1
|
Liu K, Yan Q, Guo X, Wang W, Zhang Z, Ji M, Wang F, Liu Y. Glacier Retreat Induces Contrasting Shifts in Bacterial Biodiversity Patterns in Glacial Lake Water and Sediment : Bacterial Communities in Glacial Lakes. MICROBIAL ECOLOGY 2024; 87:128. [PMID: 39397203 PMCID: PMC11471744 DOI: 10.1007/s00248-024-02447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Glacial lake ecosystems are experiencing rapid changes due to accelerated glacier retreat. As glaciers recede, their influence on downstream habitats diminishes, potentially affecting the biodiversity of glacial lake microbial communities. However, there remains a knowledge gap regarding how bacterial biodiversity patterns in glacial lakes are altered by diminishing glacial influence. Here, we investigated shifts in bacterial communities in paired water and sediment samples collected from seven glacial lakes on the Tibetan Plateau, using a space-for-time substitution approach to understand the consequences of glacier retreat. Our findings reveal that bacterial diversity in lake water increases significantly with a higher glacier index (GI), whereas sediment bacterial diversity exhibits a negative correlation with GI. Both the water and sediment bacterial communities display significant structural shifts along the GI gradient. Notably, reduced glacial influence decreases the complexity of bacterial co-occurrence networks in lake water but enhances the network complexity in sediment. This divergence in diversity and co-occurrence patterns highlights that water and sediment bacterial communities respond differently to changes in glacial influence in these lake ecosystems. This study provides insights into how diminishing glacial influence impacts the bacterial biodiversity in glacial lake water and sediments, revealing contrasting patterns between the two habitats. These findings emphasize the need for comprehensive monitoring to understand the implications of glacier retreat on these fragile ecosystems.
Collapse
Affiliation(s)
- Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Yan
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Xuezi Guo
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenqiang Wang
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
- College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Mukan Ji
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Feng Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Tolotti M, Brighenti S, Bruno MC, Cerasino L, Pindo M, Tirler W, Albanese D. Ecological "Windows of opportunity" influence biofilm prokaryotic diversity differently in glacial and non-glacial Alpine streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173826. [PMID: 38866149 DOI: 10.1016/j.scitotenv.2024.173826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
In glacier-fed streams, the Windows of Opportunity (WOs) are periods of mild environmental conditions supporting the seasonal development of benthic microorganisms. WOs have been defined based on changes in biofilm biomass, but the responses of microbial diversity to WOs in Alpine streams have been overlooked. A two year (2017-2018) metabarcoding of epilithic and epipsammic biofilm prokaryotes was conducted in Alpine streams fed by glaciers (kryal), rock glaciers (rock glacial), or groundwater/precipitation (krenal) in two catchments of the Central-Eastern European Alps (Italy), aiming at testing the hypothesis that: 1) environmental WOs enhance not only the biomass but also the α-diversity of the prokaryotic biofilm in all stream types, 2) diversity and phenology of prokaryotic biofilm are mainly influenced by the physical habitat in glacial streams, and by water chemistry in the other two stream types. The study confirmed kryal and krenal streams as endmembers of epilithic and sediment prokaryotic α- and β-diversity, with rock glacial streams sharing a large proportion of taxa with the two other stream types. Alpha-diversity appeared to respond to ecological WOs, but, contrary to expectations, seasonality was less pronounced in the turbid kryal than in the clear streams. This was attributed to the small size of the glaciers feeding the studied kryal streams, whose discharge dynamics were those typical of the late phase of deglaciation. Prokaryotic α-diversity of non-glacial streams tended to be higher in early summer than in early autumn. Our findings, while confirming that high altitude streams are heavily threatened by climate change, underscore the still neglected role of rock glacier runoffs as climate refugia for the most stenothermic benthic aquatic microorganism. This advocates the need to define and test strategies for protecting these ecosystems for preserving, restoring, and connecting cold Alpine aquatic biodiversity in the context of the progressing global warming.
Collapse
Affiliation(s)
- Monica Tolotti
- Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Palermo, Italy.
| | - Stefano Brighenti
- Competence Centre for Mountain Innovation Ecosystems, Free University of Bolzano, Bolzano/Bozen, Italy
| | - Maria Cristina Bruno
- Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Palermo, Italy
| | - Leonardo Cerasino
- Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | | | - Davide Albanese
- Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy
| |
Collapse
|
3
|
Guo X, Yan Q, Wang F, Wang W, Zhang Z, Liu Y, Liu K. Habitat-specific patterns of bacterial communities in a glacier-fed lake on the Tibetan Plateau. FEMS Microbiol Ecol 2024; 100:fiae018. [PMID: 38378869 PMCID: PMC10903976 DOI: 10.1093/femsec/fiae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 02/22/2024] Open
Abstract
Different types of inlet water are expected to affect microbial communities of lake ecosystems due to changing environmental conditions and the dispersal of species. However, knowledge of the effects of changes in environmental conditions and export of microbial assemblages on lake ecosystems is limited, especially for glacier-fed lakes. Here, we collected water samples from the surface water of a glacier-fed lake and its two fed streams on the Tibetan Plateau to investigate the importance of glacial and non-glacial streams as sources of diversity for lake bacterial communities. Results showed that the glacial stream was an important source of microorganisms in the studied lake, contributing 45.53% to the total bacterial community in the lake water, while only 19.14% of bacterial community in the lake water was seeded by the non-glacial stream. Bacterial communities were significantly different between the glacier-fed lake and its two fed streams. pH, conductivity, total dissolved solids, water temperature and total nitrogen had a significant effect on bacterial spatial turnover, and together explained 36.2% of the variation of bacterial distribution among habitats. Moreover, bacterial co-occurrence associations tended to be stronger in the lake water than in stream habitats. Collectively, this study may provide an important reference for assessing the contributions of different inlet water sources to glacier-fed lakes.
Collapse
Affiliation(s)
- Xuezi Guo
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Yan
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Feng Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenqiang Wang
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Richards SC, King WL, Sutherland JL, Bell TH. Leveraging aquatic-terrestrial interfaces to capture putative habitat generalists. FEMS Microbiol Lett 2024; 371:fnae025. [PMID: 38553956 DOI: 10.1093/femsle/fnae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/03/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024] Open
Abstract
Habitat type is a strong determinant of microbial composition. Habitat interfaces, such as the boundary between aquatic and terrestrial systems, present unique combinations of abiotic factors for microorganisms to contend with. Aside from the spillover of certain harmful microorganisms from agricultural soils into water (e.g. fecal coliform bacteria), we know little about the extent of soil-water habitat switching across microbial taxa. In this study, we developed a proof-of-concept system to facilitate the capture of putatively generalist microorganisms that can colonize and persist in both soil and river water. We aimed to examine the phylogenetic breadth of putative habitat switchers and how this varies across different source environments. Microbial composition was primarily driven by recipient environment type, with the strongest phylogenetic signal seen at the order level for river water colonizers. We also identified more microorganisms colonizing river water when soil was collected from a habitat interface (i.e. soil at the side of an intermittently flooded river, compared to soil collected further from water sources), suggesting that environmental interfaces could be important reservoirs of microbial habitat generalists. Continued development of experimental systems that actively capture microorganisms that thrive in divergent habitats could serve as a powerful tool for identifying and assessing the ecological distribution of microbial generalists.
Collapse
Affiliation(s)
- Sarah C Richards
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, United States
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, 16802, United States
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, United States
- International Agriculture and Development Graduate Program, The Pennsylvania State University, University Park, PA, 16802, United States
| | - William L King
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, United States
- School of Biological Sciences, University of Southampton, SO17 1BJ, United Kingdom
| | - Jeremy L Sutherland
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, United States
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, United States
- International Agriculture and Development Graduate Program, The Pennsylvania State University, University Park, PA, 16802, United States
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| |
Collapse
|
5
|
Milner AM, Loza Vega EM, Matthews TJ, Conn SC, Windsor FM. Long-term changes in macroinvertebrate communities across high-latitude streams. GLOBAL CHANGE BIOLOGY 2023; 29:2466-2477. [PMID: 36806834 DOI: 10.1111/gcb.16648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 05/28/2023]
Abstract
Long-term records of benthic macroinvertebrates in high-latitude streams are essential for understanding climatic changes, including extreme events (e.g. floods). Data extending over multiple decades are typically scarce. Here, we investigated macroinvertebrate community structural change (including alpha and beta diversity and gain and loss of species) over 22 years (1994-2016) in 10 stream systems across Denali National Park (Alaska, USA) in relation to climatological and meteorological drivers (e.g. air temperature, snowpack depth, precipitation). We hypothesised that increases in air temperature and reduced snowpack depth, due to climatic change, would reduce beta and gamma diversity but increase alpha diversity. Findings showed temporal trends in alpha diversity were variable across streams, with oscillating patterns in many snowmelt- and rainfall runoff-fed streams linked to climatic variation (temperature and precipitation), but increased over time in several streams supported by a mixture of water sources, including more stable groundwater-fed streams. Beta-diversity over the time series was highly variable, yet marked transitions were observed in response to extreme snowpack accumulation (1999-2000), where species loss drove turnover. Gamma diversity did not significantly increase or decrease over time. Investigating trends in individual taxa, several taxa were lost and gained during a relative constrained time period (2000-2006), likely in response to climatic variability and significant shifts in instream environmental conditions. Findings demonstrate the importance of long-term biological studies in stream ecosystems and highlight the vulnerability of high-latitude streams to climate change.
Collapse
Affiliation(s)
- Alexander M Milner
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, USA
| | - Eva M Loza Vega
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Thomas J Matthews
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
- Faculty of Agricultural Sciences and Environment, CE3C - Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group/CHANGE - Global Change and Sustainability Institute and Universidade dos Açores, Angra do Heroísmo, Portugal
| | - Sarah C Conn
- US Fish and Wildlife Service, Fairbanks, Alaska, USA
| | - Fredric M Windsor
- School of Biosciences, Cardiff University, Cardiff, UK
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Shan A, Huang L, Chen D, Lin Q, Liu R, Wang M, Kang KJ, Pan M, Wang G, He Z, Yang X. Trade-offs between fertilizer-N availability and Cd pollution potential under crop straw incorporation by 15 N stable isotopes in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51075-51088. [PMID: 36807262 DOI: 10.1007/s11356-022-25085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/27/2022] [Indexed: 04/16/2023]
Abstract
Application of crop residues and chemical nitrogen (N) fertilizer is a conventional practice for achieving high yield in a rice system. However, the fallacious combination of N fertilizers with crop straw not only significantly reduces the N use efficiencies (NUEs) but also leads to serious environmental problems. The present study employed five treatments including no N fertilization and no straw incorporation (ck), N fertilization incorporation only (S0), N fertilization with 40% straw (S40), N fertilization with 60% straw (S60), and N fertilization with 100% straw (S100) to improve N use efficiency as well as reduced Cd distribution in rice. The crop yields were largely enhanced by fertilization ranging from 13 to 52% over the straw addition treatments. Compared with ck, N fertilizer input significantly decreased soil pH, while DOC contents were raised in response to straw amendment, reaching the highest in S60 and S100 treatments, respectively. Moreover, straw addition substantially impacted the Cd accumulation and altered the bacterial community structure. The soil NH4+-N concentration under S0 performed the maximum in yellow soil, while the minimum in black soil compared to straw-incorporated pots. In addition, the soil NO3--N concentration in straw-incorporated plots tended to be higher than that in straw-removed plots in both soils, indicating that crop straw triggering the N mineralization was associated with native soil N condition. Furthermore, the NUE increased with 15 N uptake in the plant, and the residual 15 N in soil was increased by 26.8% with straw addition across four straw application rates. Overall, our study highlights the trade-offs between straw incorporation with N fertilizer in eliminating potential Cd toxicity, increasing fertilizer-N use efficiencies and help to provide a feasible agricultural management.
Collapse
Affiliation(s)
- Anqi Shan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Lukuan Huang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Qiang Lin
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Rongjie Liu
- Technical Extension Station of Soil Fertilizer and Rural Energy, Ninghai, Ningbo, People's Republic of China
| | - Mei Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Kyong Ju Kang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Minghui Pan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Gang Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Fort Pierce, FL, 34945, USA
| | - Xiaoe Yang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China.
| |
Collapse
|
7
|
Shah AA, Hotaling S, Lapsansky AB, Malison RL, Birrell JH, Keeley T, Giersch JJ, Tronstad LM, Woods HA. Warming undermines emergence success in a threatened alpine stonefly: A multi‐trait perspective on vulnerability to climate change. Funct Ecol 2023. [DOI: 10.1111/1365-2435.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Alisha A. Shah
- Division of Biological Sciences University of Montana Missoula Montana USA
- W.K. Kellogg Biological Station, Department of Integrative Biology Michigan State University Hickory Corners Michigan USA
| | - Scott Hotaling
- School of Biological Sciences Washington State University Pullman Washington USA
- Department of Watershed Sciences Utah State University Logan Utah USA
| | - Anthony B. Lapsansky
- Division of Biological Sciences University of Montana Missoula Montana USA
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
| | - Rachel L. Malison
- Flathead Lake Biological Station University of Montana Missoula Montana USA
| | - Jackson H. Birrell
- Division of Biological Sciences University of Montana Missoula Montana USA
| | - Tylor Keeley
- Division of Biological Sciences University of Montana Missoula Montana USA
| | - J. Joseph Giersch
- Flathead Lake Biological Station University of Montana Missoula Montana USA
| | - Lusha M. Tronstad
- Wyoming Natural Diversity Database University of Wyoming Laramie Wyoming USA
| | - H. Arthur Woods
- Division of Biological Sciences University of Montana Missoula Montana USA
| |
Collapse
|
8
|
Vrbická K, Kohler TJ, Falteisek L, Hawkings JR, Vinšová P, Bulínová M, Lamarche-Gagnon G, Hofer S, Kellerman AM, Holt AD, Cameron KA, Schön M, Wadham JL, Stibal M. Catchment characteristics and seasonality control the composition of microbial assemblages exported from three outlet glaciers of the Greenland Ice Sheet. Front Microbiol 2022; 13:1035197. [PMID: 36523833 PMCID: PMC9745319 DOI: 10.3389/fmicb.2022.1035197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/09/2022] [Indexed: 10/17/2023] Open
Abstract
Glacial meltwater drains into proglacial rivers where it interacts with the surrounding landscape, collecting microbial cells as it travels downstream. Characterizing the composition of the resulting microbial assemblages in transport can inform us about intra-annual changes in meltwater flowpaths beneath the glacier as well as hydrological connectivity with proglacial areas. Here, we investigated how the structure of suspended microbial assemblages evolves over the course of a melt season for three proglacial catchments of the Greenland Ice Sheet (GrIS), reasoning that differences in glacier size and the proportion of glacierized versus non-glacierized catchment areas will influence both the identity and relative abundance of microbial taxa in transport. Streamwater samples were taken at the same time each day over a period of 3 weeks (summer 2018) to identify temporal patterns in microbial assemblages for three outlet glaciers of the GrIS, which differed in glacier size (smallest to largest; Russell, Leverett, and Isunnguata Sermia [IS]) and their glacierized: proglacial catchment area ratio (Leverett, 76; Isunnguata Sermia, 25; Russell, 2). DNA was extracted from samples, and 16S rRNA gene amplicons sequenced to characterize the structure of assemblages. We found that microbial diversity was significantly greater in Isunnguata Sermia and Russell Glacier rivers compared to Leverett Glacier, the latter of which having the smallest relative proglacial catchment area. Furthermore, the microbial diversity of the former two catchments continued to increase over monitored period, presumably due to increasing hydrologic connectivity with proglacial habitats. Meanwhile, diversity decreased over the monitored period in Leverett, which may have resulted from the evolution of an efficient subglacial drainage system. Linear discriminant analysis further revealed that bacteria characteristic to soils were disproportionately represented in the Isunnguata Sermia river, while putative methylotrophs were disproportionately abundant in Russell Glacier. Meanwhile, taxa typical for glacierized habitats (i.e., Rhodoferax and Polaromonas) dominated in the Leverett Glacier river. Our findings suggest that the proportion of deglaciated catchment area is more influential to suspended microbial assemblage structure than absolute glacier size, and improve our understanding of hydrological flowpaths, particulate entrainment, and transport.
Collapse
Affiliation(s)
- Kristýna Vrbická
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Tyler J. Kohler
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lukáš Falteisek
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Jon R. Hawkings
- Department of Earth and Environment, University of Pennsylvania, Philadelphia, PA, United States
| | - Petra Vinšová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Marie Bulínová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
- Department of Geosciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Guillaume Lamarche-Gagnon
- Department of Geosciences, UiT, The Arctic University of Norway, Tromsø, Norway
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Stefan Hofer
- Department of Geosciences, UiO University of Oslo, Oslo, Norway
| | - Anne M. Kellerman
- Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, United States
| | - Amy D. Holt
- Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, United States
| | - Karen A. Cameron
- School of Geographical & Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Martina Schön
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jemma L. Wadham
- Department of Geosciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Marek Stibal
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
9
|
Zhu C, Langlois GA, Zhao Y. Effect of Environmental Heterogeneity and Trophic Status in Sampling Strategy on Estimation of Small-Scale Regional Biodiversity of Microorganisms. Microorganisms 2022; 10:2119. [PMID: 36363711 PMCID: PMC9697727 DOI: 10.3390/microorganisms10112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Microorganisms are diverse and play key roles in lake ecosystems, therefore, a robust estimation of their biodiversity and community structure is crucial for determining their ecological roles in lakes. Conventionally, molecular surveys of microorganisms in lakes are primarily based on equidistant sampling. However, this sampling strategy overlooks the effects of environmental heterogeneity and trophic status in lake ecosystems, which might result in inaccurate biodiversity assessments of microorganisms. Here, we conducted equidistant sampling from 10 sites in two regions with different trophic status within East Lake (Wuhan, China), to verify the reliability of this sampling strategy and assess the influence of environmental heterogeneity and trophic status on this strategy. Rarefaction curves showed that the species richness of microbial communities in the region of the lake with higher eutrophication failed to reach saturation compared with that in lower trophic status. The microbial compositions of samples from the region with higher trophic status differed significantly (P < 0.05) from those in the region with lower trophic status. The result of this pattern may be explained by complex adaptations of lake microorganisms in high eutrophication regions with environmental conditions, where community differentiation can be viewed as adaptations to these environmental selection forces. Therefore, when conducting surveys of microbial biodiversity in a heterogeneous environment, investigators should incorporate intensive sampling to assess the variability in microbial distribution in response to a range of factors in the local microenvironment.
Collapse
Affiliation(s)
- Changyu Zhu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Gaytha A. Langlois
- Department of Science and Technology, Bryant University, Smithfield, RI 02917, USA
| | - Yan Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
10
|
Brandani J, Peter H, Busi SB, Kohler TJ, Fodelianakis S, Ezzat L, Michoud G, Bourquin M, Pramateftaki P, Roncoroni M, Lane SN, Battin TJ. Spatial patterns of benthic biofilm diversity among streams draining proglacial floodplains. Front Microbiol 2022; 13:948165. [PMID: 36003939 PMCID: PMC9393633 DOI: 10.3389/fmicb.2022.948165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Glacier shrinkage opens new proglacial terrain with pronounced environmental gradients along longitudinal and lateral chronosequences. Despite the environmental harshness of the streams that drain glacier forelands, their benthic biofilms can harbor astonishing biodiversity spanning all domains of life. Here, we studied the spatial dynamics of prokaryotic and eukaryotic photoautotroph diversity within braided glacier-fed streams and tributaries draining lateral terraces predominantly fed by groundwater and snowmelt across three proglacial floodplains in the Swiss Alps. Along the lateral chronosequence, we found that benthic biofilms in tributaries develop higher biomass than those in glacier-fed streams, and that their respective diversity and community composition differed markedly. We also found spatial turnover of bacterial communities in the glacier-fed streams along the longitudinal chronosequence. These patterns along the two chronosequences seem unexpected given the close spatial proximity and connectivity of the various streams, suggesting environmental filtering as an underlying mechanism. Furthermore, our results suggest that photoautotrophic communities shape bacterial communities across the various streams, which is understandable given that algae are the major source of organic matter in proglacial streams. Overall, our findings shed new light on benthic biofilms in proglacial streams now changing at rapid pace owing to climate-induced glacier shrinkage.
Collapse
Affiliation(s)
- Jade Brandani
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hannes Peter
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Susheel Bhanu Busi
- Systems Ecology Group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Tyler J. Kohler
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stilianos Fodelianakis
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Leila Ezzat
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Grégoire Michoud
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Massimo Bourquin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Paraskevi Pramateftaki
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Roncoroni
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Lausanne, Switzerland
| | - Stuart N. Lane
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Lausanne, Switzerland
| | - Tom J. Battin
- River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
11
|
Bellmore JR, Fellman JB, Hood E, Dunkle MR, Edwards RT. A melting cryosphere constrains fish growth by synchronizing the seasonal phenology of river food webs. GLOBAL CHANGE BIOLOGY 2022; 28:4807-4818. [PMID: 35596718 PMCID: PMC9544858 DOI: 10.1111/gcb.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Mountain watersheds often contain a mosaic of glacier-, snow-, and rain-fed streams that have distinct hydrologic, temperature, and biogeochemical regimes. However, as glaciers diminish and precipitation shifts from snow to rain, the physical and chemical characteristics that make glacial or snowmelt streams distinct from rain-fed streams will fade. Among the unforeseen consequences of this hydrologic homogenization could be the loss of unique food webs that sustain aquatic consumers. To explore the impacts of a melting cryosphere on stream food webs, we parameterized an aquatic food web model with empirical physicochemical data from glacier-, snow-, and rain-fed streams in southeast Alaska and used the model to simulate the seasonal biomass dynamics of aquatic primary producers and consumers and the growth of juvenile salmon. Model results suggest that glacier-, snow-, and rain-fed streams exhibit seasonal asynchronies in the timing of biofilm and aquatic invertebrate abundance. Although warmer rain-fed streams were more productive during the summer (June through September), colder glacial and snowmelt streams provided enhanced foraging and growth opportunities throughout the remainder of the year. For juvenile salmon that can track peaks in resource abundance within river networks, the loss of meltwater streams strongly constrained modeled growth opportunities by removing spatially and temporally distinct foraging habitats within a watershed. These findings suggest that climate change induced homogenization of high latitude river networks may result in the loss of unique food web dynamics, which could diminish the capacity of watersheds to sustain mobile consumers.
Collapse
Affiliation(s)
- J. Ryan Bellmore
- Pacific Northwest Research StationUSDA Forest ServiceJuneauAlaskaUSA
| | - Jason B. Fellman
- Program on the Environment and Alaska Coastal Rainforest CenterUniversity of Alaska SoutheastJuneauAlaskaUSA
| | - Eran Hood
- Program on the Environment and Alaska Coastal Rainforest CenterUniversity of Alaska SoutheastJuneauAlaskaUSA
| | - Matthew R. Dunkle
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIdahoUSA
| | | |
Collapse
|
12
|
Benthic Biofilms in Glacier-Fed Streams from Scandinavia to the Himalayas Host Distinct Bacterial Communities Compared with the Streamwater. Appl Environ Microbiol 2022; 88:e0042122. [PMID: 35674429 DOI: 10.1128/aem.00421-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Microbial life in glacier-fed streams (GFSs) is dominated by benthic biofilms which fulfill critical ecosystem processes. However, it remains unclear how the bacterial communities of these biofilms assemble in stream ecosystems characterized by rapid turnover of benthic habitats and high suspended sediment loads. Using16S rRNA gene amplicon sequence data collected from 54 GFSs across the Himalayas, European Alps, and Scandinavian Mountains, we found that benthic biofilms harbor bacterial communities that are distinct from the bacterial assemblages suspended in the streamwater. Our data showed a decrease in species richness in the benthic biofilms compared to the bacterial cells putatively free-living in the water. The benthic biofilms also differed from the suspended water fractions in terms of community composition. Differential abundance analyses highlighted bacterial families that were specific to the benthic biofilms and the suspended assemblages. Notably, source-sink models suggested that the benthic biofilm communities are not simply a subset of the suspended assemblages. Rather, we found evidence that deterministic processes (e.g., species sorting) shape the benthic biofilm communities. This is unexpected given the high vertical mixing of water and contained bacterial cells in GFSs and further highlights the benthic biofilm mode of life as one that is determined through niche-related processes. Our findings therefore reveal a "native" benthic biofilm community in an ecosystem that is currently threatened by climate-induced glacier shrinkage. IMPORTANCE Benthic biofilms represent the dominant form of life in glacier-fed streams. However, it remains unclear how bacterial communities within these biofilms assemble. Our findings from glacier-fed streams from three major mountain ranges across the Himalayas, the European Alps and the Scandinavian Mountains reveal a bacterial community associated with benthic biofilms that is distinct from the assemblage in the overlying streamwater. Our analyses suggest that selection is the underlying process to this differentiation. This is unexpected given that bacterial cells that are freely living or attached to the abundant sediment particles suspended in the water continuously mix with the benthic biofilms. The latter colonize loose sediments that are subject to high turnover owing to the forces of the water flow. Our research unravels the existence of a microbiome specific to benthic biofilms in glacier-fed streams, now under major threats due to global warming.
Collapse
|
13
|
Kleinteich J, Hanselmann K, Hildebrand F, Kappler A, Zarfl C. Glacier melt-down changes habitat characteristics and unique microbial community composition and physiology in Alpine lakes sediments. FEMS Microbiol Ecol 2022; 98:6617590. [PMID: 35749563 DOI: 10.1093/femsec/fiac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Glacial melt-down alters hydrological and physicochemical conditions in downstream aquatic habitats. In this study we tested if sediment associated microbial communities respond to the decrease of glaciers and associated meltwater flows in high-alpine lakes. We analysed 16 lakes in forefield catchments of three glaciers in the Eastern Swiss Alps on physicochemical and biological parameters. We compared lakes fed by glacier meltwater with hydrologically disconnected lakes, as well as "mixed" lakes that received water from both other lake types. Glacier-fed lakes had a higher turbidity (94 NTU) and conductivity (47 µS/cm), but were up to 5.2°C colder than disconnected lakes (1.5 NTU, 26 µS/cm). Nutrient concentration was low in all lakes (TN <0.05 mg/L, TP <0.02 mg/L). Bacterial diversity in the sediments decreased significantly with altitude. Bacterial community composition correlated with turbidity, temperature, conductivity, nitrate and lake age and was distinctly different between glacier-fed compared to disconnected and mixed water lakes, but not between catchments. Chemoheterotrophic processes were more abundant in glacier-fed compared to disconnected and mixed water lakes where photoautotrophic processes dominated. Our study suggests that the loss of glaciers will change sediment bacterial community composition and physiology that are unique for glacier-fed lakes in mountain and polar regions.
Collapse
Affiliation(s)
- Julia Kleinteich
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Germany
| | - Kurt Hanselmann
- Department of Earth Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| | - Falk Hildebrand
- Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UZ, UK.,Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Andreas Kappler
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Germany.,Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Christiane Zarfl
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Germany
| |
Collapse
|
14
|
Ren Z, Gao H, Luo W, Elser JJ. Bacterial communities in surface and basal ice of a glacier terminus in the headwaters of Yangtze River on the Qinghai-Tibet Plateau. ENVIRONMENTAL MICROBIOME 2022; 17:12. [PMID: 35346386 PMCID: PMC8962558 DOI: 10.1186/s40793-022-00408-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND On the front lines of climate change, glacier termini play crucial roles in linking glaciers and downstream ecosystems during glacier retreat. However, we lack a clear understanding of biological processes that occur in surface and basal ice at glacier termini. METHODS Here, we studied the bacterial communities in surface ice and basal ice (the bottom layer) of a glacier terminus in the Yangtze River Source, Qinghai-Tibet Plateau. RESULTS Surface and basal ice harbored distinct bacterial communities but shared some core taxa. Surface ice communities had a higher α-diversity than those in basal ice and were dominated by Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Cyanobacteria while basal ice was dominated by Firmicutes and Proteobacteria. The bacterial communities were also substantially different in functional potential. Genes associated with functional categories of cellular processes and metabolism were significantly enriched in surface ice, while genes connected to environmental information processing were enriched in basal ice. In terms of biogeochemical cycles of carbon, nitrogen, phosphorus, and sulfur, bacterial communities in surface ice were enriched for genes connected to aerobic carbon fixation, aerobic respiration, denitrification, nitrogen assimilation, nitrogen mineralization, sulfur mineralization, alkaline phosphatase, and polyphosphate kinase. In contrast, bacterial communities in basal ice were enriched for genes involved in anaerobic carbon fixation, fermentation, nitrate reduction, 2-aminoethylphosphonic acid pathway, G3P transporter, glycerophosphodiester phosphodiesterase, and exopolyphosphatase. Structural equation modeling showed that total nitrogen and environmental carbon:phosphorus were positively while environmental nitrogen:phosphorus was negatively associated with taxonomic β-diversity which itself was strongly associated with functional β-diversity of bacterial communities. CONCLUSIONS This study furthers our understanding of biogeochemical cycling of the mountain cryosphere by revealing the genetic potential of the bacterial communities in surface and basal ice at the glacier terminus, providing new insights into glacial ecology as well as the influences of glacier retreat on downstream systems.
Collapse
Affiliation(s)
- Ze Ren
- Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China.
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Hongkai Gao
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Wei Luo
- Polar Research Institute of China, Ministry of Natural Resources, Shanghai, 200136, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - James J Elser
- Flathead Lake Biological Station, University of Montana, Polson, 59860, USA
| |
Collapse
|
15
|
Hotaling S, Shah AA, Dillon ME, Giersch JJ, Tronstad LM, Finn DS, Woods HA, Kelley JL. Cold Tolerance of Mountain Stoneflies (Plecoptera: Nemouridae) from the High Rocky Mountains. WEST N AM NATURALIST 2021. [DOI: 10.3398/064.081.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA
| | - Alisha A. Shah
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Michael E. Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY
| | - J. Joseph Giersch
- Northern Rocky Mountain Science Center, U.S. Geological Survey, West Glacier, MT
| | - Lusha M. Tronstad
- Wyoming Natural Diversity Database, University of Wyoming, Laramie, WY
| | - Debra S. Finn
- Department of Biology, Missouri State University, Springfield, MO
| | - H. Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT
| | - Joanna L. Kelley
- School of Biological Sciences, Washington State University, Pullman, WA
| |
Collapse
|
16
|
Brighenti S, Hotaling S, Finn DS, Fountain AG, Hayashi M, Herbst D, Saros JE, Tronstad LM, Millar CI. Rock glaciers and related cold rocky landforms: Overlooked climate refugia for mountain biodiversity. GLOBAL CHANGE BIOLOGY 2021; 27:1504-1517. [PMID: 33404095 DOI: 10.1111/gcb.15510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/29/2020] [Indexed: 05/22/2023]
Abstract
Mountains are global biodiversity hotspots where cold environments and their associated ecological communities are threatened by climate warming. Considerable research attention has been devoted to understanding the ecological effects of alpine glacier and snowfield recession. However, much less attention has been given to identifying climate refugia in mountain ecosystems where present-day environmental conditions will be maintained, at least in the near-term, as other habitats change. Around the world, montane communities of microbes, animals, and plants live on, adjacent to, and downstream of rock glaciers and related cold rocky landforms (CRL). These geomorphological features have been overlooked in the ecological literature despite being extremely common in mountain ranges worldwide with a propensity to support cold and stable habitats for aquatic and terrestrial biodiversity. CRLs are less responsive to atmospheric warming than alpine glaciers and snowfields due to the insulating nature and thermal inertia of their debris cover paired with their internal ventilation patterns. Thus, CRLs are likely to remain on the landscape after adjacent glaciers and snowfields have melted, thereby providing longer-term cold habitat for biodiversity living on and downstream of them. Here, we show that CRLs will likely act as key climate refugia for terrestrial and aquatic biodiversity in mountain ecosystems, offer guidelines for incorporating CRLs into conservation practices, and identify areas for future research.
Collapse
Affiliation(s)
- Stefano Brighenti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Debra S Finn
- Department of Biology, Missouri State University, Springfield, MO, USA
| | | | - Masaki Hayashi
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - David Herbst
- Sierra Nevada Aquatic Research Laboratory and Institute of Marine Sciences, University of California, Santa Cruz, CA, USA
| | - Jasmine E Saros
- School of Biology and Ecology, Climate Change Institute, University of Maine, Orono, ME, USA
| | - Lusha M Tronstad
- Wyoming Natural Diversity Database, University of Wyoming, Laramie, WY, USA
| | - Constance I Millar
- Pacific Southwest Research Station, USDA Forest Service, Albany, CA, USA
| |
Collapse
|
17
|
Gu Z, Liu K, Pedersen MW, Wang F, Chen Y, Zeng C, Liu Y. Community assembly processes underlying the temporal dynamics of glacial stream and lake bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143178. [PMID: 33153747 DOI: 10.1016/j.scitotenv.2020.143178] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Community assembly processes are important in structuring aquatic microbial communities; however, the influence of these processes on the dynamics of bacterial communities in glacial streams and lakes remains largely unstudied. To investigate the assembly processes underlying the temporal variation of the bacterial community, we collected 50 water samples over five months in an ephemeral glacial stream and its downstream lake at the terminus of the Qiangyong glacier on the Tibetan Plateau. Using the V4 hypervariable region of the bacterial 16S rRNA gene combined with environmental measurements, such as water temperature, pH, total nitrogen (TN), dissolved organic carbon (DOC) and water conductivity, we found that temporal variation in the environmental factors promoted the shift in the proglacial stream and the lake bacterial communities. The quantification of ecological processes showed that the stream microbial communities were influenced by the ecological drift (40%) in June, then changed to homogeneous selection (40%) in July and variable selection (60%) in September, while the dynamic pattern of proglacial lake bacterioplankton was governed by homogeneous selection (≥ 50%) over the time. Overall, the dynamic of bacterial community in the proglacial stream and lake water is influenced by environmental factors, and the community composition assembly of the Qiangyong glacial stream and lake could be dynamic and primarily governed by deterministic processes.
Collapse
Affiliation(s)
- Zhengquan Gu
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keshao Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101, China.
| | - Mikkel Winther Pedersen
- The Globe Institute, University of Copenhagen, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - Feng Wang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Chen
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Zeng
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101, China
| | - Yongqin Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101, China
| |
Collapse
|
18
|
Yin W, Xu S, Wang Y, Zhang Y, Chou SH, Galperin MY, He J. Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol 2020; 47:57-78. [PMID: 33356690 DOI: 10.1080/1040841x.2020.1842325] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biofilms are complex microbial architectures that encase microbial cells in a matrix comprising self-produced extracellular polymeric substances. Microorganisms living in biofilms are much more resistant to hostile environments than their planktonic counterparts and exhibit enhanced resistance against the microbicides. From the human perspective, biofilms can be classified into beneficial, neutral, and harmful. Harmful biofilms impact food safety, cause plant and animal diseases, and threaten medical fields, making it urgent to develop effective and robust strategies to control harmful biofilms. In this review, we discuss various strategies to control biofilm formation on infected tissues, implants, and medical devices. We classify the current strategies into three main categories: (i) changing the properties of susceptible surfaces to prevent biofilm formation; (ii) regulating signalling pathways to inhibit biofilm formation; (iii) applying external forces to eradicate the biofilm. We hope this review would motivate the development of innovative and effective strategies for controlling harmful biofilms.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
19
|
Elser JJ, Wu C, González AL, Shain DH, Smith HJ, Sommaruga R, Williamson CE, Brahney J, Hotaling S, Vanderwall J, Yu J, Aizen V, Aizen E, Battin TJ, Camassa R, Feng X, Jiang H, Lu L, Qu JJ, Ren Z, Wen J, Wen L, Woods HA, Xiong X, Xu J, Yu G, Harper JT, Saros JE. Key rules of life and the fading cryosphere: Impacts in alpine lakes and streams. GLOBAL CHANGE BIOLOGY 2020; 26:6644-6656. [PMID: 32969121 DOI: 10.1111/gcb.15362] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/07/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Alpine regions are changing rapidly due to loss of snow and ice in response to ongoing climate change. While studies have documented ecological responses in alpine lakes and streams to these changes, our ability to predict such outcomes is limited. We propose that the application of fundamental rules of life can help develop necessary predictive frameworks. We focus on four key rules of life and their interactions: the temperature dependence of biotic processes from enzymes to evolution; the wavelength dependence of the effects of solar radiation on biological and ecological processes; the ramifications of the non-arbitrary elemental stoichiometry of life; and maximization of limiting resource use efficiency across scales. As the cryosphere melts and thaws, alpine lakes and streams will experience major changes in temperature regimes, absolute and relative inputs of solar radiation in ultraviolet and photosynthetically active radiation, and relative supplies of resources (e.g., carbon, nitrogen, and phosphorus), leading to nonlinear and interactive effects on particular biota, as well as on community and ecosystem properties. We propose that applying these key rules of life to cryosphere-influenced ecosystems will reduce uncertainties about the impacts of global change and help develop an integrated global view of rapidly changing alpine environments. However, doing so will require intensive interdisciplinary collaboration and international cooperation. More broadly, the alpine cryosphere is an example of a system where improving our understanding of mechanistic underpinnings of living systems might transform our ability to predict and mitigate the impacts of ongoing global change across the daunting scope of diversity in Earth's biota and environments.
Collapse
Affiliation(s)
- James J Elser
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Angélica L González
- Department of Biology & Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Daniel H Shain
- Department of Biology & Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Ruben Sommaruga
- Lake and Glacier Research Group, Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | | | - Janice Brahney
- Department of Watershed Sciences, Utah State University, Logan, UT, USA
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Joseph Vanderwall
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Jinlei Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, China
| | - Vladimir Aizen
- Department of Geography, University of Idaho, Moscow, ID, USA
| | - Elena Aizen
- Department of Geography, University of Idaho, Moscow, ID, USA
| | - Tom J Battin
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - Roberto Camassa
- Department of Mathematics, Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, NC, USA
| | - Xiu Feng
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hongchen Jiang
- State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Lixin Lu
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
| | - John J Qu
- Global Environment and Natural Resources Institute (GENRI) and Department of Geography and GeoInformation Science (GGS), George Mason University, Fairfax, VA, USA
| | - Ze Ren
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Jun Wen
- Sichuan Key Laboratory of Plateau Atmosphere and Environment, College of Atmospheric Sciences, Chengdu University of Information Technology, Chendu, China
| | - Lijuan Wen
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jun Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Joel T Harper
- Department of Geosciences, University of Montana, Missoula, MT, USA
| | - Jasmine E Saros
- School of Biology and Ecology, Climate Change Institute, University of Maine, Orono, ME, USA
| |
Collapse
|
20
|
Birrell JH, Shah AA, Hotaling S, Giersch JJ, Williamson CE, Jacobsen D, Woods HA. Insects in high-elevation streams: Life in extreme environments imperiled by climate change. GLOBAL CHANGE BIOLOGY 2020; 26:6667-6684. [PMID: 32931053 DOI: 10.1111/gcb.15356] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Climate change is altering conditions in high-elevation streams worldwide, with largely unknown effects on resident communities of aquatic insects. Here, we review the challenges of climate change for high-elevation aquatic insects and how they may respond, focusing on current gaps in knowledge. Understanding current effects and predicting future impacts will depend on progress in three areas. First, we need better descriptions of the multivariate physical challenges and interactions among challenges in high-elevation streams, which include low but rising temperatures, low oxygen supply and increasing oxygen demand, high and rising exposure to ultraviolet radiation, low ionic strength, and variable but shifting flow regimes. These factors are often studied in isolation even though they covary in nature and interact in space and time. Second, we need a better mechanistic understanding of how physical conditions in streams drive the performance of individual insects. Environment-performance links are mediated by physiology and behavior, which are poorly known in high-elevation taxa. Third, we need to define the scope and importance of potential responses across levels of biological organization. Short-term responses are defined by the tolerances of individuals, their capacities to perform adequately across a range of conditions, and behaviors used to exploit local, fine-scale variation in abiotic factors. Longer term responses to climate change, however, may include individual plasticity and evolution of populations. Whether high-elevation aquatic insects can mitigate climatic risks via these pathways is largely unknown.
Collapse
Affiliation(s)
- Jackson H Birrell
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Alisha A Shah
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - J Joseph Giersch
- U.S. Geological Survey, Northern Rocky Mountain Science Center, West Glacier, MT, USA
| | | | - Dean Jacobsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
21
|
Rapid Changes in Microbial Community Structures along a Meandering River. Microorganisms 2020; 8:microorganisms8111631. [PMID: 33105630 PMCID: PMC7690413 DOI: 10.3390/microorganisms8111631] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/02/2022] Open
Abstract
Streams and rivers convey freshwater from lands to the oceans, transporting various organic particles, minerals, and living organisms. Microbial communities are key components of freshwater food webs and take up, utilize, and transform this material. However, there are still important gaps in our understanding of the dynamic of these organisms along the river channels. Using high-throughput 16S and 18S rRNA gene sequencing and quantitative PCR on a 11-km long transect of the Saint-Charles River (Quebec, CA), starting from its main source, the Saint-Charles Lake, we show that bacterial and protist community structures in the river drifted quickly but progressively downstream of its source. The dominant Operational Taxonomic Units (OTUs) of the lake, notably related to Cyanobacteria, decreased in proportions, whereas relative proportions of other OTUs, such as a Pseudarcicella OTU, increased along the river course, becoming quickly predominant in the river system. Both prokaryotic and protist communities changed along the river transect, suggesting a strong impact of the shift from a stratified lake ecosystem to a continuously mixed river environment. This might reflect the cumulative effects of the increasing water turbulence, fluctuations of physicochemical conditions, differential predation pressure in the river, especially in the lake outlet by benthic filter feeders, or the relocation of microorganisms, through flocculation, sedimentation, resuspension, or inoculation from the watershed. Our study reveals that the transit of water in a river system can greatly impact both bacterial and micro-eukaryotic community composition, even over a short distance, and, potentially, the transformation of materials in the water column.
Collapse
|
22
|
Tronstad LM, Hotaling S, Giersch JJ, Wilmot OJ, Finn DS. Headwaters Fed by Subterranean Ice: Potential Climate Refugia for Mountain Stream Communities? WEST N AM NATURALIST 2020. [DOI: 10.3398/064.080.0311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Lusha M. Tronstad
- Wyoming Natural Diversity Database, University of Wyoming, Laramie, WY
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA
| | - J. Joseph Giersch
- U.S. Geological Survey, Northern Rocky Mountain Science Center, West Glacier, MT
| | - Oliver J. Wilmot
- Wyoming Natural Diversity Database, University of Wyoming, Laramie, WY
| | - Debra S. Finn
- Department of Biology, Missouri State University, Springfield, MO
| |
Collapse
|
23
|
Hotaling S, Shah AA, McGowan KL, Tronstad LM, Giersch JJ, Finn DS, Woods HA, Dillon ME, Kelley JL. Mountain stoneflies may tolerate warming streams: Evidence from organismal physiology and gene expression. GLOBAL CHANGE BIOLOGY 2020; 26:5524-5538. [PMID: 32698241 DOI: 10.1111/gcb.15294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Rapid glacier recession is altering the physical conditions of headwater streams. Stream temperatures are predicted to rise and become increasingly variable, putting entire meltwater-associated biological communities at risk of extinction. Thus, there is a pressing need to understand how thermal stress affects mountain stream insects, particularly where glaciers are likely to vanish on contemporary timescales. In this study, we measured the critical thermal maximum (CTMAX ) of stonefly nymphs representing multiple species and a range of thermal regimes in the high Rocky Mountains, USA. We then collected RNA-sequencing data to assess how organismal thermal stress translated to the cellular level. Our focal species included the meltwater stonefly, Lednia tumana, which was recently listed under the U.S. Endangered Species Act due to climate-induced habitat loss. For all study species, critical thermal maxima (CTMAX > 20°C) far exceeded the stream temperatures mountain stoneflies experience (<10°C). Moreover, while evidence for a cellular stress response was present, we also observed constitutive expression of genes encoding proteins known to underlie thermal stress (i.e., heat shock proteins) even at low temperatures that reflected natural conditions. We show that high-elevation aquatic insects may not be physiologically threatened by short-term exposure to warm temperatures and that longer-term physiological responses or biotic factors (e.g., competition) may better explain their extreme distributions.
Collapse
Affiliation(s)
- Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Alisha A Shah
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Kerry L McGowan
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Lusha M Tronstad
- Wyoming Natural Diversity Database, University of Wyoming, Laramie, WY, USA
| | - J Joseph Giersch
- U.S. Geological Survey, Northern Rocky Mountain Science Center, West Glacier, MT, USA
| | - Debra S Finn
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
24
|
Picazo F, Vilmi A, Aalto J, Soininen J, Casamayor EO, Liu Y, Wu Q, Ren L, Zhou J, Shen J, Wang J. Climate mediates continental scale patterns of stream microbial functional diversity. MICROBIOME 2020; 8:92. [PMID: 32534595 PMCID: PMC7293791 DOI: 10.1186/s40168-020-00873-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Understanding the large-scale patterns of microbial functional diversity is essential for anticipating climate change impacts on ecosystems worldwide. However, studies of functional biogeography remain scarce for microorganisms, especially in freshwater ecosystems. Here we study 15,289 functional genes of stream biofilm microbes along three elevational gradients in Norway, Spain and China. RESULTS We find that alpha diversity declines towards high elevations and assemblage composition shows increasing turnover with greater elevational distances. These elevational patterns are highly consistent across mountains, kingdoms and functional categories and exhibit the strongest trends in China due to its largest environmental gradients. Across mountains, functional gene assemblages differ in alpha diversity and composition between the mountains in Europe and Asia. Climate, such as mean temperature of the warmest quarter or mean precipitation of the coldest quarter, is the best predictor of alpha diversity and assemblage composition at both mountain and continental scales, with local non-climatic predictors gaining more importance at mountain scale. Under future climate, we project substantial variations in alpha diversity and assemblage composition across the Eurasian river network, primarily occurring in northern and central regions, respectively. CONCLUSIONS We conclude that climate controls microbial functional gene diversity in streams at large spatial scales; therefore, the underlying ecosystem processes are highly sensitive to climate variations, especially at high latitudes. This biogeographical framework for microbial functional diversity serves as a baseline to anticipate ecosystem responses and biogeochemical feedback to ongoing climate change. Video Abstract.
Collapse
Affiliation(s)
- Félix Picazo
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008 China
| | - Annika Vilmi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008 China
| | - Juha Aalto
- Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, 00014 Helsinki, Finland
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, 00014 Helsinki, Finland
| | - Emilio O. Casamayor
- Integrative Freshwater Ecology Group, Centre of Advanced Studies of Blanes-Spanish Council for Research CEAB-CSIC, E-17300 Blanes, Spain
| | - Yongqin Liu
- University of Chinese Academy of Sciences, Beijing, 1000049 China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qinglong Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008 China
| | - Lijuan Ren
- Department of Ecology, Jinan University, Guangzhou, 510632 China
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK 73019 USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084 China
- Earth Science Division, Lawrence Berkeley National Laboratory, California, 94270 USA
| | - Ji Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008 China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008 China
- University of Chinese Academy of Sciences, Beijing, 1000049 China
| |
Collapse
|
25
|
Tolotti M, Cerasino L, Donati C, Pindo M, Rogora M, Seppi R, Albanese D. Alpine headwaters emerging from glaciers and rock glaciers host different bacterial communities: Ecological implications for the future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137101. [PMID: 32065887 DOI: 10.1016/j.scitotenv.2020.137101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Mountain glacier shrinkage represents a major effect of the current global warming and 80-100% of the Alpine glaciers are predicted to vanish within the next few decades. As the thawing rate of mountain permafrost ice is much lower than for glacier ice, a shift from glacial to periglacial dynamics is predicted for Alpine landscapes during the 21st century. Despite the growing literature on the impacts of deglaciation on Alpine hydrology and ecosystems, chemical and biological features of waters emerging from Alpine rock glaciers (i.e. permafrost landforms composed by a mixture of ice and debris) have been poorly investigated so far, and knowledge on microbial biodiversity of headwaters is still sparse. A set of glacier-, rock glacier- and groundwater/precipitation-fed streams was investigated in the Italian Central Alps in late summer 2016, aiming at exploring bacterial community composition and diversity in epilithic and surface sediment biofilm and at verifying the hypothesis that rock glacier-fed headwaters represent peculiar ecosystems from both a chemical and biological point of view. Rock glacier-fed waters showed high values of electrical conductivity and trace elements related to their bedrock lithology, and their highly diverse bacterial assemblages significantly differed from those detected in glacier-fed streams. Bacterial taxonomic composition appeared to be mainly related to water and substrate type, as well as to water chemistry, the latter including concentrations of nutrients and trace metals. The results of this study confirm the chemical and biological peculiarity of rock glacier-fed waters compared to glacial waters, and suggest a potential driving role of thawing permafrost in modulating future ecological traits of Alpine headwaters within the context of progressing deglaciation.
Collapse
Affiliation(s)
- Monica Tolotti
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, Italy.
| | - Leonardo Cerasino
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, Italy
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, Italy
| | - Michela Rogora
- CNR Water Research Institute (IRSA-CNR), Largo Tonolli 50, Verbania-Pallanza, Italy
| | - Roberto Seppi
- Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, Pavia, Italy
| | - Davide Albanese
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, S. Michele all'Adige, Italy
| |
Collapse
|
26
|
Ren Z, Martyniuk N, Oleksy IA, Swain A, Hotaling S. Ecological Stoichiometry of the Mountain Cryosphere. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00360] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|