1
|
Krzyżek P, Dudek B, Brożyna M, Krzyżanowska B, Junka A. Galleria mellonella larvae as a model for Helicobacter pylori biofilm formation under antibiotic stress. Microb Pathog 2025; 198:107121. [PMID: 39551111 DOI: 10.1016/j.micpath.2024.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Helicobacter pylori is a common Gram-negative bacterium that inhabits the human stomach and causes a variety of gastric pathologies. One of the growing concerns is its dynamic spread of antibiotic resistance, a process in which biofilm formation is involved. Therefore, it is necessary to find an appropriate, high-throughput research model for the in vivo biofilm development by H. pylori. The aim of the current research report was to determine the usefulness of G. mellonella larvae in assessing the survival of a multidrug-resistant, strong biofilm producing H. pylori strain during its exposure to stress caused by clarithromycin. Using infection models lasting for 3 or 6 days, we confirmed the ability of the tested H. pylori strain to survive in the larvae. We noticed that exposure to clarithromycin significantly reduced the number of cultured bacteria relative to the control, although we did not observe any differences in the number of bacteria using time-lapse, live analysis of fluorescently stained larval hemolymph samples. In conclusion, we confirmed that the examined H. pylori strain can produce biofilm in G. mellonella larvae organism and is able to survive exposure to minimal inhibitory concentrations of clarithromycin (established in vitro) in in vivo conditions. Further refinement of methodologies for monitoring the viability of clinical H. pylori strains in the greater wax moth larvae will enhance the accuracy and reliability of this promising research model.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | - Bartłomiej Dudek
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | - Malwina Brożyna
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Barbara Krzyżanowska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Junka
- Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
2
|
Tu Z, Wang Y, Liang J, Liu J. Helicobacter pylori-targeted AI-driven vaccines: a paradigm shift in gastric cancer prevention. Front Immunol 2024; 15:1500921. [PMID: 39669583 PMCID: PMC11634812 DOI: 10.3389/fimmu.2024.1500921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Helicobacter pylori (H. pylori), a globally prevalent pathogen Group I carcinogen, presents a formidable challenge in gastric cancer prevention due to its increasing antimicrobial resistance and strain diversity. This comprehensive review critically analyzes the limitations of conventional antibiotic-based therapies and explores cutting-edge approaches to combat H. pylori infections and associated gastric carcinogenesis. We emphasize the pressing need for innovative therapeutic strategies, with a particular focus on precision medicine and tailored vaccine development. Despite promising advancements in enhancing host immunity, current Helicobacter pylori vaccine clinical trials have yet to achieve long-term efficacy or gain approval regulatory approval. We propose a paradigm-shifting approach leveraging artificial intelligence (AI) to design precision-targeted, multiepitope vaccines tailored to multiple H. pylori subtypes. This AI-driven strategy has the potential to revolutionize antigen selection and optimize vaccine efficacy, addressing the critical need for personalized interventions in H. pylori eradication efforts. By leveraging AI in vaccine design, we propose a revolutionary approach to precision therapy that could significantly reduce H. pylori -associated gastric cancer burden.
Collapse
Affiliation(s)
| | | | | | - Jinping Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Khadka S, Dziadowicz SA, Xu X, Wang L, Hu G, Carrero JA, DiPaolo RJ, Busada JT. Endogenous glucocorticoids are required for normal macrophage activation and gastric Helicobacter pylori immunity. Am J Physiol Gastrointest Liver Physiol 2024; 327:G531-G544. [PMID: 39041676 PMCID: PMC11482275 DOI: 10.1152/ajpgi.00114.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Glucocorticoids are steroid hormones well known for their potent anti-inflammatory effects. However, their immunomodulatory properties are multifaceted. Increasing evidence suggests that glucocorticoid signaling promotes effective immunity and that disruption of glucocorticoid signaling impairs immune function. In this study, we conditionally deleted the glucocorticoid receptor (GR) in the myeloid lineage using the LysM-Cre driver (myGRKO). We examined the impact on macrophage activation and gastric immune responses to Helicobacter pylori, the best-known risk factor of gastric cancer. Our results indicate that, compared with wild type (WT), glucocorticoid receptor knockout (GRKO) macrophages exhibited higher expression of proinflammatory genes in steroid-free conditions. However, when challenged in vivo, GRKO macrophages exhibited aberrant chromatin landscapes and impaired proinflammatory gene expression profiles. Moreover, gastric colonization with H. pylori revealed impaired gastric immune responses and reduced T cell recruitment in myGRKO mice. As a result, myGRKO mice were protected from atrophic gastritis and pyloric metaplasia development. These results demonstrate a dual role for glucocorticoid signaling in preparing macrophages to respond to bacterial infection but limiting their pathogenic activation. In addition, our results support that macrophages are critical for gastric H. pylori immunity.NEW & NOTEWORTHY Signaling by endogenous glucocorticoids primes macrophages toward more robust responses to pathogens. Disruption of glucocorticoid signaling caused dysregulation of the chromatin landscape, blunted proinflammatory gene activation upon bacterial challenge, and impaired the gastric inflammatory response to Helicobacter pylori infection.
Collapse
Affiliation(s)
- Stuti Khadka
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Sebastian A Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Xiaojiang Xu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Javier A Carrero
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Jonathan T Busada
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| |
Collapse
|
4
|
Guo Y, Cui Y, Sun M, Zhu X, Zhang Y, Lu J, Li C, Lv J, Guo M, Liu X, Chen Z, Du X, Huo X. Establishment and Application of a Novel Genetic Detection Panel for SNPs in Mongolian Gerbils. Genes (Basel) 2024; 15:817. [PMID: 38927752 PMCID: PMC11202554 DOI: 10.3390/genes15060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The Mongolian gerbil is a distinctive experimental animal in China, as its genetic qualities possess significant value in the field of medical biology research. Here, we aimed to establish an economical and efficient panel for genetic quality detection in Mongolian gerbils using single-nucleotide polymorphism (SNP) markers. To search for SNPs, we conducted whole-genome sequencing (WGS) in 40 Mongolian gerbils from outbred populations. Reliable screening criteria were established to preliminarily select SNPs with a wide genome distribution and high levels of polymorphism. Subsequently, a multiple-target regional capture detection system based on second-generation sequencing was developed for SNP genotyping. Based on the results of WGS, 219 SNPs were preliminarily selected, and they were established and optimized in a multiple-amplification system that included 206 SNP loci by genotyping three outbred populations. PopGen.32 analysis revealed that the average effective allele number, Shannon index, observed heterozygosity, expected heterozygosity, average heterozygosity, polymorphism information content, and other population genetic parameters of the Capital Medical University (CMU) gerbils were the highest, followed by those of Zhejiang gerbils and Dalian gerbils. Through scientific screening and optimization, we successfully established a novel, robust, and cost-effective genetic detection system for Mongolian gerbils by utilizing SNP markers for the first time.
Collapse
Affiliation(s)
- Yafang Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Yutong Cui
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Minghe Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Xiao Zhu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Yilang Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Jing Lu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Jianyi Lv
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Meng Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Xin Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| |
Collapse
|
5
|
Druffner SR, Venkateshwaraprabu S, Khadka S, Duncan BC, Morris MT, Sen-Kilic E, Damron FH, Liechti GW, Busada JT. Comparison of gastric inflammation and metaplasia induced by Helicobacter pylori or Helicobacter felis colonization in mice. Microbiol Spectr 2024; 12:e0001524. [PMID: 38682907 PMCID: PMC11237807 DOI: 10.1128/spectrum.00015-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024] Open
Abstract
Gastric cancer is the fifth most diagnosed cancer in the world. Infection by the bacteria Helicobacter pylori (HP) is associated with approximately 75% of gastric cancer cases. HP infection induces chronic gastric inflammation, damaging the stomach and fostering carcinogenesis. Most mechanistic studies on gastric cancer initiation are performed in mice and utilize either mouse-adapted strains of HP or the natural mouse pathogen Helicobacter felis (HF). Here, we identified the differences in gastric inflammation, atrophy, and metaplasia associated with HP and HF infection in mice. PMSS1 HP strain or the CS1 HF strain were co-cultured with mouse peritoneal macrophages to assess their immunostimulatory effects. HP and HF induced similar cytokine production from cultured mouse peritoneal macrophages revealing that both bacteria exhibit similar immunostimulatory effects in vitro. Next, C57BL/6J mice were infected with HP or HF and were assessed 2 months post-infection. HP-infected mice caused modest inflammation within both the gastric corpus and antrum, and did not induce significant atrophy within the gastric corpus. In contrast, HF induced significant inflammation throughout the gastric corpus and antrum. Moreover, HF infection was associated with significant atrophy of the chief and parietal cell compartments and induced the expression of pyloric metaplasia (PM) markers. HP is poorly immunogenic compared to HF. HF induces dramatic CD4+ T cell activation, which is associated with increased gastric cancer risk in humans. Thus, HP studies in mice are better suited for studies on colonization, while HF is more strongly suited for studies on the effects of gastric inflammation on tumorigenesis. . IMPORTANCE Mouse infection models with Helicobacter species are widely used to study Helicobacter pathogenesis and gastric cancer initiation. However, Helicobacter pylori is not a natural mouse pathogen, and mouse-adapted H. pylori strains are poorly immunogenic. In contrast, Helicobacter felis is a natural mouse pathogen that induces robust gastric inflammation and is often used in mice to investigate gastric cancer initiation. Although both bacterial strains are widely used, their disease pathogenesis in mice differs dramatically. However, few studies have directly compared the pathogenesis of these bacterial species in mice, and the contrasting features of these two models are not clearly defined. This study directly compares the gastric inflammation, atrophy, and metaplasia development triggered by the widely used PMSS1 H. pylori and CS1 H. felis strains in mice. It serves as a useful resource for researchers to select the experimental model best suited for their studies.
Collapse
Affiliation(s)
- Sara R. Druffner
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Shrinidhi Venkateshwaraprabu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Stuti Khadka
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Benjamin C. Duncan
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Maeve T. Morris
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Fredrick H. Damron
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - George W. Liechti
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jonathan T. Busada
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| |
Collapse
|
6
|
Khadka S, Dziadowicz SA, Xu X, Wang L, Hu G, Busada JT. Endogenous glucocorticoids are required for normal macrophage activation and gastric Helicobacter pylori immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.575574. [PMID: 38293225 PMCID: PMC10827053 DOI: 10.1101/2024.01.14.575574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Glucocorticoids are steroid hormones well-known for their potent anti-inflammatory effects. However, their immunomodulatory properties are multifaceted. Increasing evidence suggests that glucocorticoid signaling promotes effective immunity and that disruption of glucocorticoid signaling impairs immune function. In this study, we conditionally deleted the glucocorticoid receptor (GR) in the myeloid lineage using the LysM-Cre driver (myGRKO). We examined the impact on macrophage activation and gastric immune responses to Helicobacter pylori , the best-known risk factor of gastric cancer. Our results indicate that compared to WT, GRKO macrophages exhibited higher expression of proinflammatory genes in steroid-free conditions. However, when challenged in vivo, GRKO macrophages exhibited aberrant chromatin landscapes and impaired proinflammatory gene expression profiles. Moreover, gastric colonization with Helicobacter revealed impaired gastric immune responses and reduced T cell recruitment in myGRKO mice. As a result, myGRKO mice were protected from atrophic gastritis and pyloric metaplasia development. These results demonstrate a dual role for glucocorticoid signaling in preparing macrophages to respond to bacterial infection but limiting their pathogenic activation. In addition, our results support that macrophages are critical for gastric anti- Helicobacter immunity.
Collapse
|
7
|
Druffner SR, Venkateshwaraprabu S, Khadka S, Duncan BC, Morris MT, Sen-Kilic E, Damron FH, Liechti GW, Busada JT. Comparison of gastric inflammation and metaplasia induced by Helicobacter pylori or Helicobacter felis colonization in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573128. [PMID: 38187587 PMCID: PMC10769338 DOI: 10.1101/2023.12.22.573128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Background Gastric cancer is the fifth most diagnosed cancer in the world. Infection by the bacteria Helicobacter pylori (HP) is associated with approximately 75% of gastric cancer cases. HP infection induces chronic gastric inflammation, damaging the stomach and fostering carcinogenesis. Most mechanistic studies on Helicobacter- induced gastric cancer initiation are performed in mice and utilize either mouse-adapted strains of HP or the natural mouse pathogen Helicobacter felis (HF). Each of these infection models is associated with strengths and weaknesses. Here, we identified the differences in immunogenicity and gastric pathological changes associated with HP and HF infection in mice. Material and Methods PMSS1 HP strain or with the CS1 HF strain were co-cultured with mouse peritoneal macrophages to assess their immunostimulatory effects. C57BL/6J mice were infected with HP or HF, and gastric inflammation, atrophy, and metaplasia development were assessed 2 months post-infection. Results HP and HF induced similar cytokine production from cultured mouse peritoneal macrophages. HP-infected mice caused modest inflammation within both the gastric corpus and antrum and did not induce significant atrophy within the gastric corpus. In contrast, HF induced significant inflammation throughout the gastric corpus and antrum. Moreover, HF infection was associated with significant atrophy of the chief and parietal cell compartments and induced expression of pyloric metaplasia markers. Conclusions HP is poorly immunogenic compared to HF. HF induces dramatic CD4+ T cell activation, which is associated with increased gastric cancer risk in humans. Thus, HP studies in mice are better suited for studies on colonization, while HF is more strongly suited for pathogenesis and cancer initiation studies.
Collapse
|
8
|
Zeng X, Hu L, Ai Q, Liu CJ, Xiong LX, Yang WW, Zhang X, Liu L, Li GQ. Helicobacter macacae MazF interplays with Escherichia coli homologs and enhances antibiotic tolerance. Helicobacter 2023; 28:e13014. [PMID: 37559199 DOI: 10.1111/hel.13014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Toxin-antitoxin systems are highly variable, even among strains of the same bacterial species. The MazEF toxin-antitoxin system is found in many bacteria and plays important roles in various biological processes such as antibiotic tolerance and phage defense. However, no interplay of MazEF systems between different species was reported. MATERIALS AND METHODS MazEF toxin-antitoxin system of Helicobacter macacae was examined in three Escherichia coli strains with and without endogenous MazEF knockout. In vivo toxicity, antibiotic tolerance, and live/dead staining followed by flowcytometry analysis were performed to evaluate the functionality and interplay of the toxin-antitoxin system between the two species. RESULTS Controlled ectopic expression of MazF of H. macacae (MazFhm) in E. coli did not affect its growth. However, in endogenous MazEF knockout E. coli strains, MazFhm expression caused a sharp growth arrest. The toxicity of MazFhm could be neutralized by both the antitoxin of MazE homolog of H.macacae and the antitoxin of MazE of E. coli, indicating interplay of MazEF toxin-antitoxin systems between the two species. Induced expression of MazFhm enhanced tolerance to a lethal dose of levofloxacin, suggesting enhanced persister formation, which was further confirmed by live/dead cell staining. CONCLUSIONS The MazEF toxin-antitoxin system of H. macace enhances persister formation and thus antibiotic tolerance in E. coli. Our findings reveal an interplay between the MazEF systems of H. macacae and E. coli, emphasizing the need to consider this interaction while evaluating the toxicity and functionality of MazF homologs from different species in future studies.
Collapse
Affiliation(s)
- Xi Zeng
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Gastroenterology, The First Affiliated Hospital of Shaoyang University, Shaoyang, China
| | - Limiao Hu
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qi Ai
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Cai-Juan Liu
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Lu-Xi Xiong
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei-Wei Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Logen Liu
- Clinical Research Center, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, University of South China, Hengyang, China
| | - Guo-Qing Li
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, University of South China, Hengyang, China
| |
Collapse
|