1
|
Vélez-Mora DP, Trigueros-Alatorre K, Duncan DH, Quintana-Ascencio PF. Natural and anthropogenic factors influence flowering synchrony and reproduction of a dominant plant in an inter-Andean scrub. AMERICAN JOURNAL OF BOTANY 2024; 111:e16416. [PMID: 39400358 DOI: 10.1002/ajb2.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 10/15/2024]
Abstract
PREMISE Agriculture expansion, livestock, and global change have transformed biological communities and altered, through aerosols and direct deposition, N:P balance in soils of inter-Andean valleys, potentially affecting flowering phenology of many species and thereby flowering synchrony and plant reproduction. METHODS We evaluated the influence of variation in temperature and moisture along the local elevational gradient and treatments with the addition of N and P and grazing on flowering synchrony and reproduction of Croton, a dominant shrub of the inter-Andean dry scrub. Along the elevational gradient (300 m difference between the lowest and highest site), we set up plots with and without grazing nested with four nutrient treatments: control and addition of N or P alone or combined N + P. We recorded the number of female and male flowers in bloom monthly from September 2017 to August 2019 to calculate flowering synchrony. We assessed fruiting, seed mass, and pre-dispersal seed predation. RESULTS Higher growing-season soil temperatures, which were negatively associated with local elevation and higher nitrogen availability promoted flowering synchrony of Croton, particularly among larger plants. Greater flowering synchrony, high soil temperatures, and addition of N + P resulted in production of more fruits of Croton, but also intensified pre-dispersal seed predation. CONCLUSIONS Temperature, availability of moisture throughout the elevational gradient, and nutrient manipulation affected flowering synchrony, which subsequently affected production of fruits in Croton. These results emphasize the critical role of current anthropogenic changes in climate and nutrient availability on flowering synchrony and reproduction of Croton, a dominant plant of the inter-Andean scrub.
Collapse
Affiliation(s)
- Diego P Vélez-Mora
- Laboratorio de Ecología Tropical y Servicios Ecosistémicos, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Karla Trigueros-Alatorre
- Facultad de Ciencias Políticas y Sociales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - David H Duncan
- Quantitative and Applied Ecology Group, School of Agriculture, Food and Ecosystem and Forest Sciences, The University of Melbourne, Victoria, Australia
| | | |
Collapse
|
2
|
Koelemeijer IA, Severholt I, Ehrlén J, De Frenne P, Jönsson M, Hylander K. Canopy cover and soil moisture influence forest understory plant responses to experimental summer drought. GLOBAL CHANGE BIOLOGY 2024; 30:e17424. [PMID: 39044435 DOI: 10.1111/gcb.17424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/28/2024] [Accepted: 06/09/2024] [Indexed: 07/25/2024]
Abstract
Extreme droughts are globally increasing in frequency and severity. Most research on drought in forests focuses on the response of trees, while less is known about the impacts of drought on forest understory species and how these effects are moderated by the local environment. We assessed the impacts of a 45-day experimental summer drought on the performance of six boreal forest understory plants, using a transplant experiment with rainout shelters replicated across 25 sites. We recorded growth, vitality and reproduction immediately, 2 months, and 1 year after the simulated drought, and examined how differences in ambient soil moisture and canopy cover among sites influenced the effects of drought on the performance of each species. Drought negatively affected the growth and/or vitality of all species, but the effects were stronger and more persistent in the bryophytes than in the vascular plants. The two species associated with older forests, the moss Hylocomiastrum umbratum and the orchid Goodyera repens, suffered larger effects than the more generalist species included in the experiment. The drought reduced reproductive output in the moss Hylocomium splendens in the next growing season, but increased reproduction in the graminoid Luzula pilosa. Higher ambient soil moisture reduced some negative effects of drought on vascular plants. Both denser canopy cover and higher soil moisture alleviated drought effects on bryophytes, likely through alleviating cellular damage. Our experiment shows that boreal understory species can be adversely affected by drought and that effects might be stronger for bryophytes and species associated with older forests. Our results indicate that the effects of drought can vary over small spatial scales and that forest landscapes can be actively managed to alleviate drought effects on boreal forest biodiversity. For example, by managing the tree canopy and protecting hydrological networks.
Collapse
Affiliation(s)
- Irena A Koelemeijer
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Isabelle Severholt
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Pieter De Frenne
- Forest & Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - Mari Jönsson
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kristoffer Hylander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Grames EM, Forister ML. Sparse modeling for climate variable selection across trophic levels. Ecology 2024; 105:e4231. [PMID: 38290162 DOI: 10.1002/ecy.4231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/26/2023] [Accepted: 10/30/2023] [Indexed: 02/01/2024]
Abstract
Understanding how populations respond to climate is fundamentally important to many questions in ecology, evolution, and conservation biology. Climate is complex and multifaceted, with aspects affecting populations in different and sometimes unexpected ways. Thus, when measuring the changing climate it is important to consider the complexity of the phenomenon and the number of ways it can be characterized through different metrics. We used a Bayesian sparse modeling approach to select among 80 metrics of climate and applied the approach to 19 datasets of bird, insect, and plant population responses to abiotic conditions as case studies of how the method can be applied for climate variable selection in a time series context. For phenological datasets, mean spring temperature was frequently selected as an important climate driver, while selected predictors were more diverse for population metrics such as abundance or reproductive success. The climate variable selection approach presented here can help to identify potential climate metrics when there is limited physiological or mechanistic information to make an a priori variable selection, and is broadly applicable across studies on population responses to climate.
Collapse
Affiliation(s)
- Eliza M Grames
- Biology Department, University of Nevada, Reno, Reno, Nevada, USA
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
| | | |
Collapse
|
4
|
Cant J, Capdevila P, Beger M, Salguero-Gómez R. Recent exposure to environmental stochasticity does not determine the demographic resilience of natural populations. Ecol Lett 2023. [PMID: 37158011 DOI: 10.1111/ele.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
Escalating climatic and anthropogenic pressures expose ecosystems worldwide to increasingly stochastic environments. Yet, our ability to forecast the responses of natural populations to this increased environmental stochasticity is impeded by a limited understanding of how exposure to stochastic environments shapes demographic resilience. Here, we test the association between local environmental stochasticity and the resilience attributes (e.g. resistance, recovery) of 2242 natural populations across 369 animal and plant species. Contrary to the assumption that past exposure to frequent environmental shifts confers a greater ability to cope with current and future global change, we illustrate how recent environmental stochasticity regimes from the past 50 years do not predict the inherent resistance or recovery potential of natural populations. Instead, demographic resilience is strongly predicted by the phylogenetic relatedness among species, with survival and developmental investments shaping their responses to environmental stochasticity. Accordingly, our findings suggest that demographic resilience is a consequence of evolutionary processes and/or deep-time environmental regimes, rather than recent-past experiences.
Collapse
Affiliation(s)
- James Cant
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Pol Capdevila
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Roberto Salguero-Gómez
- Department of Zoology, University of Oxford, Oxford, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
- Max Planck Institute for Demographic Research, Rostock, Germany
| |
Collapse
|
5
|
The importance of spatial and temporal structure in determining the interplay between plasticity and evolution. Trends Ecol Evol 2023; 38:221-223. [PMID: 36610919 DOI: 10.1016/j.tree.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
|
6
|
Prather RM, Dalton RM, barr B, Blumstein DT, Boggs CL, Brody AK, Inouye DW, Irwin RE, Martin JGA, Smith RJ, Van Vuren DH, Wells CP, Whiteman HH, Inouye BD, Underwood N. Current and lagged climate affects phenology across diverse taxonomic groups. Proc Biol Sci 2023; 290:20222181. [PMID: 36629105 PMCID: PMC9832555 DOI: 10.1098/rspb.2022.2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/01/2022] [Indexed: 01/12/2023] Open
Abstract
The timing of life events (phenology) can be influenced by climate. Studies from around the world tell us that climate cues and species' responses can vary greatly. If variation in climate effects on phenology is strong within a single ecosystem, climate change could lead to ecological disruption, but detailed data from diverse taxa within a single ecosystem are rare. We collated first sighting and median activity within a high-elevation environment for plants, insects, birds, mammals and an amphibian across 45 years (1975-2020). We related 10 812 phenological events to climate data to determine the relative importance of climate effects on species' phenologies. We demonstrate significant variation in climate-phenology linkage across taxa in a single ecosystem. Both current and prior climate predicted changes in phenology. Taxa responded to some cues similarly, such as snowmelt date and spring temperatures; other cues affected phenology differently. For example, prior summer precipitation had no effect on most plants, delayed first activity of some insects, but advanced activity of the amphibian, some mammals, and birds. Comparing phenological responses of taxa at a single location, we find that important cues often differ among taxa, suggesting that changes to climate may disrupt synchrony of timing among taxa.
Collapse
Affiliation(s)
- Rebecca M. Prather
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Rebecca M. Dalton
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - billy barr
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Daniel T. Blumstein
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Carol L. Boggs
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alison K. Brody
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - David W. Inouye
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Rebecca E. Irwin
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Julien G. A. Martin
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 9A7
| | - Rosemary J. Smith
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| | - Dirk H. Van Vuren
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, CA, USA
| | - Caitlin P. Wells
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Howard H. Whiteman
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biological Sciences, Murray State University, Murray, KY 42071, USA
| | - Brian D. Inouye
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Nora Underwood
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
7
|
Larios L, Hallett LM. Incorporating temporal dynamics to enhance grazing management outcomes for a long‐lived species. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Loralee Larios
- Department of Botany and Plant Sciences University of California Riverside CA USA
| | - Lauren M. Hallett
- Department of Biology and Environmental Studies Program University of Oregon Eugene OR USA
| |
Collapse
|
8
|
Ottaviani G, Méndez‐Castro FE, Conti L, Zelený D, Chytrý M, Doležal J, Jandová V, Altman J, Klimešová J. Sticking around: Plant persistence strategies on edaphic islands. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Gianluigi Ottaviani
- Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
- Department of Botany and Zoology Faculty of Science, Masaryk University Brno Czech Republic
| | | | - Luisa Conti
- Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
- Faculty of Environmental Sciences Czech University of Life Sciences Prague Czech Republic
| | - David Zelený
- Institute of Ecology and Evolutionary Biology National Taiwan University Taipei Taiwan
| | - Milan Chytrý
- Department of Botany and Zoology Faculty of Science, Masaryk University Brno Czech Republic
| | - Jiři Doležal
- Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Veronika Jandová
- Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Jan Altman
- Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
- Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
| | - Jitka Klimešová
- Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
- Department of Botany Charles University Prague Faculty of Science, Charles University Prague Czech Republic
| |
Collapse
|
9
|
Scott ER, Uriarte M, Bruna EM. Delayed effects of climate on vital rates lead to demographic divergence in Amazonian forest fragments. GLOBAL CHANGE BIOLOGY 2022; 28:463-479. [PMID: 34697872 DOI: 10.1111/gcb.15900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Deforestation often results in landscapes where remaining forest habitat is highly fragmented, with remnants of different sizes embedded in an often highly contrasting matrix. Local extinction of species from individual fragments is common, but the demographic mechanisms underlying these extinctions are poorly understood. It is often hypothesized that altered environmental conditions in fragments drive declines in reproduction, recruitment, or survivorship. The Amazon basin, in addition to experiencing continuing fragmentation, is experiencing climate change-related increases in the frequency and intensity of droughts and unusually wet periods. Whether plant populations in tropical forest fragments are particularly susceptible to extremes in precipitation remains unclear. Most studies of plants in fragments are relatively short (1-6 years), focus on a single life-history stage, and often do not compare to populations in continuous forest. Even fewer studies consider delayed effects of climate on demographic vital rates despite the importance of delayed effects in studies that consider them. Using a decade of demographic and climate data from an experimentally fragmented landscape in the Central Amazon, we assess the effects of climate on populations of an understory herb (Heliconia acuminata, Heliconiaceae). We used distributed lag nonlinear models to understand the delayed effects of climate (measured as standardized precipitation evapotranspiration index, SPEI) on survival, growth, and flowering. We detected delayed effects of climate up to 36 months. Extremes in SPEI in the previous year reduced survival, drought in the wet season 8-11 months prior to the February census increased growth, and drought two dry seasons prior increased flowering probability. Effects of extremes in precipitation on survival and growth were more pronounced in forest fragments compared to continuous forest. The complex delayed effects of climate and habitat fragmentation in our study point to the importance of long-term demography experiments in understanding the effects of anthropogenic change on plant populations.
Collapse
Affiliation(s)
- Eric R Scott
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - María Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Emilio M Bruna
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
- Center for Latin American Studies, University of Florida, Gainesville, Florida, USA
- Biological Dynamics of Forest Fragments Project, INPA-PDBFF, Manaus, Amazonas, Brazil
| |
Collapse
|
10
|
Liu H, Chen Y, Zhang L, Baskin JM, Baskin CC, Zhang L, Liu Y, Zhang D, Zhang Y. Is the Life History Flexibility of Cold Desert Annuals Broad Enough to Cope with Predicted Climate Change? The Case of Erodium oxyrhinchum in Central Asia. BIOLOGY 2021; 10:biology10080780. [PMID: 34440013 PMCID: PMC8389623 DOI: 10.3390/biology10080780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Interannual seasonal variability in precipitation may strongly affect the life history and growth of desert annual plants. We compared the effects of dry and wet springs and dry and wet autumns on growth and F2 seed dormancy of plants from spring (SG)- and autumn (AG)-germinated seeds of the cold desert annual Erodium oxyrhinchum. Vegetative and reproductive growth and F2 seed dormancy and germination were monitored from September 2016 to November 2020 in the sandy Gurbantunggut Desert in NW China in Central Asia. Dry autumns decreased the density of AG plants, and dry springs decreased the density of SG plants and growth of SG and AG plants. In dry springs, SG plants were more sensitive to precipitation than AG plants, while in wet springs SG and AG plants had similar responses to precipitation. During growth in both dry and wet springs, most morphological characters of SG and AG plants initially increased rapidly in size/number and then plateaued or decreased, except for SG plants in dry springs. In dry springs, most morphological characters of AG plants were larger or more numerous than those of SG plants, and they were larger/more numerous for SG plants in wet than in dry springs. The percentage biomass allocated to reproduction in SG plants was slightly higher in a wet than in a dry spring. A much higher proportion of dormant seeds was produced by AG plants in a wet spring than in a dry spring. Projected changes in precipitation due to climate change in NW China are not likely to have much of an effect on the biology of this common desert annual plant.
Collapse
Affiliation(s)
- Huiliang Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urümqi 830011, China; (H.L.); (Y.C.); (D.Z.)
- Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Xinyuan 835800, China
| | - Yanfeng Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urümqi 830011, China; (H.L.); (Y.C.); (D.Z.)
- School of Geography and Tourism, Qufu Normal University, Rizhao 276800, China;
| | - Lingwei Zhang
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Life Sciences, Xinjiang Agricultural University, Urümqi 830052, China; (L.Z.); (L.Z.)
| | - Jerry M. Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (J.M.B.); (C.C.B.)
| | - Carol C. Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; (J.M.B.); (C.C.B.)
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Lan Zhang
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Life Sciences, Xinjiang Agricultural University, Urümqi 830052, China; (L.Z.); (L.Z.)
| | - Yan Liu
- School of Geography and Tourism, Qufu Normal University, Rizhao 276800, China;
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urümqi 830011, China; (H.L.); (Y.C.); (D.Z.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
| | - Yuanming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urümqi 830011, China; (H.L.); (Y.C.); (D.Z.)
- Correspondence:
| |
Collapse
|
11
|
Compagnoni A, Pardini E, Knight TM. Increasing temperature threatens an already endangered coastal dune plant. Ecosphere 2021. [DOI: 10.1002/ecs2.3454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Aldo Compagnoni
- Institute of Biology Martin Luther University Halle‐Wittenberg Am Kirchtor 1 06108Halle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e 04103LeipzigGermany
| | - Eleanor Pardini
- Environmental Studies Program Washington University in St. Louis 1 Brookings DriveBox 1165 St. Louis Missouri63130USA
| | - Tiffany M. Knight
- Institute of Biology Martin Luther University Halle‐Wittenberg Am Kirchtor 1 06108Halle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Deutscher Platz 5e 04103LeipzigGermany
- Department of Community Ecology Helmholtz Centre for Environmental Research – UFZ Theodor‐Lieser‐Straße 4 06120Halle (Saale)Germany
| |
Collapse
|