1
|
Kang M, Liu Y, Weng Y, Wang H, Huang Y, Bai X. Trade-off strategies for driving the toxicity and metabolic remodeling of copper oxide nanoparticles and copper ions in Ipomoea aquatica. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136342. [PMID: 39488971 DOI: 10.1016/j.jhazmat.2024.136342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
The ecological safety of copper oxide nanoparticles (CuO NPs) in the environment determines the advancement of nano-agriculture owing to breakthroughs in nanotechnology; however, the release of Cu2+ is an uncontrollable factor. Currently, the trade-off mechanisms of CuO NPs and Cu2+ dominating the potential hazards of plant-nano systems remain unclear. This study proposed the trade-off strategy for reconstructing physiological responses and metabolic profiles and deciphered the differential regulation of dominant CuO NPs and Cu2+ in plants. The results showed that 100 and 500 mg/kg CuO NPs promoted root fresh weight but reduced shoot fresh weight, while 1000 mg/kg Cu2+ demonstrated the strongest inhibition on both roots and shoots. The net photosynthetic perturbation in photosynthetic disorders is accompanied by superoxide anion and hydrogen peroxide accumulation, which are severe under 1000 mg/kg CuO NPs and Cu2+ stress. Metabolomics revealed that CuO NPs significantly altered coumaric acid and derivatives, for example, down-regulating coumaroyl hexoside (isomers of 690 and 691) by 40.79 %. Additionally, Cu2+ treatment severely interfered with the dominant metabolic response, activating plant hormone signal transduction and α-linolenic acid metabolism. The trade-off strategies of galactose metabolism, amino sugar and nucleotide sugar metabolism, pantothenate and coenzyme A (CoA) biosynthesis, and β-alanine metabolism as differential metabolism were confirmed by comparing the CuO NPs and Cu2+ exposure. Protein secondary structure analysis revealed specific regulation of protein conformation upon exposure to CuO NPs and Cu2+. These findings provide new insights into differential metabolism and environmental effects in plant-nano systems.
Collapse
Affiliation(s)
- Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuzhu Weng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haoke Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yue Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China.
| |
Collapse
|
2
|
Ye Q, Lv W, Lu Y, Wei Z, Guo Y, Wang P, Sun B, Tong Y, Xuan S, Lin W, Guo L. Interactions between root endophytic microorganisms and the reduced negative ion release capacity of Phalaenopsis aphrodite Rchb. f. under high temperature stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1437769. [PMID: 39220005 PMCID: PMC11361983 DOI: 10.3389/fpls.2024.1437769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Introduction Negative oxygen ions are produced by plants through photosynthesis, utilizing "tip discharge" or the photoelectric effect, which has various functions such as sterilization, dust removal, and delaying aging. With global warming, high temperatures may affect the ability of Phalaenopsis aphrodite Rchb. f. to produce negative oxygen ions. P. aphrodite is commonly used in modern landscape planning and forest greening. Methods In this study, P. aphrodite was selected as the research object. By artificially simulating the climate, the control group (CK) and the high temperature stress group (HS) were set up in the experiment. Results The study found that compared with the control group, the ability of P. aphrodite to produce negative oxygen ions significantly decreased when exposed to high temperature stress. Meanwhile, under high temperature stress treatment, peroxidase content increased by 102%, and proline content significantly increased by 35%. Discussion Redundancy analysis results indicated a significant correlation between the root endophytic microbial community of P. aphrodite and negative oxygen ions, as well as physiological indicators. Under high temperature stress, P. aphrodite may affect the regulation of physiological indicators by modifying the composition of root endophytic microbial communities, thereby influencing the ability to release negative oxygen ions.
Collapse
Affiliation(s)
- Qi Ye
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenzhuo Lv
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yin Lu
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zili Wei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunxin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peijie Wang
- Fujian Agriculture and Forestry University (FAFU)-Dal Joint College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bingru Sun
- College of Economics and Management, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yumei Tong
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shenke Xuan
- School of Foreign Languages, Guangzhou College of Technology and Business, Guangzhou, China
| | - Wei Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijin Guo
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Xu E, Zhou L, Ding J, Zhao N, Zeng L, Zhang G, Chi Y. Physiological dynamics dominate the relationship between solar-induced chlorophyll fluorescence and gross primary productivity along the nitrogen gradient in cropland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172725. [PMID: 38663610 DOI: 10.1016/j.scitotenv.2024.172725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Solar-induced chlorophyll fluorescence (SIF) has been found to be robustly correlated with gross primary productivity (GPP) based on satellite datasets. However, it is unclear whether nitrogen affects the relationship between SIF and GPP at the canopy scale. Here, seasonal dynamics of SIF, GPP, vegetation physiology and canopy structure were measured synchronously throughout growing season along the nitrogen gradient in a rice paddy of China's subtropical region. Our results found that the slope of SIF against GPP was not constant, showing an increasing trend from low to high nitrogen levels. The sensitivity of SIF to nitrogen was larger than that of GPP. Nitrogen enrichment versus deficiency had asymmetrical effects on the SIF-GPP relationship. The steeper slope of SIF against GPP under high nitrogen level was mainly attributed to the promotion of canopy fluorescence efficiency (ΦF) rather than the variation of canopy fluorescence escape probability (Fesc). These results emphasize the vital role of nitrogen in exploring mechanisms underlying SIF dynamics and decoding GPP from SIF.
Collapse
Affiliation(s)
- Enxiang Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jianxi Ding
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ning Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Linhui Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Guoping Zhang
- Jinhua Shangshan Cultural Heritage Management Center, Jinhua 322200, China
| | - Yonggang Chi
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
4
|
Wu G, Guan K, Kimm H, Miao G, Yang X, Jiang C. Ground far-red sun-induced chlorophyll fluorescence and vegetation indices in the US Midwestern agroecosystems. Sci Data 2024; 11:228. [PMID: 38388559 PMCID: PMC10883924 DOI: 10.1038/s41597-024-03004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Sun-induced chlorophyll fluorescence (SIF) provides an opportunity to study terrestrial ecosystem photosynthesis dynamics. However, the current coarse spatiotemporal satellite SIF products are challenging for mechanistic interpretations of SIF signals. Long-term ground SIF and vegetation indices (VIs) are important for satellite SIF validation and mechanistic understanding of the relationship between SIF and photosynthesis when combined with leaf- and canopy-level auxiliary measurements. In this study, we present and analyze a total of 15 site-years of ground far-red SIF (SIF at 760 nm, SIF760) and VIs datasets from soybean, corn, and miscanthus grown in the U.S. Corn Belt from 2016 to 2021. We introduce a comprehensive data processing protocol, including different retrieval methods, calibration coefficient adjustment, and nadir SIF footprint upscaling to match the eddy covariance footprint. This long-term ground far-red SIF and VIs dataset provides important and first-hand data for far-red SIF interpretation and understanding the mechanistic relationship between far-red SIF and canopy photosynthesis across various crop species and environmental conditions.
Collapse
Affiliation(s)
- Genghong Wu
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, IL, 61801, USA
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, IL, 61801, USA.
- National Center of Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Hyungsuk Kimm
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Guofang Miao
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xi Yang
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22903, USA
| | - Chongya Jiang
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, IL, 61801, USA
| |
Collapse
|
5
|
Nagy Z, Balogh J, Petrás D, Fóti S, MacArthur A, Pintér K. Detecting drought stress occurrence using synergies between Sun induced fluorescence and vegetation surface temperature spatial records. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168053. [PMID: 37898200 DOI: 10.1016/j.scitotenv.2023.168053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Drought stress occurrence and recovery from drought can be detected using a single spatial set of simultaneous observations of SIF and canopy temperature records. Temporal and spatial responses to drought and heat stresses by plant stands of a drought-adapted diverse grassland ecosystem were studied using sun induced fluorescence (SIF,O2A and O2B bands) and further ecophysiological (canopy temperature (Tsurf), spatially modeled evapotranspiration, vegetation reflectance spectra) variables collected along spatial sampling grids while also utilizing eddy covariance measured carbon dioxide (net ecosystem exchange: NEE, gross primary production: GPP) and water flux (evapotranspiration: ET) data. The grids were of 0.5 and 5 ha spatial extents and contained 78 sampling points. Data were collected in four spatial sampling campaigns, two under drought (early summer) and another two during and after recovery (midsummer) at both spatial resolutions. Small values of spatial SIF_A averages (around 0.5 mW m-2 nm-1 sr-1) under strong early summer drought increased (to around 2 mW m-2 nm-1 sr-1) due recovery upon rain arrivals, showing high (R2: 0.8-0.88) positive temporal correlations to eddy covariance measured carbon (GPP, NEE) and water (ET) fluxes. Spatial averages of LAI, vegetation indices (NDVI, NIRv) and modeled ET followed similar temporal patterns. While SIF was depressed by drought, it showed higher values in high canopy temperature vegetation patches than in vegetation patches with lower Tsurf. The spatial pattern of higher SIF in higher Tsurf patches was persistent (2 weeks) under drought. The positive SIF_A-Tsurf spatial correlation turned into negative/not significant after recovery of the grassland from the drought, while hot summer weather persisted. It is proposed that, by using a single set of simultaneously measured spatial SIF and Tsurf data it is possible to infer whether the studied vegetation is under drought (and heat) stress while it could not be decided on the base of SIF data alone. Evaluation of the slope of the above relationship seems therefore beneficial before e.g. starting the (stress) classification procedure based on SIF.
Collapse
Affiliation(s)
- Zoltán Nagy
- Department of Plant Physiology and Plant Ecology, Agronomy Institute, Hungarian University for Life and Agriculture, 2100 Gödöllő, Páter 1., Hungary; HUN-REN-MATE Agroecology Research Group, 2100 Gödöllő, Páter 1., Hungary.
| | - János Balogh
- Department of Plant Physiology and Plant Ecology, Agronomy Institute, Hungarian University for Life and Agriculture, 2100 Gödöllő, Páter 1., Hungary
| | - Dóra Petrás
- Department of Plant Physiology and Plant Ecology, Agronomy Institute, Hungarian University for Life and Agriculture, 2100 Gödöllő, Páter 1., Hungary
| | - Szilvia Fóti
- Department of Plant Physiology and Plant Ecology, Agronomy Institute, Hungarian University for Life and Agriculture, 2100 Gödöllő, Páter 1., Hungary; HUN-REN-MATE Agroecology Research Group, 2100 Gödöllő, Páter 1., Hungary
| | | | - Krisztina Pintér
- HUN-REN-MATE Agroecology Research Group, 2100 Gödöllő, Páter 1., Hungary
| |
Collapse
|
6
|
Ajigboye OO, Ray RV, Murchie EH. Chlorophyll Fluorescence on the Fast Timescale. Methods Mol Biol 2024; 2790:257-267. [PMID: 38649575 DOI: 10.1007/978-1-0716-3790-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Chlorophyll fluorescence is a rapid and noninvasive tool used for probing the activity of photosynthesis that can be used in vivo and in the field. It is highly relevant to the demands of high-throughput crop phenotyping and can be automated or manually applied. In this chapter, we describe protocols and advice for making fast timescale fluorescence measurements using handheld equipment in the laboratory or in the field in the context of phenotyping. While interpretation of some measured parameters requires caution for the purpose of identifying underlying mechanisms, we demonstrate this technique is appropriate for some applications where convenience, rapidity, and sensitivity are required.
Collapse
Affiliation(s)
- Olubukola O Ajigboye
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Loughborough, Leicestershire, UK
| | - Rumiana V Ray
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Loughborough, Leicestershire, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Loughborough, Leicestershire, UK.
| |
Collapse
|
7
|
Wu G, Guan K, Ainsworth EA, Martin DG, Kimm H, Yang X. Solar-induced chlorophyll fluorescence captures the effects of elevated ozone on canopy structure and acceleration of senescence in soybean. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:350-363. [PMID: 37702411 DOI: 10.1093/jxb/erad356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Solar-induced chlorophyll fluorescence (SIF) provides an opportunity to rapidly and non-destructively investigate how plants respond to stress. Here, we explored the potential of SIF to detect the effects of elevated O3 on soybean in the field where soybean was subjected to ambient and elevated O3 throughout the growing season in 2021. Exposure to elevated O3 resulted in a significant decrease in canopy SIF at 760 nm (SIF760), with a larger decrease in the late growing season (36%) compared with the middle growing season (13%). Elevated O3 significantly decreased the fraction of absorbed photosynthetically active radiation by 8-15% in the middle growing season and by 35% in the late growing stage. SIF760 escape ratio (fesc) was significantly increased under elevated O3 by 5-12% in the late growth stage due to a decrease of leaf chlorophyll content and leaf area index. Fluorescence yield of the canopy was reduced by 5-11% in the late growing season depending on the fesc estimation method, during which leaf maximum carboxylation rate and maximum electron transport were significantly reduced by 29% and 20% under elevated O3. These results demonstrated that SIF could capture the elevated O3 effect on canopy structure and acceleration of senescence in soybean and provide empirical support for using SIF for soybean stress detection and phenotyping.
Collapse
Affiliation(s)
- Genghong Wu
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- National Center for Supercomputing Applications, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Elizabeth A Ainsworth
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- USDA-ARS, Global Change and Photosynthesis Research Unit, Urbana, IL 61801, USA
| | - Duncan G Martin
- Department of Plant Biology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
| | - Hyungsuk Kimm
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Xi Yang
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
8
|
Mathur S, Seo B, Jajoo A, Reddy KR, Reddy VR. Chlorophyll fluorescence is a potential indicator to measure photochemical efficiency in early to late soybean maturity groups under changing day lengths and temperatures. FRONTIERS IN PLANT SCIENCE 2023; 14:1228464. [PMID: 37936935 PMCID: PMC10627226 DOI: 10.3389/fpls.2023.1228464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023]
Abstract
In this study, we employed chlorophyll a fluorescence technique, to indicate plant health and status in response to changing day lengths (photoperiods) and temperatures in soybean early and late maturity groups. Chlorophyll a fluorescence study indicates changes in light reactions in photosystem II. Experiments were performed for 3-day lengths (12.5, 13.5, and 14.5 h) and five temperatures (22/14°C, 26/18°C, 30/22°C, 34/26°C, and 40/32°C), respectively. The I-P phase declined for changing day lengths. Active reaction centers decreased at long day length for maturity group III. We observed that low temperatures impacted the acceptor side of photosystem II and partially impacted electron transport toward the photosystem I end electron acceptor. Results emphasized that higher temperatures (40/32°C) triggered damage at the oxygen-evolving complex and decreased electron transport and photosynthesis. We studied specific leaf areas and aboveground mass. Aboveground parameters were consistent with the fluorescence study. Chlorophyll a fluorescence can be used as a potential technique for high-throughput phenotyping methods. The traits selected in the study proved to be possible indicators to provide information on the health status of various maturity groups under changing temperatures and day lengths. These traits can also be deciding criteria for breeding programs to develop inbreed soybean lines for stress tolerance and sensitivity based on latitudinal variations.
Collapse
Affiliation(s)
- Sonal Mathur
- Adaptive Cropping Systems Laboratory, USDA-Agricultural Research Service (USDA-ARS), Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Beomseok Seo
- Adaptive Cropping Systems Laboratory, USDA-Agricultural Research Service (USDA-ARS), Beltsville Agricultural Research Center, Beltsville, MD, United States
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| | - Anjana Jajoo
- School of Biotechnology, Devi Ahilya University, Indore, India
| | - Kambham Raja Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, United States
| | - Vangimalla R. Reddy
- Adaptive Cropping Systems Laboratory, USDA-Agricultural Research Service (USDA-ARS), Beltsville Agricultural Research Center, Beltsville, MD, United States
| |
Collapse
|
9
|
Brissette LEG, Wong CYS, McHugh DP, Au J, Orcutt EL, Klein MC, Magney TS. Tracking canopy chlorophyll fluorescence with a low-cost light emitting diode platform. AOB PLANTS 2023; 15:plad069. [PMID: 37937046 PMCID: PMC10626922 DOI: 10.1093/aobpla/plad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023]
Abstract
Chlorophyll fluorescence measured at the leaf scale through pulse amplitude modulation (PAM) has provided valuable insight into photosynthesis. At the canopy- and satellite-scale, solar-induced fluorescence (SIF) provides a method to estimate the photosynthetic activity of plants across spatiotemporal scales. However, retrieving SIF signal remotely requires instruments with high spectral resolution, making it difficult and often expensive to measure canopy-level steady-state chlorophyll fluorescence under natural sunlight. Considering this, we built a novel low-cost photodiode system that retrieves far-red chlorophyll fluorescence emission induced by a blue light emitting diode (LED) light source, for 2 h at night, above the canopy. Our objective was to determine if an active remote sensing-based night-time photodiode method could track changes in canopy-scale LED-induced chlorophyll fluorescence (LEDIF) during an imposed drought on a broadleaf evergreen shrub, Polygala myrtifolia. Far-red LEDIF (720-740 nm) was retrieved using low-cost photodiodes (LEDIFphotodiode) and validated against measurements from a hyperspectral spectroradiometer (LEDIFhyperspectral). To link the LEDIF signal with physiological drought response, we tracked stomatal conductance (gsw) using a porometer, two leaf-level vegetation indices-photochemical reflectance index and normalized difference vegetation index-to represent xanthophyll and chlorophyll pigment dynamics, respectively, and a PAM fluorimeter to measure photochemical and non-photochemical dynamics. Our results demonstrate a similar performance between the photodiode and hyperspectral retrievals of LEDIF (R2 = 0.77). Furthermore, LEDIFphotodiode closely tracked drought responses associated with a decrease in photochemical quenching (R2 = 0.69), Fv/Fm (R2 = 0.59) and leaf-level photochemical reflectance index (R2 = 0.59). Therefore, the low-cost LEDIFphotodiode approach has the potential to be a meaningful indicator of photosynthetic activity at spatial scales greater than an individual leaf and over time.
Collapse
Affiliation(s)
- Logan E G Brissette
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Christopher Y S Wong
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Devin P McHugh
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Jessie Au
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Erica L Orcutt
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Geography, California State University, Sacramento, Sacramento, CA 95819, USA
| | - Marie C Klein
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Troy S Magney
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Jia Q, Liu Z, Guo C, Wang Y, Yang J, Yu Q, Wang J, Zheng F, Lu X. Relationship between Photosynthetic CO 2 Assimilation and Chlorophyll Fluorescence for Winter Wheat under Water Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3365. [PMID: 37836105 PMCID: PMC10574178 DOI: 10.3390/plants12193365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Solar-induced chlorophyll fluorescence (SIF) has a high correlation with Gross Primary Production (GPP). However, studies focusing on the impact of drought on the SIF-GPP relationship have had mixed results at various scales, and the mechanisms controlling the dynamics between photosynthesis and fluorescence emission under water stress are not well understood. We developed a leaf-scale measurement system to perform concurrent measurements of active and passive fluorescence, and gas-exchange rates for winter wheat experiencing a one-month progressive drought. Our results confirmed that: (1) shifts in light energy allocation towards decreasing photochemistry (the quantum yields of photochemical quenching in PSII decreased from 0.42 to 0.21 under intermediate light conditions) and increasing fluorescence emissions (the quantum yields of fluorescence increased to 0.062 from 0.024) as drought progressed enhance the degree of nonlinearity of the SIF-GPP relationship, and (2) SIF alone has a limited capacity to track changes in the photosynthetic status of plants under drought conditions. However, by incorporating the water stress factor into a SIF-based mechanistic photosynthesis model, we show that drought-induced variations in a variety of key photosynthetic parameters, including stomatal conductance and photosynthetic CO2 assimilation, can be accurately estimated using measurements of SIF, photosynthetically active radiation, air temperature, and soil moisture as inputs. Our findings provide the experimental and theoretical foundations necessary for employing SIF mechanistically to estimate plant photosynthetic activity during periods of drought stress.
Collapse
Affiliation(s)
- Qianlan Jia
- College of Natural Resources and Environment, Northwest A&F University, Xianyang 712100, China; (Q.J.); (C.G.); (Y.W.)
| | - Zhunqiao Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China; (Z.L.); (Q.Y.); (J.W.); (F.Z.)
| | - Chenhui Guo
- College of Natural Resources and Environment, Northwest A&F University, Xianyang 712100, China; (Q.J.); (C.G.); (Y.W.)
| | - Yakai Wang
- College of Natural Resources and Environment, Northwest A&F University, Xianyang 712100, China; (Q.J.); (C.G.); (Y.W.)
| | - Jingjing Yang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Xianyang 712100, China;
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Xianyang 712100, China
| | - Qiang Yu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China; (Z.L.); (Q.Y.); (J.W.); (F.Z.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China; (Z.L.); (Q.Y.); (J.W.); (F.Z.)
| | - Fenli Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China; (Z.L.); (Q.Y.); (J.W.); (F.Z.)
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Xianyang 712100, China
| | - Xiaoliang Lu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China; (Z.L.); (Q.Y.); (J.W.); (F.Z.)
| |
Collapse
|
11
|
Bernacchi CJ, Ruiz-Vera UM, Siebers MH, DeLucia NJ, Ort DR. Short- and long-term warming events on photosynthetic physiology, growth, and yields of field grown crops. Biochem J 2023; 480:999-1014. [PMID: 37418286 PMCID: PMC10422931 DOI: 10.1042/bcj20220433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
Global temperatures are rising from increasing concentrations of greenhouse gases in the atmosphere associated with anthropogenic activities. Global warming includes a warmer shift in mean temperatures as well as increases in the probability of extreme heating events, termed heat waves. Despite the ability of plants to cope with temporal variations in temperature, global warming is increasingly presenting challenges to agroecosystems. The impact of warming on crop species has direct consequences on food security, therefore understanding impacts and opportunities to adapt crops to global warming necessitates experimentation that allows for modification of growth environments to represent global warming scenarios. Published studies addressing crop responses to warming are extensive, however, in-field studies where growth temperature is manipulated to mimic global warming are limited. Here, we provide an overview of in-field heating techniques employed to understand crop responses to warmer growth environments. We then focus on key results associated with season-long warming, as expected with rising global mean temperatures, and with heat waves, as a consequence of increasing temperature variability and rising global mean temperatures. We then discuss the role of rising temperatures on atmospheric water vapor pressure deficit and potential implications for crop photosynthesis and productivity. Finally, we review strategies by which crop photosynthetic processes might be optimized to adapt crops to the increasing temperatures and frequencies of heat waves. Key findings from this review are that higher temperatures consistently reduce photosynthesis and yields of crops even as atmospheric carbon dioxide increases, yet potential strategies to minimize losses from high-temperature exist.
Collapse
Affiliation(s)
- Carl J. Bernacchi
- Global Change and Photosynthesis Research Unit, USDA-ARS, Urbana, IL, U.S.A
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
- Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
| | | | - Matthew H. Siebers
- Global Change and Photosynthesis Research Unit, USDA-ARS, Urbana, IL, U.S.A
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
| | - Nicholas J. DeLucia
- Global Change and Photosynthesis Research Unit, USDA-ARS, Urbana, IL, U.S.A
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
| | - Donald R. Ort
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
- Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
| |
Collapse
|
12
|
Zhang Y, Fang J, Smith WK, Wang X, Gentine P, Scott RL, Migliavacca M, Jeong S, Litvak M, Zhou S. Satellite solar-induced chlorophyll fluorescence tracks physiological drought stress development during 2020 southwest US drought. GLOBAL CHANGE BIOLOGY 2023; 29:3395-3408. [PMID: 36929655 DOI: 10.1111/gcb.16683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 05/16/2023]
Abstract
Monitoring and estimating drought impact on plant physiological processes over large regions remains a major challenge for remote sensing and land surface modeling, with important implications for understanding plant mortality mechanisms and predicting the climate change impact on terrestrial carbon and water cycles. The Orbiting Carbon Observatory 3 (OCO-3), with its unique diurnal observing capability, offers a new opportunity to track drought stress on plant physiology. Using radiative transfer and machine learning modeling, we derive a metric of afternoon photosynthetic depression from OCO-3 solar-induced chlorophyll fluorescence (SIF) as an indicator of plant physiological drought stress. This unique diurnal signal enables a spatially explicit mapping of plants' physiological response to drought. Using OCO-3 observations, we detect a widespread increasing drought stress during the 2020 southwest US drought. Although the physiological drought stress is largely related to the vapor pressure deficit (VPD), our results suggest that plants' sensitivity to VPD increases as the drought intensifies and VPD sensitivity develops differently for shrublands and grasslands. Our findings highlight the potential of using diurnal satellite SIF observations to advance the mechanistic understanding of drought impact on terrestrial ecosystems and to improve land surface modeling.
Collapse
Affiliation(s)
- Yao Zhang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Institute of Carbon Neutrality, Peking University, Beijing, China
| | - Jianing Fang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
| | - William Kolby Smith
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Xian Wang
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
| | - Russell L Scott
- Southwest Watershed Research Center, USDA Agricultural Research Service, Tucson, Arizona, USA
| | | | - Sujong Jeong
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, South Korea
| | - Marcy Litvak
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Sha Zhou
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
13
|
Chen R, Liu X, Chen J, Du S, Liu L. Solar-induced chlorophyll fluorescence imperfectly tracks the temperature response of photosynthesis in winter wheat. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7596-7610. [PMID: 36173362 DOI: 10.1093/jxb/erac388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Solar-induced fluorescence (SIF) is a promising proxy for photosynthesis, but it is unclear whether it performs well in tracking the gross primary productivity (GPP) under different environmental conditions. In this study, we investigated the dynamics of the two parameters from October 2020 to June 2021 in field-grown winter wheat (Triticum aestivum) and found that the ability of SIF to track GPP was weakened at low temperatures. Accounting for the coupling of light and temperature at a seasonal scale, we found that SIF yield showed a lower temperature sensitivity and had a lower but broader optimal temperature range compared with light-use efficiency (LUE), although both SIF yield and LUE decreased in low-temperature conditions. The discrepancy between the temperature responses of SIF yield and GPP caused an increase in the ratio of SIF/GPP in winter, which indicated the variation in the relationship between them during this period. The results of our study highlight the impact of low temperature on the relationship between SIF and GPP and show the necessity of reconsidering the dynamics of energy distribution inside plants under changing environments.
Collapse
Affiliation(s)
- Ruonan Chen
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinjie Liu
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Jidai Chen
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanshan Du
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Liangyun Liu
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Effects of Low Temperature on the Relationship between Solar-Induced Chlorophyll Fluorescence and Gross Primary Productivity across Different Plant Function Types. REMOTE SENSING 2022. [DOI: 10.3390/rs14153716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Solar-induced chlorophyll fluorescence (SIF) has been recognized as a proxy of gross primary production (GPP) across various terrestrial biomes. However, the effects of low temperature on SIF and GPP among different plant function types (PFTs) have not yet been well-explored. To gain a better understanding of the relationship between SIF and GPP, we investigated the variation in the GPP/SIF ratio in response to low-temperature conditions using satellite and tower-based datasets. Based on the TROPOMI SIF product and FLUXCOM GPP data, we found that the SIF and GPP exhibited consistent seasonal and spatial patterns, while the GPP/SIF ratio differed for different PFTs. The GPP/SIF ratio for forest types was generally higher than 10 gC·d−1·mw−1·nm·sr, whereas the GPP/SIF ratio for grass and crop types was generally lower than 10 gC·d−1·mw−1·nm·sr. In addition, there were noticeable differences in the seasonal pattern of the GPP/SIF ratio between the selected samples that experienced low-temperature stress (below 10 °C, defined as group A) and those that grew under relatively warm conditions (above 10 °C throughout the year, defined as group B). The GPP/SIF ratio for group A generally exhibited a “hump-shaped” seasonal pattern, and that for group B showed a slightly “bowl-shaped” seasonal pattern, which means it is important to consider the effects of temperature on the SIF-GPP relationship. Through linear regression and correlation analysis, we demonstrate that there was a positive correlation between the GPP/SIF ratio and temperature for group A, with a wide temperature range including low-temperature conditions, indicating that, in this case, temperature affected the SIF–GPP relationship; however, for group B—with a temperature higher than 10 °C throughout the year—the GPP/SIF ratio was not consistently affected by temperature. The response of GPP/SIF to low temperature stress was confirmed by tower-based observations at a C3 cropland (C3CRO) site and a boreal evergreen needleleaf forest (BoENF) site. Although the relationship between the GPP/SIF ratio and temperature differed among PFTs, the GPP/SIF ratio decreased under low-temperature conditions for PFTs. Therefore, the GPP/SIF ratio was not constant and was largely influenced by low temperature for different PFTs, thus highlighting the importance of incorporating temperature into SIF-based GPP estimation.
Collapse
|
15
|
Integrate the Canopy SIF and Its Derived Structural and Physiological Components for Wheat Stripe Rust Stress Monitoring. REMOTE SENSING 2022. [DOI: 10.3390/rs14143427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Solar-induced chlorophyll fluorescence (SIF) has great advantages in the remote sensing detection of crop stress. However, under stripe rust stress, the effects of canopy structure and leaf physiology on the variations in canopy SIF are unclear, and these influencing factors are entangled during the development of disease, resulting in an unclear coupling relationship between SIFcanopy and the severity level (SL) of disease, which affects the remote sensing detection accuracy of wheat stripe rust. In this study, the observed canopy SIF was decomposed into NIRVP, which can characterize the canopy structure, and SIFtot, which can sensitively reflect the physiological status of crops. Additionally, the main factors driving the variations in canopy SIF under different disease severities were analyzed, and the response characteristics of SIFcanopy, NIRVP, and SIFtot to SL under stripe rust stress were studied. The results showed that when the severity level (SL) of disease was lower than 20%, NIRVP was more sensitive to variation in SIFcanopy than SIFtot, and the correlation between SIFtot and SL was 6.6% higher than that of SIFcanopy. Using the decomposed SIFtot component allows one to detect the stress state of plants before variations in vegetation canopy structure and leaf area index and can realize the early diagnosis of crop diseases. When the severity level (SL) of disease was in the state of moderate incidence (20% < SL ≤ 45%), the variation in SIFcanopy was affected by both NIRVP and SIFtot, and the detection accuracy of SIFcanopy for wheat stripe rust was better than that of the NIRVP and SIFtot components. When the severity level (SL) of disease reached a severe level (SL > 45%), SIFtot was more sensitive to the variation in SIFcanopy, and NIRVP reached a highly significant level with SL, which could better realize the remote sensing detection of wheat stripe rust disease severity. The research results showed that analyzing variations in SIFcanopy by using the decomposed canopy structure and physiological response signals can effectively capture additional information about plant physiology, detect crop pathological variations caused by disease stress earlier and more accurately, and promote crop disease monitoring and research progress.
Collapse
|
16
|
Different Responses of Solar-Induced Chlorophyll Fluorescence at the Red and Far-Red Bands and Gross Primary Productivity to Air Temperature for Winter Wheat. REMOTE SENSING 2022. [DOI: 10.3390/rs14133076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Solar-induced chlorophyll fluorescence (SIF) is closely related to the light-reaction process and has been recognized as a good indicator for tracking gross primary productivity (GPP). Nevertheless, it has not been widely examined how SIF and GPP respond to temperature. Here, we explored the linkage mechanisms between SIF and GPP in winter wheat based on continuous measurements of canopy SIF (cSIF), GPP, and meteorological data. To separately explore the structural and physiological mechanisms underlying the SIF–GPP relationship, we studied the temperature responses of the estimated light use efficiency (LUEp), canopy-level chlorophyll fluorescence yield (cSIFyield) and photosystem-level chlorophyll fluorescence yield (ΦF) estimated using canopy-scale remote sensing measurements. We found that GPP, red canopy SIF (cSIF688) and far-red canopy SIF (cSIF760) all exhibited a decreasing trend during overwintering periods. However, GPP and cSIF688 showed relatively more obvious changes in response to air temperature (Ta) than cSIF760 did. In addition, the LUEp responded sensitively to Ta (the correlation coefficient, r = 0.83, p-value < 0.01). The cSIFyield_688 and ΦF_688 (ΦF at 688 nm) also exhibited significantly positive correlations with Ta (r > 0.7, p-value < 0.05), while cSIFyield_760 and ΦF_760 (ΦF at 760 nm) were weakly correlated with Ta (r < 0.3, p-value > 0.05) during overwintering periods. The results also show that LUEp was more sensitive to Ta than ΦF, which caused changes in the LUEp/ΦF ratio in response to Ta. By considering the influence of Ta, the GPP estimation based on the total SIF emitted at the photosystem level (tSIF) was improved (with R2 increased by more than 0.12 for tSIF760 and more than 0.05 for tSIF688). Therefore, our results indicate that the LUEp/ΦF ratio is affected by temperature conditions and highlights that the SIF–GPP model should consider the influence of temperature.
Collapse
|
17
|
Improving Spatial Disaggregation of Crop Yield by Incorporating Machine Learning with Multisource Data: A Case Study of Chinese Maize Yield. REMOTE SENSING 2022. [DOI: 10.3390/rs14102340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Spatially explicit crop yield datasets with continuous long-term series are essential for understanding the spatiotemporal variation of crop yield and the impact of climate change on it. There are several spatial disaggregation methods to generate gridded yield maps, but these either use an oversimplified approach with only a couple of ancillary data or an overly complex approach with limited flexibility and scalability. This study developed a spatial disaggregation method using improved spatial weights generated from machine learning. When applied to Chinese maize yield, extreme gradient boosting (XGB) derived the best prediction results, with a cross-validation coefficient of determination (R2) of 0.81 at the municipal level. The disaggregated yield at 1 km grids could explain 54% of the variance of the county-level statistical yield, which is superior to the existing gridded maize yield dataset in China. At the site level, the disaggregated yields also showed much better agreement with observations than the existing gridded maize yield dataset. This lightweight method is promising for generating spatially explicit crop yield datasets with finer resolution and higher accuracy, and for providing necessary information for maize production risk assessment in China under climate change.
Collapse
|
18
|
Solar-Induced Chlorophyll Fluorescence Trends and Mechanisms in Different Ecosystems in Northeastern China. REMOTE SENSING 2022. [DOI: 10.3390/rs14061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Solar-induced chlorophyll fluorescence (SIF), when used as a proxy for plant photosynthesis, can provide an indication of the photosynthesis rate and has the potential to improve our understanding of carbon exchange mechanisms within an ecosystem. However, the relationships between SIF and vegetation indices (VIs) operating within different ecological contexts and the effect of other environmental factors on SIF remain unclear. This study focused on three ecosystems (cropland, forest, and grassland), with different ecological characteristics, located in Northeast China. These areas provide case studies where numerous relationships can be explored, including the correlations between the Orbiting Carbon Observatory-2 (OCO-2) SIF and MODIS products, meteorological factors, and the differences in the relationships between the three different ecosystems. Some interesting results and conclusions were obtained. First, in different ecosystems, the relationships between SIF and MODIS products show different correlations, whereby the enhanced vegetation index (EVI) has a close relationship with SIF in all the three ecosystems of forest, cropland, and grassland. Second, forest-type ecosystems appear to be sensitive to changes in daily temperature, whereas cropland and grassland areas respond more closely to changes in previous 16-day daily minimum temperature. Compared with forest and cropland areas, grasslands were more sensitive to precipitation (although the R2 value was small). Third, different ecosystems have different mechanisms of photosynthesis. Hence, we suggest that it is better to use SIF in areas exhibiting different ecological characteristics, and different models should be employed while simulating SIF.
Collapse
|
19
|
Wang C, Gu Q, Zhao L, Li C, Ren J, Zhang J. Photochemical Efficiency of Photosystem II in Inverted Leaves of Soybean [ Glycine max (L.) Merr.] Affected by Elevated Temperature and High Light. FRONTIERS IN PLANT SCIENCE 2022; 12:772644. [PMID: 35251060 PMCID: PMC8888862 DOI: 10.3389/fpls.2021.772644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
In summer, high light and elevated temperature are the most common abiotic stresses. The frequent occurrence of monsoon exposes the abaxial surface of soybean [Glycine max (L.) Merr.] leaves to direct solar radiation, resulting in irreversible damage to plant photosynthesis. In this study, chlorophyll a fluorescence was used to evaluate the functional status of photosystem II (PSII) in inverted leaves under elevated temperature and high light. In two consecutive growing seasons, we tested the fluorescence and gas exchange parameters of soybean leaves for 10 days and 15 days (5 days after recovery). Inverted leaves had lower tolerance compared to normal leaves and exhibited lower photosynthetic performance, quantum yield, and electron transport efficiency under combined elevated temperature and high light stress, along with a significant increase in absorption flux per reaction center (RC) and the energy dissipation of the RC, resulting in significantly lower performance indexes (PIABS and PItotal) and net photosynthetic rate (P n ) in inverted leaves. High light and elevated temperature caused irreversible membrane damage in inverted leaves, as photosynthetic performance parameters (P n , PIABS, and PItotal) did not return to control levels after inverted leaves recovered. In conclusion, inverted leaves exhibited lower photosynthetic performance and PSII activity under elevated temperature and high light stress compared to normal leaves.
Collapse
Affiliation(s)
- Cong Wang
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Qiuli Gu
- Agriculture and Rural Bureau of Qapqal County, Qapqal County, China
| | - Lianjia Zhao
- Research Institute of Crop Germplasm Resources, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chunyan Li
- Agriculture and Rural Bureau of Qapqal County, Qapqal County, China
| | - Jintao Ren
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Jianxin Zhang
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|