGY 2018; 24:1308-1320. [PMID: 29028280 DOI: 10.1111/gcb.13939] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/15/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Controlled experiments have shown that global changes decouple the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), resulting in shifting stoichiometry that lies at the core of ecosystem functioning. However, the response of soil stoichiometry to global changes in natural ecosystems with different soil depths, vegetation types, and climate gradients remains poorly understood. Based on 2,736 observations along soil profiles of 0-150 cm depth from 1955 to 2016, we evaluated the temporal changes in soil C-N-P stoichiometry across subtropical China, where soils are P-impoverished, with diverse vegetation, soil, and parent material types and a wide range of climate gradients. We found a significant overall increase in soil total C concentration and a decrease in soil total P concentration, resulting in increasing soil C:P and N:P ratios during the past 60 years across all soil depths. Although average soil N concentration did not change, soil C:N increased in topsoil while decreasing in deeper soil. The temporal trends in soil C-N-P stoichiometry differed among vegetation, soil, parent material types, and spatial climate variations, with significantly increased C:P and N:P ratios for evergreen broadleaf forest and highly weathered Ultisols, and more pronounced temporal changes in soil C:N, N:P, and C:P ratios at low elevations. Our sensitivity analysis suggests that the temporal changes in soil stoichiometry resulted from elevated N deposition, rising atmospheric CO2 concentration and regional warming. Our findings revealed that the responses of soil C-N-P and stoichiometry to long-term global changes have occurred across the whole soil depth in subtropical China and the magnitudes of the changes in soil stoichiometry are dependent on vegetation types, soil types, and spatial climate variations.
Collapse
Affiliation(s)
- Zaipeng Yu
- Key Laboratory for Subtropical Mountain Ecology, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| | - Minhuang Wang
- Key Laboratory for Subtropical Mountain Ecology, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Zhiqun Huang
- Key Laboratory for Subtropical Mountain Ecology, College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Teng-Chiu Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Eric B Searle
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| |
Collapse
|
26
|
Mao Q, Lu X, Mo H, Gundersen P, Mo J. Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:555-562. [PMID: 28822339 DOI: 10.1016/j.scitotenv.2017.08.087] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Anthropogenic increase of nitrogen (N) deposition has threatened forest ecosystem health at both regional and global scales. In N-limited ecosystems, atmospheric N input is regarded as an important nutrient source for plant growth. However, it remains an open question on how elevated N deposition affects plant growth in N-rich forest ecosystems. To address this question, we used a simulated N deposition experiment in an N-rich mature tropical forest of southern China, with N addition levels as 0kgNha-1yr-1 (Control), 50kgNha-1yr-1 (Low-N), 100kgNha-1yr-1 (Middle-N) and 150kgNha-1yr-1 (High-N), respectively. We measured foliar nutrient element status (e.g., N, P, K, Ca and Mg), N metabolism and photosynthesis capacity of three dominant understory plant species (Cryptocarya concinna and Cryptocarya chinensis as medium-light species; and Randia canthioides as shade tolerant species) in this forest. Results showed that two years of N addition greatly increased foliar N content, but decreased the content of nutrient cations (e.g., K, Ca and Mg). Nitrogen addition also increased N accumulation as organic forms as soluble protein and/or free amino acid (FAA), but not as chlorophyll in all three species. We further found that the photosynthesis capacity (Pmax) of C. concinna and C. chinensis decreased significantly with elevated N addition, with no effects on R. canthioides. However, photosynthetic nitrogen use efficiency (PNUE) significantly declined with N addition for all three species, with significantly negative relationships between PNUE/Pmax and foliar N content. These findings suggest that excess N inputs can accelerate nutrient imbalance, and inhibit photosynthetic capacity of understory plant species, indicating continuous high N deposition can threat understory plant growth in N-rich tropical forests in the future. Meanwhile, PNUE can be used as a sensitive indicator to assess ecosystem N status under chronic N deposition.
Collapse
Affiliation(s)
- Qinggong Mao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiankai Lu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Hui Mo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Per Gundersen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | - Jiangming Mo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
27
|
Bähring A, Fichtner A, Friedrich U, von Oheimb G, Härdtle W. Bryophytes and Organic layers Control Uptake of Airborne Nitrogen in Low-N Environments. FRONTIERS IN PLANT SCIENCE 2017; 8:2080. [PMID: 29375589 PMCID: PMC5770637 DOI: 10.3389/fpls.2017.02080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
The effects of atmospheric nitrogen (N) deposition on ecosystem functioning largely depend on the retention of N in different ecosystem compartments, but accumulation and partitioning processes have rarely been quantified in long-term field experiments. In the present study we analysed for the first time decadal-scale flows and allocation patterns of N in a heathland ecosystem that has been subject to airborne N inputs over decades. Using a long-term 15N tracer experiment, we quantified N retention and flows to and between ecosystem compartments (above-ground/below-ground vascular biomass, moss layer, soil horizons, leachate). After 9 years, about 60% of the added 15N-tracer remained in the N cycle of the ecosystem. The moss layer proved to be a crucial link between incoming N and its allocation to different ecosystem compartments (in terms of a short-term capture, but long-term release function). However, about 50% of the 15N captured and released by the moss layer was not compensated for by a corresponding increase in recovery rates in any other compartment, probably due to denitrification losses from the moss layer in the case of water saturation after rain events. The O-horizon proved to be the most important long-term sink for added 15N, as reflected by an increase in recovery rates from 18 to 40% within 8 years. Less than 2.1% of 15N were recovered in the podzol-B-horizon, suggesting that only negligible amounts of N were withdrawn from the N cycle of the ecosystem. Moreover, 15N recovery was low in the dwarf shrub above-ground biomass (<3.9% after 9 years) and in the leachate (about 0.03% within 1 year), indicating still conservative N cycles of the ecosystem, even after decades of N inputs beyond critical load thresholds. The continuous accumulation of reactive forms of airborne N suggests that critical load-estimates need to account for cumulative effects of N additions into ecosystems.
Collapse
Affiliation(s)
- Alexandra Bähring
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Andreas Fichtner
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Uta Friedrich
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Tharandt, Germany
| | - Werner Härdtle
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| |
Collapse
|
28
|
Cui X, Yue P, Gong Y, Li K, Tan D, Goulding K, Liu X. Impacts of water and nitrogen addition on nitrogen recovery in Haloxylon ammodendron dominated desert ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1280-1288. [PMID: 28605846 DOI: 10.1016/j.scitotenv.2017.05.202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
Desert ecosystems are likely to change in response to global climate change and nitrogen (N) deposition. The effects of increased precipitation and N deposition on plant growth and the N cycle largely depend on N allocation and N recovery efficiency in the plant-soil ecosystem, but there is limited research on this in desert ecosystems. Here we report results using double-labeled 15NH415NO3 (30 and 60kgNha-1yr-1) as a tracer under ambient (no additional water addition) and enhanced precipitation (60mm water addition) in a Haloxylon ammodendron dominated ecosystem in the Gurbantunggut Desert of Northwest China. Herbaceous plants were a significantly larger sink for added 15N than the H. ammodendron trees, and N retention varied with water and N addition, relative to growing season precipitation. The retention of added 15N varied within the components of H. ammodendron, with the stems retaining most, followed by the assimilation branches. Soil was the dominant sink for added 15N, in which the topsoil and subsoil respond differently to water and N addition over the two-year period. Nitrogen relative recovery percentage in the whole ecosystem ranged from 43% to 61%, lower than average recovery rate in temperate forests; N tracer recovery percentage significantly increased with water addition but decreased with enhanced N deposition. Future N cycling in central Asian deserts will depend on changes in precipitation.
Collapse
Affiliation(s)
- Xiaoqing Cui
- Key Laboratory of Plant-Soil Interactions of MOE, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ping Yue
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yanming Gong
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Kaihui Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dunyan Tan
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| | - Keith Goulding
- The Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Xuejun Liu
- Key Laboratory of Plant-Soil Interactions of MOE, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
29
|
Liu J, Peng B, Xia Z, Sun J, Gao D, Dai W, Jiang P, Bai E. Different fates of deposited NH4+ and NO3- in a temperate forest in northeast China: a 15 N tracer study. GLOBAL CHANGE BIOLOGY 2017; 23:2441-2449. [PMID: 27753166 DOI: 10.1111/gcb.13533] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/22/2016] [Indexed: 05/15/2023]
Abstract
Increasing atmospheric reactive nitrogen (N) deposition due to human activities could change N cycling in terrestrial ecosystems. However, the differences between the fates of deposited NH4+ and NO3- are still not fully understood. Here, we investigated the fates of deposited NH4+ and NO3-, respectively, via the application of 15 NH4 NO3 and NH415 NO3 in a temperate forest ecosystem. Results showed that at 410 days after tracer application, most 15NH4+ was immobilized in litter layer (50 ± 2%), while a considerable amount of 15NO3- penetrated into 0-5 cm mineral soil (42 ± 2%), indicating that litter layer and 0-5 cm mineral soil were the major N sinks of NH4+ and NO3-, respectively. Broad-leaved trees assimilated more 15 N under NH415 NO3 treatment compared to under 15 NH4 NO3 treatment, indicating their preference for NO3--N. At 410 days after tracer application, 16 ± 4% added 15 N was found in aboveground biomass under 15NO3- treatment, which was twice more than that under 15NH4+ treatment (6 ± 1%). At the same time, approximately 80% added 15 N was recovered in soil and plants under both treatments, which suggested that this forest had high potential for retention of deposited N. These results provided evidence that there were great differences between the fates of deposited NH4+ and NO3-, which could help us better understand the mechanisms and capability of forest ecosystems as a sink of reactive nitrogen.
Collapse
Affiliation(s)
- Jun Liu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Peng
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongwei Xia
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
| | - Jianfei Sun
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Decai Gao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Dai
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
| | - Ping Jiang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
| | - Edith Bai
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
| |
Collapse
|