1
|
Al-Ghafry M, Abou-Ismail MY, Acharya SS. Inherited Disorders of the Fibrinolytic Pathway: Pathogenic Phenotypes and Diagnostic Considerations of Extremely Rare Disorders. Semin Thromb Hemost 2024. [PMID: 39299257 DOI: 10.1055/s-0044-1789596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Fibrinolysis is initiated by the activation of plasminogen to plasmin via tissue-plasminogen activator (tPA) and urokinase-plasminogen activator (uPA); plasmin then converts fibrin to fibrin degradation products (FDPs). The antifibrinolytics counterbalancing this system include plasminogen activator inhibitor-1 (PAI-1), which inhibits tPA and uPA, α-2 antiplasmin (α2AP), which inhibits plasmin, and thrombin activatable fibrinolysis inhibitor, which inhibits the conversion of fibrin to FDP. Inherited disorders of the fibrinolytic pathway are rare and primarily have hemorrhagic phenotypes in humans: PAI-1 deficiency, α2AP deficiency, and Quebec platelet disorder. Patients with these disorders are usually treated for bleeds or receive prophylaxis to prevent bleeds in the surgical setting, with pharmacological antifibrinolytics such as aminocaproic acid and tranexamic acid. Disorders of the fibrinolytic pathway with fibrin deposition are extremely rare, mostly noted in patients with plasminogen deficiency, who have more recently benefited from advances in human plasma-derived plasminogen concentrates administered intravenously or locally. These disorders can be very difficult to diagnose using conventional or even specialized coagulation testing, as testing can be nonspecific or have low sensitivity. Testing of the corresponding protein's activity and antigen (where applicable) can be obtained in specialized centres, and routine laboratory measures are not diagnostic. Genetic testing of the pathogenic mutations is recommended in patients with a high suspicion of an inherited disorder of the fibrinolytic pathway.
Collapse
Affiliation(s)
- Maha Al-Ghafry
- Division of Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, Florida
| | - Mouhamed Yazan Abou-Ismail
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Suchitra S Acharya
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant - Cohen Children's Medical Center, New Hyde Park, New York
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| |
Collapse
|
2
|
Mathews N, Tasneem S, Hayward CPM. Rare inherited coagulation and fibrinolytic defects that challenge diagnostic laboratories. Int J Lab Hematol 2023. [PMID: 37211424 DOI: 10.1111/ijlh.14084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Coagulation factors, anticoagulants, and fibrinolytic proteins are important for hemostasis, and mutations affecting these proteins causes some rare inherited bleeding disorders that are particularly challenging to diagnose. AIMS This review provides current information on rare inherited bleeding disorders that are difficult to diagnose. MATERIAL & METHODS A review of the literature was conducted for up to date information on rare and difficult to diagnose bleeding disorders. RESULTS Some rare bleeding disorders cause an inherited deficiency of multiple coagulation factors (F), such as combined FV and FVIII deficiency and familial vitamin K-dependent clotting factor deficiency. Additionally, congenital disorders of glycosylation can affect a variety of procoagulant and anticoagulant proteins and also platelets. Some bleeding disorders reflect mutations with unique impairments in the procoagulant/anticoagulant balance, including those caused by F5 mutations that secondarily increase the plasma levels of tissue factor pathway inhibitor as well as THBD mutations that increase functional thrombomodulin in plasma or cause a consumptive coagulopathy due to thrombomodulin deficiency. Some bleeding disorders accelerate fibrinolysis due to loss-of-function mutations in SERPINE1 and SERPINF2 or in the case of Quebec platelet disorder, a duplication mutation that rewires PLAU and selectively increases expression in megakaryocytes, resulting in a unique platelet-dependent gain-of-function defect in fibrinolysis. DISCUSSION Current information on rare and difficult to diagnose bleeding disorders indicates they have unique clinical and laboratory features, and pathogenic characteristics to consider for diagnostic evaluation. CONCLUSION Laboratories and clinicians should consider rare inherited disorders, and difficult to diagnose conditions, in their strategy for diagnosing bleeding disorders.
Collapse
Affiliation(s)
- Natalie Mathews
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Catherine P M Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Human reproduction is remarkably inefficient; with pregnancy loss occurring in 10-30% of clinically recognized pregnancies. Of those, 3-5% of couples experience recurrent pregnancy loss (RPL), more than 50% of who never receive an underlying diagnosis. Herein, we review evidence that genetic changes, including pathogenic variant(s) in highly penetrant genes, may provide an explanation for a proportion of couples with pregnancy loss. RECENT FINDINGS Genetic abnormalities that may predispose to pregnancy loss include chromosomal aneuploidy, copy number variants, single-gene changes and others. Although previously limited by the need for hypothesis-driven assessment, advancement of various molecular technologies have sheparded in the opportunity to identify molecular cause of highly heterogeneous conditions, including RPL. The identification of causative genetic aberrations associated with RPL demonstrates a promising area of further research. SUMMARY The journey of human development from a single-cell zygote to a term infant is complex process. Early research into copy number variants and highly penetrant single-gene changes may provide diagnosis for a proportion of couples with RPL as well as inform genes critical for early human development.
Collapse
Affiliation(s)
- Christina G Tise
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Stanford, California, USA
| | | |
Collapse
|
4
|
Sillen M, Declerck PJ. Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition. Front Cardiovasc Med 2020; 7:622473. [PMID: 33415130 PMCID: PMC7782431 DOI: 10.3389/fcvm.2020.622473] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 01/31/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a member of the serine protease inhibitor (serpin) superfamily with antiprotease activity, is the main physiological inhibitor of tissue-type (tPA) and urokinase-type (uPA) plasminogen activators (PAs). Apart from being crucially involved in fibrinolysis and wound healing, PAI-1 plays a pivotal role in various acute and chronic pathophysiological processes, including cardiovascular disease, tissue fibrosis, cancer, and age-related diseases. In the prospect of treating the broad range of PAI-1-related pathologies, many efforts have been devoted to developing PAI-1 inhibitors. The use of these inhibitors, including low molecular weight molecules, peptides, antibodies, and antibody fragments, in various animal disease models has provided ample evidence of their beneficial effect in vivo and moved forward some of these inhibitors in clinical trials. However, none of these inhibitors is currently approved for therapeutic use in humans, mainly due to selectivity and toxicity issues. Furthermore, the conformational plasticity of PAI-1, which is unique among serpins, poses a real challenge in the identification and development of PAI-1 inhibitors. This review will provide an overview of the structural insights into PAI-1 functionality and modulation thereof and will highlight diverse approaches to inhibit PAI-1 activity.
Collapse
Affiliation(s)
| | - Paul J. Declerck
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
The utility of thromboelastography and tranexamic acid in plasminogen activator inhibitor deficiency during pregnancy: a rare case report. Blood Coagul Fibrinolysis 2020; 31:87-91. [DOI: 10.1097/mbc.0000000000000869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Abstract
Deficiencies or excessive activation of the fibrinolytic system can result in severe, lifelong bleeding disorders. The most severe clinical phenotype is caused by α2-Antiplasmin (α2-AP) deficiency which results in excess fibrinolysis due to the inability to inhibit plasmin. Another bleeding disorder due to a defect in the fibrinolytic pathway results from Plasminogen activator inhibitor-1 (PAI-1) deficiency causing enhanced fibrinolysis due to the decreased inhibition of plasminogen activators resulting in increased conversion of plasminogen to plasmin. Both these disorders are rare and have an autosomal recessive pattern of inheritance. They can remain undetected as routine coagulation and platelet function tests are normal. A unique gain-of-function defect in fibrinolysis causes the Quebec platelet disorder (QPD) which is characterized by profibrinolytic platelets containing increased urokinase-type plasminogen activator (uPA) in the α-granules. A high index of suspicion based on clinical phenotype along with the availability of specialized hemostasis testing is required for timely and accurate diagnosis. Antifibrinolytic agents, such as tranexamic acid or ε-aminocaproic acid, are the mainstays of treatment which inhibit fibrinolysis by preventing the binding of plasminogen to fibrin and thereby stabilizing the fibrin clot. The purpose of this review is to summarize the pathogenesis, clinical phenotype, approaches to diagnosis and treatment for these three major disorders of fibrinolysis.
Collapse
Affiliation(s)
- Shilpa Jain
- Division of Pediatric Hematology-Oncology, John R. Oishei Children's Hospital and Western New York BloodCare, Buffalo, NY, USA.
| | - Suchitra S Acharya
- Bleeding Disorders and Thrombosis Program, Cohen Children's Medical Center, New York, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
7
|
Shapiro A. The use of prophylaxis in the treatment of rare bleeding disorders. Thromb Res 2019; 196:590-602. [PMID: 31420204 DOI: 10.1016/j.thromres.2019.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022]
Abstract
Rare bleeding disorders (RBDs) are a heterogeneous group of coagulation factor deficiencies that include fibrinogen, prothrombin, α2-antiplasmin, plasminogen activator inhibitor-1, and factors II, V, V/VIII, VII, X, XI and XIII. The incidence varies based upon the disorder and typically ranges from 1 in 500,000 to 1 per million population. Symptoms vary with the disorder and residual level of the clotting factor, and can range from relatively minor such as epistaxis, to life threatening, such as intracranial hemorrhage. Rapid treatment of bleeding episodes in individuals with severe bleeding phenotypes is essential to preserve life or limb and to prevent long-term sequelae; therapeutic options depend on the deficiency and range from plasma-derived (eg, fresh frozen plasma, prothrombin complex concentrates, factor X concentrate) to highly purified and recombinant single factor concentrates. The rarity of these disorders limits the feasibility of conventional prospective clinical trials; instead, clinicians rely upon registries, published case reports/series and experience to guide treatment. In some disorders, long-term prophylactic therapy is administered in response to the bleeding phenotype in an individual patient or based on the known natural history and severity of the deficiency. Intermittent prophylaxis, surrounding surgery, pregnancy, labor, and menstruation may be required to prevent or control excessive bleeding. This review summarizes therapeutic options, guidelines, recommendations and observations from the published literature for long-term, surgical, gynecological, and obstetric prophylaxis in deficiencies of fibrinogen; prothrombin; factors II, V, V/VIII, VII, X, XI and XIII; combined vitamin-K dependent factors; α2-antiplasmin; and plasminogen activator inhibitor 1. Platelet disorders including Glanzmann's thrombasthenia and Bernard-Soulier syndrome are also addressed.
Collapse
Affiliation(s)
- Amy Shapiro
- Indiana Hemophilia & Thrombosis Center, 8326 Naab Rd., Indianapolis, IN 46260, USA.
| |
Collapse
|
8
|
Wyganowska-Świątkowska M, Tarnowski M, Murtagh D, Skrzypczak-Jankun E, Jankun J. Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review). Int J Mol Med 2018; 43:15-25. [PMID: 30431071 PMCID: PMC6257838 DOI: 10.3892/ijmm.2018.3983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022] Open
Abstract
The mortality rates of cancer patients decreased by ~1.5% per year between 2001 and 2015, although the decrease depends on patient sex, ethnic group and type of malignancy. Cancer remains a significant global health problem, requiring a search for novel treatments. The most common property of malignant tumors is their capacity to invade adjacent tissue and to metastasize, and this cancer aggressiveness is contingent on overexpression of proteolytic enzymes. The components of the plasminogen activation system (PAS) and the metal-loproteinase family [mainly matrix metalloproteinases (MMPs)] are overexpressed in malignant tumors, driving the local invasion, metastasis and angiogenesis. This is the case for numerous types of cancer, such as breast, colon, prostate and oral carcinoma, among others. Present chemotherapeutics agents typically attack all dividing cells; however, for future therapeutic agents to be clinically successful, they need to be highly selective for a specific protein(s) and act on the cancerous tissues without adverse systemic effects. Inhibition of proteolysis in cancerous tissue has the ability to attenuate tumor invasion, angiogenesis and migration. For that purpose, inhibiting both PAS and MMPs may be another approach, since the two groups of enzymes are overexpressed in cancer. In the present review, the roles and new findings on PAS and MMP families in cancer formation, growth and possible treatments are discussed.
Collapse
Affiliation(s)
| | | | - Daniel Murtagh
- Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
| | - Ewa Skrzypczak-Jankun
- Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
| | - Jerzy Jankun
- Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
| |
Collapse
|
9
|
Saes JL, Schols SEM, van Heerde WL, Nijziel MR. Hemorrhagic disorders of fibrinolysis: a clinical review. J Thromb Haemost 2018; 16:S1538-7836(22)02207-3. [PMID: 29847021 DOI: 10.1111/jth.14160] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 12/28/2022]
Abstract
Hyperfibrinolytic bleeding can be caused by a deficiency of one of the inhibitors of fibrinolysis (plasminogen activator inhibitor type 1 [PAI-1] or α2-antiplasmin [α2-AP]), or an excess of one of the activators of fibrinolysis: tissue-type plasminogen activator or urokinase-type plasminogen activator. This review focuses on the clinical implications of these disorders. The bleeding phenotype of fibrinolytic disorders is characterized by delayed bleeding after trauma, surgery and dental procedures. Bleeding in areas of high fibrinolytic activity is also common, such as menorrhagia and epistaxis. Patients with α2-AP deficiency present with the most severe bleeding episodes. Recently, it was discovered that hyperfibrinolytic disorders are associated with a high rate of obstetric complications such as miscarriage and preterm birth, especially in PAI-1 deficient patients. Hyperfibrinolytic disorders are probably underdiagnosed because of lack of knowledge and lack of accurate diagnostic tests. A substantial part of the large group of patients diagnosed as 'bleeding of unknown origin' could actually have a hyperfibrinolytic disorder. In the case of a high index of suspicion (i.e. because of a positive family history, recurrent bleeding or uncommon type of bleeding such as an intramedullary hematoma), further testing should not be withheld because of normal results of standard hemostatic screening assays. Timely diagnosis is important because these disorders can generally be treated well with antifibrinolytic agents.
Collapse
Affiliation(s)
- J L Saes
- Department of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
- Haemophilia Treatment Center, Nijmegen-Eindhoven-Maastricht, the Netherlands
| | - S E M Schols
- Department of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
- Haemophilia Treatment Center, Nijmegen-Eindhoven-Maastricht, the Netherlands
| | - W L van Heerde
- Haemophilia Treatment Center, Nijmegen-Eindhoven-Maastricht, the Netherlands
| | - M R Nijziel
- Department of Hematology, Catharina Hospital, Eindhoven, the Netherlands
| |
Collapse
|
10
|
Nagahashi K, Takano K, Suzuki-Inoue K, Kanayama N, Umemura K, Urano T, Iwaki T. Mutation in a highly conserved glycine residue in strand 5B of plasminogen activator inhibitor 1 causes polymerisation. Thromb Haemost 2017; 117:860-869. [DOI: 10.1160/th16-07-0572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/27/2017] [Indexed: 11/05/2022]
Abstract
SummarySerpinopathy is characterised as abnormal accumulation of serine protease inhibitors (SERPINs) in cells and results in clinical symptoms owing to lack of SERPIN function or excessive accumulation of abnormal SERPIN. We recently identified a patient with functional deficiency of plasminogen activator inhibitor-1 (PAI-1), a member of the SERPIN superfamily. The patient exhibited life-threatening bleeding tendencies, which have also been observed in patients with a complete deficiency in PAI-1. Sequence analysis revealed a homozygous singlenucleotide substitution from guanine to cytosine at exon 9, which changed amino acid residue 397 from glycine to arginine (c.1189G>C; p.Gly397Arg). This glycine was located in strand 5B and was well conserved in other serpins. The mutant PAI-1 was polymerised in the cells, interfering with PAI-1 secretion. The corresponding mutations in SERPINC1 (anti-thrombin III) at position 456 (Gly456Arg) and SERPINI1 (neuroserpin) at position 392 (Gly392Glu) caused an anti-thrombin deficiency and severe dementia due to intracellular retention of the polymers. Glycine is the smallest amino acid, and these mutated amino acids were larger and charged. To determine which factors were important, further mutagenesis of PAI-1 was performed. Although the G397A, C, I, L, S, T, and V were secreted, the G397D, E, F, H, K, M, N, P, Q, W, and Y were not secreted. The results revealed that the size was likely triggered by the polymerisation of SEPRINs at this position. Structural analyses of this mutated PAI-1 would be useful to develop a novel PAI-1 inhibitor, which may be applicable in the context of several pathological states.
Collapse
|
11
|
Ye Y, Vattai A, Zhang X, Zhu J, Thaler CJ, Mahner S, Jeschke U, von Schönfeldt V. Role of Plasminogen Activator Inhibitor Type 1 in Pathologies of Female Reproductive Diseases. Int J Mol Sci 2017; 18:ijms18081651. [PMID: 28758928 PMCID: PMC5578041 DOI: 10.3390/ijms18081651] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 01/13/2023] Open
Abstract
Normal pregnancy is a state of hypercoagulability with diminishing fibrinolytic activity, which is mainly caused by an increase of plasminogen activator inhibitor type 1 (PAI-1). PAI-1 is the main inhibitor of plasminogen activators, including tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). In human placentas, PAI-1 is expressed in extravillous interstitial trophoblasts and vascular trophoblasts. During implantation and placentation, PAI-1 is responsible for inhibiting extra cellular matrix (ECM) degradation, thereby causing an inhibition of trophoblasts invasion. In the present study, we have reviewed the literature of various reproductive diseases where PAI-1 plays a role. PAI-1 levels are increased in patients with recurrent pregnancy losses (RPL), preeclampsia, intrauterine growth restriction (IUGR), gestational diabetes mellitus (GDM) in the previous pregnancy, endometriosis and polycystic ovary syndrome (PCOS). In general, an increased expression of PAI-1 in the blood is associated with an increased risk for infertility and a worse pregnancy outcome. GDM and PCOS are related to the genetic role of the 4G/5G polymorphism of PAI-1. This review provides an overview of the current knowledge of the role of PAI-1 in reproductive diseases. PAI-1 represents a promising monitoring biomarker for reproductive diseases and may be a treatment target in the near future.
Collapse
Affiliation(s)
- Yao Ye
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| | - Aurelia Vattai
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| | - Xi Zhang
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| | - Junyan Zhu
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| | - Christian J Thaler
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| | - Sven Mahner
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| | - Udo Jeschke
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| | - Viktoria von Schönfeldt
- Department of Gynaecology and Obstetrics, Ludwig-Maximilians University of Munich, Campus Großhadern: Marchioninistr. 15, 81377 Munich and Campus Innenstadt: Maistr. 11, 80337 Munich, Germany.
| |
Collapse
|
12
|
Afzal MZ, Gartz M, Klyachko EA, Khan SS, Shah SJ, Gupta S, Shapiro AD, Vaughan DE, Strande JL. Generation of human iPSCs from urine derived cells of patient with a novel heterozygous PAI-1 mutation. Stem Cell Res 2016; 18:41-44. [PMID: 28395801 PMCID: PMC5939958 DOI: 10.1016/j.scr.2016.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/05/2016] [Indexed: 11/17/2022] Open
Abstract
We have generated a human induced pluripotent stem cell (iPSC) line under feeder-free culture conditions using the urine derived cells (UCs) collected from subjects heterozygous for a novel Plasminogen Activator Inhibitor-1 (PAI-1) mutation. The Sendai Virus (SeV) vector encoding pluripotent Yamanaka transcription factors was used at a low multiplicity of infection to reprogram the PAI-1 UCs.
Collapse
Affiliation(s)
- Muhammad Zeeshan Afzal
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Melanie Gartz
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ekaterina A Klyachko
- Department of Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL, United States
| | - Sadiya Sana Khan
- Department of Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL, United States
| | - Sanjiv J Shah
- Department of Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL, United States
| | - Sweta Gupta
- Indiana Hemophilia and Thrombosis Center, Indianapolis, IN, United States
| | - Amy D Shapiro
- Indiana Hemophilia and Thrombosis Center, Indianapolis, IN, United States
| | - Douglas E Vaughan
- Department of Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL, United States
| | - Jennifer L Strande
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
13
|
Afzal MZ, Gartz M, Klyachko EA, Khan SS, Shah SJ, Gupta S, Shapiro AD, Vaughan DE, Strande JL. Generation of human iPSCs from urine derived cells of a patient with a novel homozygous PAI-1 mutation. Stem Cell Res 2016; 17:657-660. [PMID: 27934602 DOI: 10.1016/j.scr.2016.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/01/2016] [Indexed: 11/19/2022] Open
Abstract
We have generated a human induced pluripotent stem cell (iPSC) line under feeder-free culture conditions using the urine derived cells (UCs) collected from subject with a novel homozygous Plasminogen Activator Inhibitor-1 (PAI-1 null) mutation. The Sendai virus (SeV) vector encoding pluripotent Yamanaka transcription factors was used at a low multiplicity of infection to reprogram the PAI-1 UCs.
Collapse
Affiliation(s)
- Muhammad Zeeshan Afzal
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Melanie Gartz
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ekaterina A Klyachko
- Department of Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL, United States
| | - Sadiya Sana Khan
- Department of Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL, United States
| | - Sanjiv J Shah
- Department of Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL, United States
| | - Sweta Gupta
- Indiana Hemophilia and Thrombosis Center, Indianapolis, IN, United States
| | - Amy D Shapiro
- Indiana Hemophilia and Thrombosis Center, Indianapolis, IN, United States
| | - Douglas E Vaughan
- Department of Medicine, Northwestern University-Feinberg School of Medicine, Chicago, IL, United States
| | - Jennifer L Strande
- Department of Medicine and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
14
|
Kouides PA. Present day management of inherited bleeding disorders in pregnancy. Expert Rev Hematol 2016; 9:987-95. [DOI: 10.1080/17474086.2016.1216312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Hirose J, Takedani H, Kubota M, Kinkawa J, Noguchi M. Total hip arthroplasty and total knee arthroplasty in a patient with congenital deficiency of plasminogen activator inhibitor‐1. Haemophilia 2016; 22:e237-9. [DOI: 10.1111/hae.12929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2016] [Indexed: 11/27/2022]
Affiliation(s)
- J. Hirose
- Department of Joint Surgery Research Hospital The Institute of Medical Science The University of Tokyo Minato‐ku Tokyo Japan
| | - H. Takedani
- Department of Joint Surgery Research Hospital The Institute of Medical Science The University of Tokyo Minato‐ku Tokyo Japan
| | - M. Kubota
- Department of Joint Surgery Research Hospital The Institute of Medical Science The University of Tokyo Minato‐ku Tokyo Japan
| | - J. Kinkawa
- Department of Joint Surgery Research Hospital The Institute of Medical Science The University of Tokyo Minato‐ku Tokyo Japan
| | - M. Noguchi
- Department of Joint Surgery Research Hospital The Institute of Medical Science The University of Tokyo Minato‐ku Tokyo Japan
| |
Collapse
|