1
|
Tomlinson S, Lomolino MV, Wood JR, Anderson A, Brown SC, Haythorne S, Perry GLW, Wilmshurst JM, Austin JJ, Fordham DA. Ecological dynamics of moa extinctions reveal convergent refugia that today harbour flightless birds. Nat Ecol Evol 2024; 8:1472-1481. [PMID: 39048729 DOI: 10.1038/s41559-024-02449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/29/2024] [Indexed: 07/27/2024]
Abstract
Human settlement of islands across the Pacific Ocean was followed by waves of faunal extinctions that occurred so rapidly that their dynamics are difficult to reconstruct in space and time. These extinctions included large, wingless birds called moa that were endemic to New Zealand. Here we reconstructed the range and extinction dynamics of six genetically distinct species of moa across New Zealand at a fine spatiotemporal resolution, using hundreds of thousands of process-explicit simulations of climate-human-moa interactions, which were validated against inferences of occurrence and range contraction from an extensive fossil record. These process-based simulations revealed important interspecific differences in the ecological and demographic attributes of moa and established how these differences influenced likely trajectories of geographic and demographic declines of moa following Polynesian colonization of New Zealand. We show that despite these interspecific differences in extinction dynamics, the spatial patterns of geographic range collapse of moa species were probably similar. It is most likely that the final populations of all moa species persisted in suboptimal habitats in cold, mountainous areas that were generally last and least impacted by people. We find that these refugia for the last populations of moa continue to serve as isolated sanctuaries for New Zealand's remaining flightless birds, providing fresh insights for conserving endemic species in the face of current and future threats.
Collapse
Affiliation(s)
- Sean Tomlinson
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Mark V Lomolino
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, USA
| | - Jamie R Wood
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- The Environment Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Atholl Anderson
- School of Culture, History and Language, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stuart C Brown
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Sean Haythorne
- Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne, Parkville, Victoria, Australia
| | - George L W Perry
- School of Environment, University of Auckland, Auckland, New Zealand
| | - Janet M Wilmshurst
- Ecosystems & Conservation, Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Jeremy J Austin
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Damien A Fordham
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
- The Environment Institute, University of Adelaide, Adelaide, South Australia, Australia.
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
- Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Davoli M, Svenning JC. Future changes in society and climate may strongly shape wild large-herbivore faunas across Europe. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230334. [PMID: 38583466 PMCID: PMC10999261 DOI: 10.1098/rstb.2023.0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/03/2023] [Indexed: 04/09/2024] Open
Abstract
Restoring wild communities of large herbivores is critical for the conservation of biodiverse ecosystems, but environmental changes in the twenty-first century could drastically affect the availability of habitats. We projected future habitat dynamics for 18 wild large herbivores in Europe and the relative future potential patterns of species richness and assemblage mean body weight considering four alternative scenarios of socioeconomic development in human society and greenhouse gas emissions (SSP1-RCP2.6, SSP2-RCP4.5, SSP3-RCP7.0, SSP5-RCP8.5). Under SSP1-RCP2.6, corresponding to a transition towards sustainable development, we found stable habitat suitability for most species and overall stable assemblage mean body weight compared to the present, with an average increase in species richness (in 2100: 3.03 ± 1.55 compared to today's 2.25 ± 1.31 species/area). The other scenarios are generally unfavourable for the conservation of wild large herbivores, although under the SSP5-RCP8.5 scenario there would be increase in species richness and assemblage mean body weight in some southern regions (e.g. + 62.86 kg mean body weight in Balkans/Greece). Our results suggest that a shift towards a sustainable socioeconomic development would overall provide the best prospect of our maintaining or even increasing the diversity of wild herbivore assemblages in Europe, thereby promoting trophic complexity and the potential to restore functioning and self-regulating ecosystems. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.
Collapse
Affiliation(s)
- Marco Davoli
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, 8000 Aarhus C, Denmark
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, Viale Dell'Università 32, 00185, Rome, Italy
| | | |
Collapse
|
3
|
Yaworsky PM, Nielsen ES, Nielsen TK. The Neanderthal niche space of Western Eurasia 145 ka to 30 ka ago. Sci Rep 2024; 14:7788. [PMID: 38565571 PMCID: PMC10987600 DOI: 10.1038/s41598-024-57490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Neanderthals occupied Western Eurasia between 350 ka and 40 ka ago, during the climatically volatile Pleistocene. A key issue is to what extent Neanderthal populations expanded into areas of Western Eurasia and what conditions facilitated such range expansions. The range extent of Neanderthals is generally based on the distribution of Neanderthal material, but the land-altering nature of glacial periods has erased much of the already sparse material evidence of Neanderthals, particularly in the northern latitudes. To overcome this obstacle species distribution models can estimate past distributions of Neanderthals, however, most implementations are generally constrained spatially and temporally and may be artificially truncating the Neanderthal niche space. Using dated contexts from Neanderthal sites from across Western Eurasia, millennial-scale paleoclimate reconstructions, and a spatiotemporal species distribution model, we infer the fundamental climatic niche space of Neanderthals and estimate the extent of Neanderthal occupation. We find that (a.) despite the long timeframe, Neanderthals occupy a relatively narrow fundamental climatic niche space, (b.) the estimated projected potential Neanderthal niche space suggests a larger geographic range than the material record suggests, and (c.) that there was a general decline in the size of the projected potential Neanderthal niche from 145 ka ago onward, possibly contributing to their extinction.
Collapse
Affiliation(s)
- Peter M Yaworsky
- Department of Archeology and Heritage Studies, School of Culture and Society, Aarhus University, Moesgård Allé 20, Building 4216, 8270, Højbjerg, Denmark.
- Center for Ecological Dynamics in a Novel Biosphere, Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000, Aarhus C, Denmark.
| | - Emil S Nielsen
- Department of Archeology and Heritage Studies, School of Culture and Society, Aarhus University, Moesgård Allé 20, Building 4216, 8270, Højbjerg, Denmark
- Center for Ecological Dynamics in a Novel Biosphere, Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000, Aarhus C, Denmark
| | - Trine K Nielsen
- Department of Archeology and Heritage Studies, School of Culture and Society, Aarhus University, Moesgård Allé 20, Building 4216, 8270, Højbjerg, Denmark
- Center for Ecological Dynamics in a Novel Biosphere, Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000, Aarhus C, Denmark
- Moesgaard Museum, Moesgård Allé 15, 8270, Højbjerg, Denmark
| |
Collapse
|
4
|
Tomlinson S, Lomolino MV, Anderson A, Austin JJ, Brown SC, Haythorne S, Perry GLW, Wilmshurst JM, Wood JR, Fordham DA. Reconstructing colonization dynamics to establish how human activities transformed island biodiversity. Sci Rep 2024; 14:5261. [PMID: 38438419 PMCID: PMC10912269 DOI: 10.1038/s41598-024-55180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Drivers and dynamics of initial human migrations across individual islands and archipelagos are poorly understood, hampering assessments of subsequent modification of island biodiversity. We developed and tested a new statistical-simulation approach for reconstructing the pattern and pace of human migration across islands at high spatiotemporal resolutions. Using Polynesian colonisation of New Zealand as an example, we show that process-explicit models, informed by archaeological records and spatiotemporal reconstructions of past climates and environments, can provide new and important insights into the patterns and mechanisms of arrival and establishment of people on islands. We find that colonisation of New Zealand required there to have been a single founding population of approximately 500 people, arriving between 1233 and 1257 AD, settling multiple areas, and expanding rapidly over both North and South Islands. These verified spatiotemporal reconstructions of colonisation dynamics provide new opportunities to explore more extensively the potential ecological impacts of human colonisation on New Zealand's native biota and ecosystems.
Collapse
Affiliation(s)
- Sean Tomlinson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Mark V Lomolino
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - Atholl Anderson
- School of Culture, History and Language, Australian National University, Canberra, ACT, 0200, Australia
- Ngai Tahu Research Centre, University of Canterbury, Christchurch, 8140, New Zealand
| | - Jeremy J Austin
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Stuart C Brown
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Globe Institute, University of Copenhagen, Copenhagen, 1353, Denmark
| | - Sean Haythorne
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Centre of Excellence for Biosecurity Risk Analysis, University of Melbourne, Parkville, VIC, 3010, Australia
| | - George L W Perry
- School of Environment, University of Auckland, Auckland, 1142, New Zealand
| | - Janet M Wilmshurst
- Ecosystems & Conservation, Manaaki Whenua Landcare Research, Lincoln, 7640, New Zealand
| | - Jamie R Wood
- The Environment Institute, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Damien A Fordham
- The Environment Institute, University of Adelaide, Adelaide, SA, 5005, Australia.
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen, 1353, Denmark.
- Center for Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, 1353, Denmark.
| |
Collapse
|
5
|
Pečnerová P, Lord E, Garcia-Erill G, Hanghøj K, Rasmussen MS, Meisner J, Liu X, van der Valk T, Santander CG, Quinn L, Lin L, Liu S, Carøe C, Dalerum F, Götherström A, Måsviken J, Vartanyan S, Raundrup K, Al-Chaer A, Rasmussen L, Hvilsom C, Heide-Jørgensen MP, Sinding MHS, Aastrup P, Van Coeverden de Groot PJ, Schmidt NM, Albrechtsen A, Dalén L, Heller R, Moltke I, Siegismund HR. Population genomics of the muskox' resilience in the near absence of genetic variation. Mol Ecol 2024; 33:e17205. [PMID: 37971141 DOI: 10.1111/mec.17205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Genomic studies of species threatened by extinction are providing crucial information about evolutionary mechanisms and genetic consequences of population declines and bottlenecks. However, to understand how species avoid the extinction vortex, insights can be drawn by studying species that thrive despite past declines. Here, we studied the population genomics of the muskox (Ovibos moschatus), an Ice Age relict that was at the brink of extinction for thousands of years at the end of the Pleistocene yet appears to be thriving today. We analysed 108 whole genomes, including present-day individuals representing the current native range of both muskox subspecies, the white-faced and the barren-ground muskox (O. moschatus wardi and O. moschatus moschatus) and a ~21,000-year-old ancient individual from Siberia. We found that the muskox' demographic history was profoundly shaped by past climate changes and post-glacial re-colonizations. In particular, the white-faced muskox has the lowest genome-wide heterozygosity recorded in an ungulate. Yet, there is no evidence of inbreeding depression in native muskox populations. We hypothesize that this can be explained by the effect of long-term gradual population declines that allowed for purging of strongly deleterious mutations. This study provides insights into how species with a history of population bottlenecks, small population sizes and low genetic diversity survive against all odds.
Collapse
Affiliation(s)
- Patrícia Pečnerová
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Zoo, Frederiksberg, Denmark
| | - Edana Lord
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Genís Garcia-Erill
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Hanghøj
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Malthe Sebro Rasmussen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Meisner
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiaodong Liu
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tom van der Valk
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Cindy G Santander
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Liam Quinn
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Long Lin
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Carøe
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fredrik Dalerum
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Biodiversity Research Institute (CSIC-UO-PA), Mieres, Spain
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Johannes Måsviken
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Sergey Vartanyan
- North-East Interdisciplinary Scientific Research Institute N.A.N.A. Shilo, Russian Academy of Sciences, Magadan, Russia
| | | | - Amal Al-Chaer
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Linett Rasmussen
- Copenhagen Zoo, Frederiksberg, Denmark
- The GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mads Peter Heide-Jørgensen
- Greenland Institute of Natural Resources, Nuuk, Greenland
- Greenland Institute of Natural Resources, Copenhagen, Denmark
| | - Mikkel-Holger S Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Peter Aastrup
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | | | - Niels Martin Schmidt
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
| | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Moltke
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Redlef Siegismund
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Pilowsky JA, Brown SC, Llamas B, van Loenen AL, Kowalczyk R, Hofman-Kamińska E, Manaseryan NH, Rusu V, Križnar M, Rahbek C, Fordham DA. Millennial processes of population decline, range contraction and near extinction of the European bison. Proc Biol Sci 2023; 290:20231095. [PMID: 38087919 PMCID: PMC10716654 DOI: 10.1098/rspb.2023.1095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
European bison (Bison bonasus) were widespread throughout Europe during the late Pleistocene. However, the contributions of environmental change and humans to their near extinction have never been resolved. Using process-explicit models, fossils and ancient DNA, we disentangle the combinations of threatening processes that drove population declines and regional extinctions of European bison through space and across time. We show that the population size of European bison declined abruptly at the termination of the Pleistocene in response to rapid environmental change, hunting by humans and their interaction. Human activities prevented populations of European bison from rebounding in the Holocene, despite improved environmental conditions. Hunting caused range loss in the north and east of its distribution, while land use change was responsible for losses in the west and south. Advances in hunting technologies from 1500 CE were needed to simulate low abundances observed in 1870 CE. While our findings show that humans were an important driver of the extinction of the European bison in the wild, vast areas of its range vanished during the Pleistocene-Holocene transition because of post-glacial environmental change. These areas of its former range have been climatically unsuitable for millennia and should not be considered in reintroduction efforts.
Collapse
Affiliation(s)
- July A. Pilowsky
- The Environment Institute and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
| | - Stuart C. Brown
- The Environment Institute and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- Section for Evolutionary Genomics, Globe Institute, University of Copenhagen, Copenhagen K 1350, Denmark
| | - Bastien Llamas
- The Environment Institute and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, South Australia 5005, Australia
- Indigenous Genomics Research Group, Telethon Kids Institute, Adelaide, South Australia 5001, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ayla L. van Loenen
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
| | - Rafał Kowalczyk
- Mammal Research Institute, Polish Academy of Sciences, 17-230 Białowieża, Poland
| | | | - Ninna H. Manaseryan
- The Scientific Centre of Zoology and Hydroecology of National Academy of Sciences of Armenia, Institute of Zoology, 0014 Yerevan, Republic of Armenia
| | - Viorelia Rusu
- Institute of Zoology, Academy of Sciences of Moldova, Chisinau MD-2028, Republic of Moldova
| | - Matija Križnar
- Slovenian Museum of Natural History, Department of Geology, SI-1001 Ljubljana, Slovenia
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
- Center for Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Odense M 5230, Denmark
- Institute of Ecology, Peking University, Beijing, People's Republic of China
| | - Damien A. Fordham
- The Environment Institute and School of Biological Sciences, University of Adelaide, South Australia 5005, Australia
- Center for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
- Center for Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen Ø 2100, Denmark
| |
Collapse
|
7
|
Schmidt NM, Michelsen A, Hansen LH, Aggerbeck MR, Stelvig M, Kutz S, Mosbacher JB. Sequential analysis of δ 15 N in guard hair suggests late gestation is the most critical period for muskox calf recruitment. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9470. [PMID: 36601893 PMCID: PMC10078194 DOI: 10.1002/rcm.9470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE Analysis of stable isotopes in tissue and excreta may provide information about animal diets and their nutritional state. As body condition may have a major influence on reproduction, linking stable isotope values to animal demographic rates may help unravel the drivers behind animal population dynamics. METHODS We performed sequential analysis of δ15 N values in guard hair from 21 muskoxen (Ovibos moschatus) from Zackenberg in high arctic Greenland. We were able to reconstruct the dietary history for the population over a 5-year period with contrasting environmental conditions. We examined the linkage between guard hair δ15 N values in 12 three-month periods and muskox calf recruitment to detect critical periods for muskox reproduction. Finally, we conducted similar analyses of the correlation between environmental conditions (snow depth and air temperature) and calf recruitment. RESULTS δ15 N values exhibited a clear seasonal pattern with high levels in summer and low levels in winter. However, large inter-annual variation was found in winter values, suggesting varying levels of catabolism depending on snow conditions. In particular δ15 N values during January-March were linked to muskox recruitment rates, with higher values coinciding with lower calf recruitment. δ15 N values were a better predictor of muskox recruitment rates than environmental conditions. CONCLUSIONS Although environmental conditions may ultimately determine the dietary δ15 N signal in muskox guard hairs, muskox calf recruitment was more strongly correlated with δ15 N values than ambient snow and temperature. The period January-March, corresponding to late gestation, appears particularly critical for muskox reproduction.
Collapse
Affiliation(s)
- Niels Martin Schmidt
- Department of Ecoscience and Arctic Research CentreAarhus UniversityRoskildeDenmark
| | - Anders Michelsen
- Department of BiologyUniversity of CopenhagenCopenhagen ØDenmark
- Center for PermafrostUniversity of CopenhagenCopenhagen KDenmark
| | - Lars Holst Hansen
- Department of Ecoscience and Arctic Research CentreAarhus UniversityRoskildeDenmark
| | | | | | - Susan Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary MedicineUniversity of CalgaryCalgaryABCanada
| | | |
Collapse
|
8
|
The ecological and geographic dynamics of extinction: Niche modeling and ecological marginalization. Proc Natl Acad Sci U S A 2023; 120:e2220467120. [PMID: 36634132 PMCID: PMC9933098 DOI: 10.1073/pnas.2220467120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
9
|
Simulations of human migration into North America are more sensitive to demography than choice of palaeoclimate model. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Canteri E, Brown SC, Schmidt NM, Heller R, Nogués‐Bravo D, Fordham DA. Spatiotemporal influences of climate and humans on muskox range dynamics over multiple millennia. GLOBAL CHANGE BIOLOGY 2022; 28:6602-6617. [PMID: 36031712 PMCID: PMC9804684 DOI: 10.1111/gcb.16375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Processes leading to range contractions and population declines of Arctic megafauna during the late Pleistocene and early Holocene are uncertain, with intense debate on the roles of human hunting, climatic change, and their synergy. Obstacles to a resolution have included an overreliance on correlative rather than process-explicit approaches for inferring drivers of distributional and demographic change. Here, we disentangle the ecological mechanisms and threats that were integral in the decline and extinction of the muskox (Ovibos moschatus) in Eurasia and in its expansion in North America using process-explicit macroecological models. The approach integrates modern and fossil occurrence records, ancient DNA, spatiotemporal reconstructions of past climatic change, species-specific population ecology, and the growth and spread of anatomically modern humans. We show that accurately reconstructing inferences of past demographic changes for muskox over the last 21,000 years require high dispersal abilities, large maximum densities, and a small Allee effect. Analyses of validated process-explicit projections indicate that climatic change was the primary driver of muskox distribution shifts and demographic changes across its previously extensive (circumpolar) range, with populations responding negatively to rapid warming events. Regional analyses show that the range collapse and extinction of the muskox in Europe (~13,000 years ago) was likely caused by humans operating in synergy with climatic warming. In Canada and Greenland, climatic change and human activities probably combined to drive recent population sizes. The impact of past climatic change on the range and extinction dynamics of muskox during the Pleistocene-Holocene transition signals a vulnerability of this species to future increased warming. By better establishing the ecological processes that shaped the distribution of the muskox through space and time, we show that process-explicit macroecological models have important applications for the future conservation and management of this iconic species in a warming Arctic.
Collapse
Affiliation(s)
- Elisabetta Canteri
- The Environment Institute and School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Center for Macroecology, Evolution and ClimateGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Stuart C. Brown
- The Environment Institute and School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Section for Molecular Ecology and EvolutionGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Niels Martin Schmidt
- Department of Ecoscience and Arctic Research CentreAarhus UniversityRoskildeDenmark
| | - Rasmus Heller
- Department of Biology, Section of Computational and RNA BiologyUniversity of CopenhagenCopenhagenDenmark
| | - David Nogués‐Bravo
- Center for Macroecology, Evolution and ClimateGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Damien A. Fordham
- The Environment Institute and School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Center for Macroecology, Evolution and ClimateGlobe Institute, University of CopenhagenCopenhagenDenmark
- Center for Global Mountain BiodiversityGlobe Institute, University of CopenhagenCopenhagenDenmark
| |
Collapse
|