1
|
Qiu G, Han Z, Wang T, Sun Z, Deng B, Wu M, Duan Z, Zhang S, Yang X, Zhu G, Wang Q, Yu H. In-Depth Analysis of Soil Microbial Community Succession Model Construction under Microplastics Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39878456 DOI: 10.1021/acs.jafc.4c09059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Although microplastics (MPs) toxicity to soil microorganisms has been preliminarily explored, the underlying reasons affecting the direction of microbial community succession are unclear. This study aimed to investigate the impacts of MPs infer community assembly mechanisms through phylogenetic bin-based null model analysis, network models, and protein function prediction in five typical Northeast China five typical soils. The results show that microbial communities in soils with high organic matter exhibit a stronger response to MPs, with enhanced protein functionality, network regulation, and assembly processes. The presence of MPs increased the drift process in the soil microbial community assembly by 2%, a deterministic process influenced by MPs, and enhanced the complexity and stability of the community assembly. Overall, MPs altered microbial protein function and regulatory networks by affecting diversity and community assembly processes, leading to shifts in microbial community succession. This study provided a theoretical basis for further study of the ecotoxicological effects of MPs in soil.
Collapse
Affiliation(s)
- Guankai Qiu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongmin Han
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Tianye Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Zhenghao Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boling Deng
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixuan Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongxu Duan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqing Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiutao Yang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guopeng Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Quanying Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hongwen Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
2
|
Zhang Z, Shi J, Yao X, Wang W, Zhang Z, Wu H. Comparative evaluation of the impacts of different microplastics on greenhouse gas emissions, microbial community structure, and ecosystem multifunctionality in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135958. [PMID: 39342860 DOI: 10.1016/j.jhazmat.2024.135958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Although the increasing accumulation of microplastics (MPs) in terrestrial soil ecosystems has aroused worldwide concern, research remains limited on their potential impacts on soil processes and ecosystem functionality. Here, through a 41-day microcosm experiment, we found that polylactic acid (PLA), low-density polyethylene (LDPE), and polypropylene (PP) MPs consistently increased soil carbon nutrients and pH but had varying effects on soil nitrogen nutrients and the chemodiversity of dissolved organic matter (DOM). Different treatments led to notable shifts in the α-diversity and composition of soil microbial community, with phyla Proteobacteria and Ascomycota consistently enriched by MPs regardless of polymer type. The emissions of CO2 and N2O were suppressed by MPs in most cases, which in combination led to a decline in global warming potential. LDPE and 1 - 1.5 % of PLA MPs significantly improved the multifunctionality of the soil ecosystem, while PP and 0.5 % of PLA MPs exerted an opposite effect. Soil total organic carbon, pH, DOM molecular mass and condensation degree, and CO2 emissions were identified as the most important variables for predicting soil ecosystem multifunctionality. Results of this study can extend the current understanding of the impacts of MPs on soil biogeochemical cycling and ecosystem functionality.
Collapse
Affiliation(s)
- Zhiyu Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; College of Geographic Science and Tourism, Jilin Normal University, Siping 136000, China
| | - Jiaxing Shi
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; College of Geographic Science and Tourism, Jilin Normal University, Siping 136000, China
| | - Xiaochen Yao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China
| | - Wenfeng Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China.
| | - Zhongsheng Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China
| | - Haitao Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun 130012, China.
| |
Collapse
|
3
|
Han NN, Jin JA, Yang JH, Fan NS, Jin RC. Polystyrene nanoparticles regulate microbial stress response and cold adaptation in mainstream anammox process at low temperature. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135860. [PMID: 39298955 DOI: 10.1016/j.jhazmat.2024.135860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Nanoplastic pollution has become one of the most pressing environmental issues, and its bioaccumulation in aquatic environment also causes a great difficulty in treatment. Therefore, this work investigated the microbial dynamics of mainstream anaerobic ammonia oxidizing (anammox) process to treat the wastewater containing typical nanoplastics, as well as the fate and regulation mechanism of polystyrene nanoparticles (PS-NPs) with different concentrations. The results showed that 0.1-0.5 mg L-1 of PS-NPs had no significant effect on the nitrogen removal efficiency (NRE). When the concentration of PS-NPs increased from 0.5 mg L-1 to 2 mg L-1, the NRE of R1 with PS-NPs decreased from 94.9 ± 2.3 % to 77.0 ± 1.6 %, while the control reactor R0 maintained a stable NRE. Notably, the relative abundance of Ca. Kuenenia decreased from 17.4 % to 14.8 %, and that of Ca. Brocadia slightly decreased from 5.9 % to 5.0 % in R1. In addition, PS-NPs induced oxidative stress in anammox consortia, leading to the significant increase in reactive oxygen species (ROS) and lactate dehydrogenase (LDH) as well as cell membrane damage. PS-NPs also downregulated the content of heme c and further inhibited anammox activity. Based on the molecular docking simulation and western blotting, cold shock proteins (CSPs) could bind to PS-NPs and reduce the performance of anammox processes at low temperatures.
Collapse
Affiliation(s)
- Na-Na Han
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing-Ao Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jia-Hui Yang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Si Fan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
Fei J, Bai X, Jiang C, Yin X, Ni BJ. A state-of-the-art review of environmental behavior and potential risks of biodegradable microplastics in soil ecosystems: Comparison with conventional microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176342. [PMID: 39312976 DOI: 10.1016/j.scitotenv.2024.176342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
As the use of biodegradable plastics becomes increasingly widespread, their environmental behaviors and impacts warrant attention. Unlike conventional plastics, their degradability predisposes them to fragment into microplastics (MPs) more readily. These MPs subsequently enter the terrestrial environment. The abundant functional groups of biodegradable MPs significantly affect their transport and interactions with other contaminants (e.g., organic contaminants and heavy metals). The intermediates and additives released from depolymerization of biodegradable MPs, as well as coexisting contaminants, induce alterations in soil ecosystems. These processes indicate that the impacts of biodegradable MPs on soil ecosystems might significantly diverge from conventional MPs. However, an exhaustive and timely comparison of the environmental behaviors and effects of biodegradable and conventional MPs within soil ecosystems remains scarce. To address this gap, the Web of Science database and bibliometric software were utilized to identify publications with keywords containing biodegradable MPs and soil. Moreover, this review comprehensively summarizes the transport behavior of biodegradable MPs, their role as contaminant carriers, and the potential risks they pose to soil physicochemical properties, nutrient cycling, biota, and CO2 emissions as compared with conventional MPs. Biodegradable MPs, due to their great transport and adsorption capacity, facilitate the mobility of coexisting contaminants, potentially inducing widespread soil and groundwater contamination. Additionally, these MPs and their depolymerization products can disrupt soil ecosystems by altering physicochemical properties, increasing microbial biomass, decreasing microbial diversity, inhibiting the development of plants and animals, and increasing CO2 emissions. Finally, some perspectives are proposed to outline future research directions. Overall, this study emphasizes the pronounced effects of biodegradable MPs on soil ecosystems relative to their conventional counterparts and contributes to the understanding and management of biodegradable plastic contamination within the terrestrial ecosystem.
Collapse
Affiliation(s)
- Jiao Fei
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Xue Bai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Ma B, Tahmasbian I, Guo T, Zhou M, Tang W, Zhang M. Antagonistic Effect of Microplastic Polyvinyl Chloride and Nitrification Inhibitor on Soil Nitrous Oxide Emission: An Overlooked Risk of Microplastic to the Agrochemical Effectiveness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39568319 DOI: 10.1021/acs.jafc.4c06528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Microplastics are widely persistent in agricultural ecosystems and may affect soil nitrous oxide (N2O) emissions. Nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) is applied to decelerate nitrification and reduce soil N2O emission. Nevertheless, the interactive effects of nitrification inhibitors and microplastics on soil N2O emissions have not been investigated. Sole DMPP, polyvinyl chloride (PVC), and polystyrene (PS) substantially reduced agricultural soil N2O emission rates by 25.93%, 69.04%, and 73.89%, respectively. Nevertheless, PVC and DMPP had antagonistic effects on the N2O emission rates. The observed reductions in N2O emissions could be attributed to variations in soil oxygen availability, electron transport system activities, and Firmicutes, nap, and GDH genes. Moreover, the DMPP, PVC, and PS alone or copresences significantly enhanced the soil ecosystem multifunctionality (EMF). The findings shed light on the role of microplastics in soil N2O emission, EMF, and the microbial community, expanding the understanding of microplastics' effects on agrochemical effectiveness.
Collapse
Affiliation(s)
- Bin Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Iman Tahmasbian
- Department of Agriculture and Fisheries, Queensland Government, Toowoomba, Queensland 4350, Australia
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Tao Guo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Minzhe Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Wenhui Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Manyun Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| |
Collapse
|
6
|
Cheng Y, Wang F, Huang W, Liu Y. Response of soil biochemical properties and ecosystem function to microplastics pollution. Sci Rep 2024; 14:28328. [PMID: 39550512 PMCID: PMC11569210 DOI: 10.1038/s41598-024-80124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/15/2024] [Indexed: 11/18/2024] Open
Abstract
Microplastics (MPs)-induced changes in soil nutrient cycling and microbial activity may pose a potential risk to soil ecosystem. Although some studies have explored these topics, there is still a large space for exploration and a relative lack of research on the mechanism by which soil health and its functions are affected by these changes. Thus, this study investigated the effects of polyethylene (PE) MPs with two particle sizes (13 μm and 130 μm) at five concentrations (0%, 1%, 3%, 6% and 10%, w/w) on soil biochemical properties and ecosystem function. The findings revealed that the exposure to 13 μm MPs significantly reduced soil respiration (Res) rate, β-glucosidase (Glu) and catalase (CAT) activity, which accompanied with enhanced urease activity and decreased soil pH, available phosphorus (AP), dissolved reactive phosphorus (DRP), dissolved organic carbon (DOC) and available potassium (AK) content in most cases. However, 130 μm MPs exerted negligible influence on the DOC and DRP content, Glu and CAT activity. High concentrations of 130 μm MPs significantly reduced soil pH, total dissolved nitrogen (TDN), AP and AK content, but significantly increased soil Res rate. Overall, soil ecosystem function was significantly reduced by the addition of MPs. The Res rate, soil AP and DRP content and Glu activity were the most important predictors of soil ecosystem function. We found that the risk posed by MPs to soil ecosystem function was dose-dependent and size-dependent. These findings underscore that MPs can alter soil functions related to soil nutrient cycling and provide further insights into MPs behavior in agroecosystems.
Collapse
Affiliation(s)
- Yanan Cheng
- School of Resources and Environment, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang, 453003, China.
| | - Fei Wang
- School of Resources and Environment, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang, 453003, China
| | - Wenwen Huang
- School of Resources and Environment, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang, 453003, China
| | - Yongzhuo Liu
- School of Resources and Environment, Henan Institute of Science and Technology, 90 Eastern Hualan Avenue, Xinxiang, 453003, China
| |
Collapse
|
7
|
Liu Y, Chen S, Zhou P, Li H, Wan Q, Lu Y, Li B. Differential impacts of microplastics on carbon and nitrogen cycling in plant-soil systems: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174655. [PMID: 39004375 DOI: 10.1016/j.scitotenv.2024.174655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Microplastics (MPs) are widely present in terrestrial ecosystems. However, how MPs impact carbon (C) and nitrogen (N) cycling within plant-soil system is still poorly understood. Here, we conducted a meta-analysis utilizing 3338 paired observations from 180 publications to estimate the effects of MPs on plant growth (biomass, nitrogen content, nitrogen uptake and nitrogen use efficiency), change in soil C content (total carbon (TC), soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC)), C losses (carbon dioxide (CO2) and methane), soil N content (total nitrogen, dissolved organic nitrogen, microbial biomass nitrogen, total dissolve nitrogen, ammonium, nitrate (NO3--N) and nitrite) and nitrogen losses (nitrous oxide, ammonia (NH3) volatilization and N leaching) comprehensively. Results showed that although MPs significantly increased CO2 emissions by 25.7 %, they also increased TC, SOC, MBC, DOC and CO2 by 53.3 %, 25.4 %, 19.6 % and 24.7 %, respectively, and thus increased soil carbon sink capacity. However, MPs significantly decreased NO3--N and NH3 volatilization by 14.7 % and 43.3 %, respectively. Meanwhile, MPs significantly decreased plant aboveground biomass, whereas no significant changes were detected in plant belowground biomass and plant N content. The impacts of MPs on soil C, N and plant growth varied depending on MP types, sizes, concentrations, and experimental durations, in part influenced by initial soil properties. Overall, although MPs enhanced soil carbon sink capacity, they may pose a significant threat to future agricultural productivity.
Collapse
Affiliation(s)
- Yige Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Siyi Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Pengyu Zhou
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Haochen Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Quan Wan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Ying Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Bo Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
8
|
Hao Z, He S, Wang Q, Luo Y, Tu C, Wu W, Jiang H. Nanoplastics enhance the denitrification process and microbial interaction network in wetland soils. WATER RESEARCH 2024; 259:121796. [PMID: 38820736 DOI: 10.1016/j.watres.2024.121796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
With the widespread presence of plastic waste in ecosystems, it is imperative to understand the response of natural processes to micro- and nanoplastic pollution pressures. However, the effects of nanoplastics on biogeochemical cycles are still overlooked and controversial. This study investigated the effects of three particle sizes (100 μm, 7 μm, and 80 nm) of polystyrene (PS) micro/nanoplastics (0.08 % of mass concentration) on denitrification processes and nirS/nirK denitrifying bacterial communities in wetland soils. The results indicated that PS nanoplastics were found to significantly enhance denitrification rates from 21.30 to 54.73 μmol N2·h-1·kg-1, increasing by 1.57 times compared to the control. Exposure to nanoplastics caused shifts in the composition and structure of the nirS-type denitrifier community. LEfSe analysis, random forest, and Mantel tests revealed that nirS denitrifying bacteria, especially Sideroxydans, played a pivotal role in driving denitrification rates (Mantel's R = 0.24, p = 0.002), likely due to the faster release of organic substrates from nanoplastics. Microbial co-occurrence networks demonstrated that nanoplastic amendments fostered a denser denitrifier network and led to shifts in keystone species. Sideroxydans appeared more likely to cooperate with other bacteria, such as Burkholderiales, to complete denitrification processes. This study suggests that nanoplastics are a potentially stronger driver of denitrification than microplastics, providing insight into the impact of plastic pollutants on biogeochemical cycling in natural wetland ecosystems. Given the widespread distribution of wetlands, the potential increase in gaseous nitrogen emissions due to nanoplastics pollution warrants attention.
Collapse
Affiliation(s)
- Zheng Hao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shangwei He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng 224007, China
| | - Qianhong Wang
- Changjiang Nanjing Waterway Engineering Bureau, Nanjing 210011, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Tu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbin Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
9
|
Chen L, Qiu T, Huang F, Zeng Y, Cui Y, Chen J, White JC, Fang L. Micro/nanoplastics pollution poses a potential threat to soil health. GLOBAL CHANGE BIOLOGY 2024; 30:e17470. [PMID: 39149882 DOI: 10.1111/gcb.17470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
Micro/nanoplastic (MNP) pollution in soil ecosystems has become a growing environmental concern globally. However, the comprehensive impacts of MNPs on soil health have not yet been explored. We conducted a hierarchical meta-analysis of over 5000 observations from 228 articles to assess the broad impacts of MNPs on soil health parameters (represented by 20 indicators relevant to crop growth, animal health, greenhouse gas emissions, microbial diversity, and pollutant transfer) and whether the impacts depended on MNP properties. We found that MNP exposure significantly inhibited crop biomass and germination, and reduced earthworm growth and survival rate. Under MNP exposure, the emissions of soil greenhouse gases (CO2, N2O, and CH4) were significantly increased. MNP exposure caused a decrease in soil bacteria diversity. Importantly, the magnitude of impact of the soil-based parameters was dependent on MNP dose and size; however, there is no significant difference in MNP type (biodegradable and conventional MNPs). Moreover, MNPs significantly reduced As uptake by plants, but promoted plant Cd accumulation. Using an analytical hierarchy process, we quantified the negative impacts of MNP exposure on soil health as a mean value of -10.2% (-17.5% to -2.57%). Overall, this analysis provides new insights for assessing potential risks of MNP pollution to soil ecosystem functions.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Fengyu Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yongxing Cui
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
10
|
Shi R, Liu W, Liu J, Zeb A, Wang Q, Wang J, Li J, Yu M, Ali N, An J. Earthworms improve the rhizosphere micro-environment to mitigate the toxicity of microplastics to tomato (Solanum lycopersicum). JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134578. [PMID: 38743971 DOI: 10.1016/j.jhazmat.2024.134578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Microplastics (MPs) are widespread in agricultural soil, potentially threatening soil environmental quality and plant growth. However, toxicological research on MPs has mainly been limited to individual components (such as plants, microbes, and animals), without considering their interactions. Here, we examined earthworm-mediated effects on tomato growth and the rhizosphere micro-environment under MPs contamination. Earthworms (Eisenia fetida) mitigated the growth-inhibiting effect of MPs on tomato plant. Particularly, when exposed to environmentally relevant concentrations (ERC, 0.02% w/w) of MPs, the addition of earthworms significantly (p < 0.05) increased shoot and root dry weight by 12-13% and 13-14%, respectively. MPs significantly reduced (p < 0.05) soil ammonium (NH4+-N) (0.55-0.69 mg/kg), nitrate nitrogen (NO3--N) (7.02-8.65 mg/kg) contents, and N cycle related enzyme activities (33.47-42.39 μg/h/g) by 37.7-50.9%, 22.6-37.2%, and 34.2-48.0%, respectively, while earthworms significantly enhanced (p < 0.05) inorganic N mineralization and bioavailability. Furthermore, earthworms increased bacterial network complexity, thereby enhancing the robustness of the bacterial system to resist soil MPs stress. Meanwhile, partial least squares modelling showed that earthworms significantly influenced (p < 0.01) soil nutrients, which in turn significantly affected (p < 0.01) plant growth. Therefore, the comprehensive consideration of soil ecological composition is important for assessing MPs ecological risk.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
11
|
Kazmi SSUH, Tayyab M, Pastorino P, Barcelò D, Yaseen ZM, Grossart HP, Khan ZH, Li G. Decoding the molecular concerto: Toxicotranscriptomic evaluation of microplastic and nanoplastic impacts on aquatic organisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134574. [PMID: 38739959 DOI: 10.1016/j.jhazmat.2024.134574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The pervasive and steadily increasing presence of microplastics/nanoplastics (MPs/NPs) in aquatic environments has raised significant concerns regarding their potential adverse effects on aquatic organisms and their integration into trophic dynamics. This emerging issue has garnered the attention of (eco)toxicologists, promoting the utilization of toxicotranscriptomics to unravel the responses of aquatic organisms not only to MPs/NPs but also to a wide spectrum of environmental pollutants. This review aims to systematically explore the broad repertoire of predicted molecular responses by aquatic organisms, providing valuable intuitions into complex interactions between plastic pollutants and aquatic biota. By synthesizing the latest literature, present analysis sheds light on transcriptomic signatures like gene expression, interconnected pathways and overall molecular mechanisms influenced by various plasticizers. Harmful effects of these contaminants on key genes/protein transcripts associated with crucial pathways lead to abnormal immune response, metabolic response, neural response, apoptosis and DNA damage, growth, development, reproductive abnormalities, detoxification, and oxidative stress in aquatic organisms. However, unique challenge lies in enhancing the fingerprint of MPs/NPs, presenting complicated enigma that requires decoding their specific impact at molecular levels. The exploration endeavors, not only to consolidate existing knowledge, but also to identify critical gaps in understanding, push forward the frontiers of knowledge about transcriptomic signatures of plastic contaminants. Moreover, this appraisal emphasizes the imperative to monitor and mitigate the contamination of commercially important aquatic species by MPs/NPs, highlighting the pivotal role that regulatory frameworks must play in protecting all aquatic ecosystems. This commitment aligns with the broader goal of ensuring the sustainability of aquatic resources and the resilience of ecosystems facing the growing threat of plastic pollutants.
Collapse
Affiliation(s)
- Syed Shabi Ul Hassan Kazmi
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Muhammad Tayyab
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, PR China
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| | - Damià Barcelò
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, (IGB), Alte Fischerhuette 2, Neuglobsow, D-16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, D-14469 Potsdam, Germany
| | - Zulqarnain Haider Khan
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China.
| |
Collapse
|
12
|
Zhao S, Rillig MC, Bing H, Cui Q, Qiu T, Cui Y, Penuelas J, Liu B, Bian S, Monikh FA, Chen J, Fang L. Microplastic pollution promotes soil respiration: A global-scale meta-analysis. GLOBAL CHANGE BIOLOGY 2024; 30:e17415. [PMID: 39005227 DOI: 10.1111/gcb.17415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.
Collapse
Affiliation(s)
- Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yongxing Cui
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF- CSIC- UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Caalonia, Spain
| | - Baiyan Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Bian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Fazel Abdolahpur Monikh
- Department of Chemical Sciences, University of Padua, Padua, Italy
- Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec Bendlova 1409/7, Liberec, Czech Republic
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
13
|
Zhang T, Luo XS, Kumar A, Liu X, Tong X, Yao X, Fan J, Chen Z, Chaturvedi S. Effects of micro-nano plastics on the environmental biogeochemical cycle of nitrogen: A comprehensive review. CHEMOSPHERE 2024; 357:142079. [PMID: 38642771 DOI: 10.1016/j.chemosphere.2024.142079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Micro-nano plastics (MNPs; size <5 mm), ubiquitous and emerging pollutants, accumulated in the natural environment through various sources, and are likely to interact with nutrients, thereby influencing their biogeochemical cycle. Increasing scientific evidences reveal that MNPs can affect nitrogen (N) cycle processes by affecting biotopes and organisms in the environmental matrix and MNPs biofilms, thus plays a crucial role in nitrous oxide (N2O) and ammonia (NH3) emission. Yet, the mechanism and key processes behind this have not been systematically reviewed in natural environments. In this review, we systematically summarize the effects of MNPs on N transformation in terrestrial, aquatic, and atmospheric ecosystems. The effects of MNPs properties on N content, composition, and function of the microbial community, enzyme activity, gene abundance and plant N uptake in different environmental conditions has been briefly discussed. The review highlights the significant potential of MNPs to alter the properties of the environmental matrix, microbes and plant or animal physiology, resulting in changes in N uptake and metabolic efficiency in plants, thereby inhibiting organic nitrogen (ON) formation and reducing N bioavailability, or altering NH3 emissions from animal sources. The faster the decomposition of plastics, the more intense the perturbation of MNPs to organisms in the natural ecosystem. Findings of this provide a more comprehensive analysis and research directions to the environmentalists, policy makers, water resources planners & managers, biologists, and biotechnologists to do integrate approaches to reach the practical engineering solutions which will further diminish the long-term ecological and climatic risks.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao-San Luo
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xin Liu
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xin Tong
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xuewen Yao
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jiayi Fan
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhihuai Chen
- Department of Agricultural Resources and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Sadashiv Chaturvedi
- School of Hydrology and Water Resources, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
14
|
Yang X, Chen Y, Liu T, Zhang L, Wang H, Chen M, He Q, Liu G, Ju F. Plastic particles affect N 2O release via altering core microbial metabolisms in constructed wetlands. WATER RESEARCH 2024; 255:121506. [PMID: 38552486 DOI: 10.1016/j.watres.2024.121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
Constructed wetlands (CWs) have been proven to effectively immobilize plastic particles. However, little is known about the differences in the impact of varying sized plastic particles on nitrous oxide (N2O) release, as well as the intervention mechanisms in CWs. Here, we built a lab-scale wetland model and introduced plastic particles of macro-, micro-, and nano-size at 100 μg/L for 370 days. The results showed that plastic particles of all sizes reduced N2O release in CWs, with the degrees being the strongest for the Nano group, followed by Micro and Macro groups. Meanwhile, 15N- and 18O-tracing experiment revealed that the ammoxidation process contributed the most N2O production, followed by denitrification. While for every N2O-releasing process, the contributing proportion of N2O in nitrification-coupled denitrification were most significantly cut down under exposing to macro-sized plastics and had an obvious increase in nitrifier denitrification in all groups, respectively. Finally, we revealed the three mechanism pathways of N2O release reduction with macro-, micro-, and nano-sized plastics by impacting carbon assimilation (RubisCO activity), ammonia oxidation (gene amo abundance and HAO activity), and N-ion transmembrane and reductase activities, respectively. Our findings thus provided novel insights into the potential effects of plastic particles in CWs as an eco-technology.
Collapse
Affiliation(s)
- Xiangyu Yang
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B, 83 Shabeijie, Shapingba, Chongqing 400044, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Management, Faculty of Civil Engineering and Geosciences, Section of Sanitary Engineering, Delft University of Technology, Delft 2628 CN, the Netherlands; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B, 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing 400044, China.
| | - Tao Liu
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B, 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Hui Wang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Mengli Chen
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B, 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Campus B, 83 Shabeijie, Shapingba, Chongqing 400044, China; National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Management, Faculty of Civil Engineering and Geosciences, Section of Sanitary Engineering, Delft University of Technology, Delft 2628 CN, the Netherlands
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China.
| |
Collapse
|
15
|
Li X, Qin H, Tang N, Li X, Xing W. Microplastics enhance the invasion of exotic submerged macrophytes by mediating plant functional traits, sediment properties, and microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134032. [PMID: 38492389 DOI: 10.1016/j.jhazmat.2024.134032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Plant invasions and microplastics (MPs) have significantly altered the structure and function of aquatic habitats worldwide, resulting in severe damage to aquatic ecosystem health. However, the effects of MPs on plant invasion and the underlying mechanisms remain largely unknown. In this study, we conducted mesocosm experiments over a 90-day period to assess the effects of polystyrene microplastics on the invasion of exotic submerged macrophytes, sediment physicochemical properties, and sediment bacterial communities. Our results showed that PS-MPs significantly promoted the performance of functional traits and the invasive ability of exotic submerged macrophytes, while native plants remained unaffected. Moreover, PS-MPs addition significantly decreased sediment pH while increasing sediment carbon and nitrogen content. Additionally, MPs increased the diversity of sediment bacterial community but inhibited its structural stability, thereby impacting sediment bacterial multifunctionality to varying degrees. Importantly, we identified sediment properties, bacterial composition, and bacterial multifunctionality as key mediators that greatly enhance the invasion of exotic submerged macrophytes. These findings provide compelling evidence that the increase in MPs may exacerbate the invasion risk of exotic submerged macrophytes through multiple pathways. Overall, this study enhances our understanding of the ecological impacts of MPs on aquatic plant invasion and the health of aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaowei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hongjie Qin
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Na Tang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaolu Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Wei Xing
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
16
|
Cai M, Zhang C, Ndungu CN, Liu G, Liu W, Zhang Q. Linking ecosystem multifunctionality to microbial community features in rivers along a latitudinal gradient. mSystems 2024; 9:e0014724. [PMID: 38445871 PMCID: PMC11019869 DOI: 10.1128/msystems.00147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Microorganisms regulate numerous ecosystem functions and show considerable differences along a latitudinal gradient. Although studies have revealed the latitudinal patterns of microbial community structure and single ecosystem function, the latitudinal patterns of ecosystem multifunctionality (EMF) and how microbial communities affect EMF along a latitudinal gradient remain unclear. Here, we collected channel sediments, riparian rhizosphere soils, and riparian bulk soils from 30 rivers across China and calculated EMF using 18 variables related to nitrogen cycling, nutrient pool, plant productivity, and water quality. We also determined microbial diversity (taxonomic and functional) and microbial network complexity using metagenomic sequencing. The results showed that EMF significantly decreased with increasing latitude in riparian rhizosphere and bulk soils but not in channel sediments. Microbial taxonomic and functional richness (observed species) in channel sediments were significantly higher in the low-latitude group than in the high-latitude group. However, microbial co-occurrence networks were more complex in the high-latitude group compared with the low-latitude group. Abiotic factors, primarily geographic and climatic factors, contributed more to EMF than microbial diversity and network complexity parameters in which only betweenness centralization had a significant relationship with EMF. Together, this study provides insight into the latitudinal pattern of EMF in rivers and highlights the importance of large-scale factors in explaining such latitudinal patterns.IMPORTANCEEcosystem multifunctionality (EMF) is the capacity of an ecosystem to provide multiple functions simultaneously. Microorganisms, as dominant drivers of belowground processes, have a profound effect on ecosystem functions. Although studies have revealed the latitudinal patterns of microbial community structure and single ecosystem function, the latitudinal patterns of EMF and how microbial communities affect EMF along a latitudinal gradient remain unclear. We collected channel sediments, riparian rhizosphere soils, and riparian bulk soils from 30 rivers along a latitudinal gradient across China and calculated EMF using 18 variables related to nitrogen cycling, nutrient pool, plant productivity, and water quality. This study fills a critical knowledge gap regarding the latitudinal patterns and drivers of EMF in river ecosystems and gives new insights into how microbial diversity and network complexity affect EMF from a metagenomic perspective.
Collapse
Affiliation(s)
- Miaomiao Cai
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Caifang Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Caroline Njambi Ndungu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| |
Collapse
|
17
|
He F, Shi H, Hu S, Liu R. Regulation mechanisms of ferric ions release from iron-loaded transferrin protein caused by nano-sized polystyrene plastics-induced conformational and structural changes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133495. [PMID: 38232549 DOI: 10.1016/j.jhazmat.2024.133495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Currently, the binding of iron-binding protein transferrin (TF) with NPs and their interaction mechanisms have not been completely elucidated yet. Here, we probed the conformation-dependent release of Fe ions from TF induced by nano-sized polystyrene plastics (PS-NPs) using dialysis, ICP-MS, multi-spectroscopic techniques, and computational simulation. The results showed that the release of free Fe ions from TF was activated after PS-NPs binding, which displayed a clear dose-effect correlation. PS-NPs binding can induce the unfolding and loosening of polypeptide chain and backbone of TF. Alongside this we found that the TF secondary structure was destroyed, thereby causing TF protein misfolding and denaturation. In parallel, PS-NPs interacted with the chromophores, resulting in the occurrence of fluorescence sensitization effects and the disruption of the surrounding micro-environment of aromatic amino acids. Also, the binding of PS-NPs induced the formation of new aggregates in the PS-NPs-TF system. Further simulations indicated that PS-NPs exhibited a preference for binding to the hinge region that connects the C-lobe and N-lobe, which is responsible for the Fe ions release and structural alterations of TF. This finding provides a new understanding about the regulation of the release of Fe ions of iron-loaded TF through NPs-induced conformational and structural changes.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
18
|
Liu L, Sun Y, Du S, Li Y, Wang J. Nanoplastics promote the dissemination of antibiotic resistance genes and diversify their bacterial hosts in soil. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:1-10. [PMID: 38187015 PMCID: PMC10767152 DOI: 10.1016/j.eehl.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 01/09/2024]
Abstract
The wide application of plastics has led to the ubiquitous presence of nanoplastics and microplastics in terrestrial environments. However, few studies have focused on the mechanism underlying the effects of plastic particles on soil microbiomes and resistomes, especially the differences between nanoplastics and microplastics. This study investigated the microbiome and resistome in soil exposed to polystyrene microplastics (mPS) or nanoplastics (nPS) through 16S rRNA and shotgun metagenomic sequencing. Distinct microbial communities were observed between mPS and nPS exposure groups, and nPS exposure significantly changed the bacterial composition even at the lowest amended rate (0.01%, w/w). The abundance of antibiotic resistance genes (ARGs) in nPS exposure (1%) was 0.26 copies per cell, significantly higher than that in control (0.21 copies per cell) and mPS exposure groups (0.21 copies per cell). It was observed that nanoplastics, bacterial community, and mobile genetic elements (MGEs) directly affected the ARG abundance in nPS exposure groups, while in mPS exposure groups, only MGEs directly induced the change of ARGs. Streptomyces was the predominant host for multidrug in the control and mPS exposure, whereas the primary host was changed to Bacillus in nPS exposure. Additionally, exposure to nPS induced several bacterial hosts to exhibit possible multi-antibiotic resistance characteristics. Our results indicated that the effects of plastic particles on the soil microbial community were size-dependent, and nano-sized plastic particles exhibited more substantial impacts. Both microplastics and nanoplastics promoted ARG transfer and diversified their bacterial hosts. These findings bear implications for the regulation of plastic waste and ARGs.
Collapse
Affiliation(s)
- Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuanze Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Ma X, Shan J, Chai Y, Wei Z, Li C, Jin K, Zhou H, Yan X, Ji R. Microplastics enhance nitrogen loss from a black paddy soil by shifting nitrate reduction from DNRA to denitrification and Anammox. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167869. [PMID: 37848146 DOI: 10.1016/j.scitotenv.2023.167869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Microplastics (MPs) are frequently detected emerging pollutants in soil that can endanger farmland ecosystems; however, little is known about their impacts on dissimilatory nitrate reduction processes in paddy soil. Here, using the 15N-tracer and microbial molecular techniques, we investigated the effects of MPs (200-400 μm) made of polystyrene (PS), polyvinyl chloride (PVC), and polyethylene (PE) on denitrification, anaerobic ammonium oxidation (Anammox), and dissimilatory nitrate reduction to ammonium (DNRA) and the associated microbial community in a black paddy soil. All MPs increased the Anammox rate by 6.6 %-745 % and decreased the DNRA rate by 15.1 %-74.2 %, while MPs of PS and PE significantly increased the denitrification rate by 79.3 %-102.3 % and 34.8 %-62.1 %, respectively. The MPs promoted the partitioning of NO3- towards denitrification and Anammox while inhibiting DNRA, as suggested by the decreased relative contributions of DNRA from 24.1 % to 5.4 %-14.2 % following MPs amendment. This was attributed to the increased denitrification gene abundance and the enriched specific denitrifier taxa, as well as the decreased DNRA gene abundance. Our findings suggest that the stimulated denitrification and Anammox by MPs, accompanied by the suppression of DNRA, may lead to substantial nitrogen loss in paddy fields, underscoring the need to further evaluate the environmental behaviors of MPs in agricultural ecosystems.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yanchao Chai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chenglin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ke Jin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Han Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
20
|
Liu Z, Wen J, Liu Z, Wei H, Zhang J. Polyethylene microplastics alter soil microbial community assembly and ecosystem multifunctionality. ENVIRONMENT INTERNATIONAL 2024; 183:108360. [PMID: 38128384 DOI: 10.1016/j.envint.2023.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Although pervasive microplastics (MPs) pollution in terrestrial ecosystems invites increasing global concern, impact of MPs on soil microbial community assembly and ecosystem multifunctionality received relatively little attention. Here, we manipulated a mesocosm experiment to investigate how polyethylene MPs (PE MPs; 0, 1%, and 5%, w/w) influence ecosystem functions including plant production, soil quality, microbial community diversity and assembly, enzyme activities in carbon (C), nitrogen (N) and phosphorus (P) cycling, and multifunctionality in the maize-soil continuum. Results showed that PE MPs exerted negligible effect on plant biomass (dry weight). The treatment of 5% PE MPs caused declines in the availability of soil water, C and P, whereas enhanced soil pH and C storage. The activity of C-cycling enzymes (α/β-1, 4-glucosidase and β-D-cellobiohydrolase) was promoted by 1% PE MPs, while that of β-1, 4-glucosidase was inhibited by 5% PE MPs. The 5% PE MPs reduced the activity of N-cycling enzymes (protease and urease), whereas increased that of the P-cycling enzyme (alkaline phosphatase). The 5% PE MPs shifted soil microbial community composition, and increased the number of specialist species, microbial community stability and networks resistance. Moreover, PE MPs altered microbial community assembly, with 5% treatment decreasing dispersal limitation proportion (from 13.66% to 9.96%). Overall, ecosystem multifunctionality was improved by 1% concentration, while reduced by 5% concentration of PE MPs. The activity of α/β-1, 4-glucosidase, urease and protease, and ammonium-N content were the most important predictors of ecosystem multifunctionality. These results underscore that PE MPs can alter soil microbial community assembly and ecosystem multifunctionality, and thus development and implementation of practicable solutions to control soil MPs pollution become increasingly imperative in sustainable agricultural production.
Collapse
Affiliation(s)
- Ziqiang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhenxiu Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hui Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaen Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Lu S, Hao J, Yang H, Chen M, Lian J, Chen Y, Brown RW, Jones DL, Wan Z, Wang W, Chang W, Wu D. Earthworms mediate the influence of polyethylene (PE) and polylactic acid (PLA) microplastics on soil bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166959. [PMID: 37696400 DOI: 10.1016/j.scitotenv.2023.166959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
There is a growing body of evidence that suggests that both biodegradable and conventional (non-degradable) microplastics (MP) are hazardous to soil health by affecting the delivery of key ecological functions such as litter decomposition, nutrient cycling and water retention. Specifically, soil fauna may be harmed by the presence of MPs while also being involved in their disintegration, degradation, migration and transfer in soil. Therefore, a comprehensive understanding of the interactions between MPs and soil fauna is essential. Here, we conducted a 120-day soil microcosm experiment applying polyethylene (PE) and polylactic acid (PLA), in the absence/presence of the earthworm Eisenia nordenskioldi to estimate the relative singular and combined impact of MPs and earthworms on the soil bacterial community. Our findings revealed contrasting effects of PE and PLA on the composition and diversity of soil bacteria. All treatments affected the community and network structure of the soil bacterial community. Compared to the control (no MPs or earthworms), PE decreased bacterial alpha diversity, while PLA increased it. Patescibacteria were found to be significantly abundant in the PE group whereas Actinobacteria and Gemmatimonadetes were more abundant in PE, and PLA and earthworms groups. The presence of earthworms appeared to mediate the impact of PE/PLA on soil bacteria, potentially through bacterial consumption or by altering soil properties (e.g., pH, aeration, C availability). Earthworm presence also appeared to promote the chemical aging of PLA. Collectively, our results provide novel insights into the soil-fauna-driven impact of degradable/nondegradable MPs exposure on the long-term environmental risks associated with soil microorganisms.
Collapse
Affiliation(s)
- Siyuan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Jiahua Hao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Hao Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Mengya Chen
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yalan Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Robert W Brown
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Zhuoma Wan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Wei Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Wenjin Chang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Donghui Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
22
|
Chen C, Yin G, Li Q, Gu Y, Sun D, An S, Liang X, Li X, Zheng Y, Hou L, Liu M. Effects of microplastics on denitrification and associated N 2O emission in estuarine and coastal sediments: insights from interactions between sulfate reducers and denitrifiers. WATER RESEARCH 2023; 245:120590. [PMID: 37703755 DOI: 10.1016/j.watres.2023.120590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Global estuarine and coastal zones are facing severe microplastics (MPs) pollution. Sulfate reducers (SRB) and denitrifiers (DNB) are two key functional microorganisms in these zones, exhibiting intricate interactions. However, whether and how MPs modulate the interactions between SRB and DNB, with implications for denitrification and associated N2O emissions, remains poorly understood. Here, we simultaneously investigated the spatial response patterns of SRB-DNB interactions and denitrification and associated N2O emissions to different MPs exposure along an estuarine gradient in the Yangtze Estuary. Spatial responses of denitrification to polyvinyl chloride (PVC) and polyadipate/butylene terephthalate (PBAT) MPs exposure were heterogeneous, while those of N2O emissions were not. Gradient-boosted regression tree and multiple regression model analyses showed that sulfide, followed by nitrate (NO3-), controlled the response patterns of denitrification to MPs exposure. Further mechanistic investigation revealed that exposure to MPs resulted in a competitive and toxic (sulfide accumulation) inhibition of SRB on DNB, ultimately inhibiting denitrification at upstream zones with high sulfide but low NO3- levels. Conversely, MPs exposure induced a competitive inhibition of DNB on SRB, generally promoting denitrification at downstream zones with low sulfide but high NO3- levels. These findings advance the current understanding of the impacts of MPs on nitrogen cycle in estuarine and coastal zones, and provide a novel insight for future studies exploring the response of biogeochemical cycles to MPs in various ecosystems.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| | - Qiuxuan Li
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Youran Gu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Dongyao Sun
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Soonmo An
- Department of Oceanography, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| |
Collapse
|