1
|
Faydaver M, Festinese V, Di Giacinto O, El Khatib M, Raspa M, Scavizzi F, Bonaventura F, Mastrorilli V, Berardinelli P, Barboni B, Russo V. Predictive Neuromarker Patterns for Calcification Metaplasia in Early Tendon Healing. Vet Sci 2024; 11:441. [PMID: 39330820 PMCID: PMC11435825 DOI: 10.3390/vetsci11090441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Unsuccessful tendon healing leads to fibrosis and occasionally calcification. In these metaplastic drifts, the mouse AT preclinical injury model represents a robust experimental setting for studying tendon calcifications. Previously, calcium deposits were found in about 30% of tendons after 28 days post-injury. Although a neuromediated healing process has previously been documented, the expression patterns of NF200, NGF, NPY, GAL, and CGRP in mouse AT and their roles in metaplastic calcific repair remain to be explored. This study included a spatiotemporal analysis of these neuromarkers during the inflammatory phase (7 days p.i.) and the proliferative/early-remodelling phase (28 days p.i.). While the inflammatory phase is characterised by NF200 and CGRP upregulation, in the 28 days p.i., the non-calcified tendons (n = 16/24) showed overall NGF, NPY, GAL, and CGRP upregulation (compared to 7 days post-injury) and a return of NF200 expression to values similar to pre-injury. Presenting a different picture, in calcified tendons (n = 8), NF200 persisted at high levels, while NGF and NPY significantly increased, resulting in a higher NPY/CGRP ratio. Therefore, high levels of NF200 and imbalance between vasoconstrictive (NPY) and vasodilatory (CGRP) neuromarkers may be indicative of calcification. Tendon cells contributed to the synthesis of neuromarkers, suggesting that their neuro-autocrine/paracrine role is exerted by coordinating growth factors, cytokines, and neuropeptides. These findings offer insights into the neurobiological mechanisms of early tendon healing and identify new neuromarker profiles predictive of tendon healing outcomes.
Collapse
Affiliation(s)
- Melisa Faydaver
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valeria Festinese
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Marcello Raspa
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy
| | - Ferdinando Scavizzi
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy
| | - Fabrizio Bonaventura
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy
| | | | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
2
|
Bakht SM, Pardo A, Gomez-Florit M, Caballero D, Kundu SC, Reis RL, Domingues RMA, Gomes ME. Human Tendon-on-Chip: Unveiling the Effect of Core Compartment-T Cell Spatiotemporal Crosstalk at the Onset of Tendon Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2401170. [PMID: 39258510 DOI: 10.1002/advs.202401170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Indexed: 09/12/2024]
Abstract
The lack of representative in vitro models recapitulating human tendon (patho)physiology is among the major factors hindering consistent progress in the knowledge-based development of adequate therapies for tendinopathy.Here, an organotypic 3D tendon-on-chip model is designed that allows studying the spatiotemporal dynamics of its cellular and molecular mechanisms.Combining the synergistic effects of a bioactive hydrogel matrix with the biophysical cues of magnetic microfibers directly aligned on the microfluidic chip, it is possible to recreate the anisotropic architecture, cell patterns, and phenotype of tendon intrinsic (core) compartment. When incorporated with vascular-like vessels emulating the interface between its intrinsic-extrinsic compartments, crosstalk with endothelial cells are found to drive stromal tenocytes toward a reparative profile. This platform is further used to study adaptive immune cell responses at the onset of tissue inflammation, focusing on interactions between tendon compartment tenocytes and circulating T cells.The proinflammatory signature resulting from this intra/inter-cellular communication induces the recruitment of T cells into the inflamed core compartment and confirms the involvement of this cellular crosstalk in positive feedback loops leading to the amplification of tendon inflammation.Overall, the developed 3D tendon-on-chip provides a powerful new tool enabling mechanistic studies on the pathogenesis of tendinopathy as well as for assessing new therapies.
Collapse
Affiliation(s)
- Syeda M Bakht
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Alberto Pardo
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Manuel Gomez-Florit
- Health Research Institute of the Balearic Islands (IdISBa), Palma, 07010, Spain
| | - David Caballero
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Rui M A Domingues
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark - Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Rua Jorge Viterbo Ferreira 228, Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Xu M, Zhu M, Qin Q, Xing X, Archer M, Ramesh S, Cherief M, Li Z, Levi B, Clemens TL, James AW. Neuronal regulation of bone and tendon injury repair: a focused review. J Bone Miner Res 2024; 39:1045-1060. [PMID: 38836494 DOI: 10.1093/jbmr/zjae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Beyond the sensation of pain, peripheral nerves have been shown to play crucial roles in tissue regeneration and repair. As a highly innervated organ, bone can recover from injury without scar formation, making it an interesting model in which to study the role of nerves in tissue regeneration. As a comparison, tendon is a musculoskeletal tissue that is hypo-innervated, with repair often resulting in scar formation. Here, we reviewed the significance of innervation in 3 stages of injury repair (inflammatory, reparative, and remodeling) in 2 commonly injured musculoskeletal tissues: bone and tendon. Based on this focused review, we conclude that peripheral innervation is essential for phases of proper bone and tendon repair, and that nerves may dynamically regulate the repair process through interactions with the injury microenvironment via a variety of neuropeptides or neurotransmitters. A deeper understanding of neuronal regulation of musculoskeletal repair, and the crosstalk between nerves and the musculoskeletal system, will enable the development of future therapies for tissue healing.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Sowmya Ramesh
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern, Dallas, TX 75390, United States
| | - Thomas L Clemens
- Department of Orthopaedics, University of Maryland, Baltimore, MD 21205, United States
- Department of Research Services, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, United States
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
4
|
Mou J, Wang Q, Wu J, Zhang L, Li YA, Luo Z, An J, Sun T, Zheng X, Wang Y, Hu K. The effect of Fu's subcutaneous needling in treating knee osteoarthritis patients: A randomized controlled trial. Explore (NY) 2024; 20:562-571. [PMID: 38176976 DOI: 10.1016/j.explore.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/13/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Fu's subcutaneous needling (FSN) is an acupuncture technique for the treatment of soft tissue diseases. Knee osteoarthritis often involves lower limb muscles. This study aimed to observe and compare the clinical efficacy of Fu's subcutaneous acupuncture and electroacupuncture in the treatment of patients with knee osteoarthritis. METHODS 62 patients with early or medial stage of knee osteoarthritis were randomly divided into the FSN therapy group or the electroacupuncture(EA) therapy group (1:1). The Lysholm score, range of motion, and equilibrium function were observed over a 3-month follow-up period. A total of 60 participants completed the study. RESULTS Over the 3 months of follow-up, both treatment regimens showed equally favorable results on all prognostic measures compared with their respective baseline data (P<0.05). Compared with the EA group, the FSN group had a significantly greater improvement in claudication, joint stability, swelling, pain, and ROM after treatment (P<0.05). At 3 months after treatment, the FSN group revealed better scores of claudication, joint stability, swelling, walking up stairs, squatting, pain, ROM, and equilibrium function (forward and backward movement speed, left and right movement speed, movement ellipse area, movement length) compared to the EA group (all P<0.05). CONCLUSIONS This study showed that FSN can significantly improve the pain symptoms, joint stability, and joint function of patients with knee osteoarthritis, and the clinical efficacy can be maintained at least 3 months after treatment.
Collapse
Affiliation(s)
- Jianjiao Mou
- Rehabilitation medicine department, Suining Central Hospital, Suining, China.
| | - Qiong Wang
- Department of pain treatment, Suining Central Hospital, Suining, China
| | - Juan Wu
- Rehabilitation medicine department, Suining Central Hospital, Suining, China
| | - Leixiao Zhang
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, China
| | - Yang-An Li
- Rehabilitation medicine department, Suining Central Hospital, Suining, China
| | - Zhichao Luo
- Rehabilitation medicine department, Suining Central Hospital, Suining, China
| | - Jiayi An
- Rehabilitation medicine department, Suining Central Hospital, Suining, China
| | - Tao Sun
- Rehabilitation medicine department, Suining Central Hospital, Suining, China
| | - Xinlei Zheng
- Rehabilitation medicine department, Suining Central Hospital, Suining, China
| | - Yan Wang
- Teaching and training department, Suining Central Hospital, Suining, China.
| | - Kehui Hu
- Rehabilitation medicine department, Suining Central Hospital, Suining, China.
| |
Collapse
|
5
|
Merkel MFR, Svensson RB, Jakobsen JR, Mackey AL, Schjerling P, Herzog RB, Magnusson SP, Konradsen L, Krogsgaard MR, Kjær M, Johannsen FE. Widespread Vascularization and Correlation of Glycosaminoglycan Accumulation to Tendon Pain in Human Plantar Fascia Tendinopathy. Am J Sports Med 2024; 52:1834-1844. [PMID: 38708721 DOI: 10.1177/03635465241246262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
BACKGROUND Plantar fasciitis is a painful tendinous condition (tendinopathy) with a high prevalence in athletes. While a healthy tendon has limited blood flow, ultrasound has indicated elevated blood flow in tendinopathy, but it is unknown if this is related to a de facto increase in the tendon vasculature. Likewise, an accumulation of glycosaminoglycans (GAGs) is observed in tendinopathy, but its relationship to clinical pain is unknown. PURPOSE To explore to what extent vascularization, inflammation, and fat infiltration were present in patients with plantar fasciitis and if they were related to clinical symptoms. STUDY DESIGN Descriptive laboratory study. METHODS Biopsy specimens from tendinopathic plantar fascia tissue were obtained per-operatively from both the primary site of tendon pain and tissue swelling ("proximal") and a region that appeared macroscopically healthy at 1 to 2 cm away from the primary site ("distal") in 22 patients. Biopsy specimens were examined with immunofluorescence for markers of blood vessels, tissue cell density, fat infiltration, and macrophage level. In addition, pain during the first step in the morning (registered during an earlier study) was correlated with the content of collagen and GAGs in tissue. RESULTS High vascularization (and cellularity) was present in both the proximal (0.89%) and the distal (0.96%) plantar fascia samples, whereas inconsistent but not significantly different fat infiltration and macrophage levels were observed. The collagen content was similar in the 2 plantar fascia regions, whereas the GAG content was higher in the proximal region (3.2% in proximal and 2.8% in distal; P = .027). The GAG content in the proximal region was positively correlated with the subjective morning pain score in the patients with tendinopathy (n = 17). CONCLUSION In patients with plantar fasciitis, marked tissue vascularization was present in both the painful focal region and a neighboring nonsymptomatic area. In contrast, the accumulation of hydrophilic GAGs was greater in the symptomatic region and was positively correlated with increased clinical pain levels in daily life. CLINICAL RELEVANCE The accumulation of GAGs in tissue rather than the extent of vascularization appears to be linked with the clinical degree of pain symptoms of the disease.
Collapse
Affiliation(s)
- Max F R Merkel
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Rene B Svensson
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Jens R Jakobsen
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Orthopaedic Surgery, Section for Sports Traumatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Abigail L Mackey
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Robert B Herzog
- Department of Physical and Occupational Therapy, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - S Peter Magnusson
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Department of Physical and Occupational Therapy, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Lars Konradsen
- Department of Orthopaedic Surgery, Section for Sports Traumatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Michael R Krogsgaard
- Department of Orthopaedic Surgery, Section for Sports Traumatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Michael Kjær
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Finn E Johannsen
- Department of Orthopaedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
6
|
Cherief M, Xu J, Li Z, Tower RJ, Ramesh S, Qin Q, Gomez-Salazar M, Yea JH, Lee S, Negri S, Xu M, Price T, Kendal AR, Fan CM, Clemens TL, Levi B, James AW. TrkA-mediated sensory innervation of injured mouse tendon supports tendon sheath progenitor cell expansion and tendon repair. Sci Transl Med 2023; 15:eade4619. [PMID: 38117901 DOI: 10.1126/scitranslmed.ade4619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Peripheral neurons terminate at the surface of tendons partly to relay nociceptive pain signals; however, the role of peripheral nerves in tendon injury and repair remains unclear. Here, we show that after Achilles tendon injury in mice, there is new nerve growth near tendon cells that express nerve growth factor (NGF). Conditional deletion of the Ngf gene in either myeloid or mesenchymal mouse cells limited both innervation and tendon repair. Similarly, inhibition of the NGF receptor tropomyosin receptor kinase A (TrkA) abrogated tendon healing in mouse tendon injury. Sural nerve transection blocked the postinjury increase in tendon sensory innervation and the expansion of tendon sheath progenitor cells (TSPCs) expressing tubulin polymerization promoting protein family member 3. Single cell and spatial transcriptomics revealed that disruption of sensory innervation resulted in dysregulated inflammatory signaling and transforming growth factor-β (TGFβ) signaling in injured mouse tendon. Culture of mouse TSPCs with conditioned medium from dorsal root ganglia neuron further supported a role for neuronal mediators and TGFβ signaling in TSPC proliferation. Transcriptomic and histologic analyses of injured human tendon biopsy samples supported a role for innervation and TGFβ signaling in human tendon regeneration. Last, treating mice after tendon injury systemically with a small-molecule partial agonist of TrkA increased neurovascular response, TGFβ signaling, TSPC expansion, and tendon tissue repair. Although further studies should investigate the potential effects of denervation on mechanical loading of tendon, our results suggest that peripheral innervation is critical for the regenerative response after acute tendon injury.
Collapse
Affiliation(s)
- Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert J Tower
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Sowmya Ramesh
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Ji-Hye Yea
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Orthopaedics and Traumatology, University of Verona, Verona 37129, Italy
| | - Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Theodore Price
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, TX 75080, USA
| | - Adrian R Kendal
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Windmill Road, Oxford OX3 7LD, UK
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21208, USA
| | - Thomas L Clemens
- Department of Orthopaedics, University of Maryland, Baltimore, MD 21205, USA
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA
| | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Paula DD, França M, Leão L, Maciel A, Moura T, de Moraes S, Bahia C, Borges R, Batista E, Passos A, Oliveira K, Herculano A. Total rupture of Achilles tendon induces inflammatory response and glial activation on the spinal cord of mice. Braz J Med Biol Res 2023; 56:e12391. [PMID: 37851789 PMCID: PMC10578131 DOI: 10.1590/1414-431x2023e12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/02/2023] [Indexed: 10/20/2023] Open
Abstract
Rupture of Achilles tendon is a common accident affecting professional and recreational athletes. Acute and chronic pain are symptoms commonly observed in patients with rupture. However, few studies have investigated whether Achilles tendon rupture is able to promote disorders in the central nervous system (CNS). Therefore, the current study aimed to evaluate nociceptive alterations and inflammatory response in the L5 lumbar segment of Balb/c mice spinal cord after Achilles tendon rupture. We found increased algesia in the paw of the ruptured group on the 7th and 14th days post-tenotomy compared with the control group. This phenomenon was accompanied by overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase-2 (NOS-2) as well as hyperactivation of astrocytes and microglia in nociceptive areas of L5 spinal cord as evidenced by intense GFAP and IBA-1 immunostaining, respectively. Biochemical studies also demonstrated increased levels of nitrite in the L5 spinal cord of tenotomized animals compared with the control group. Thus, we have demonstrated for the first time that total rupture of the Achilles tendon induced inflammatory response and nitrergic and glial activation in the CNS in the L5 spinal cord region.
Collapse
Affiliation(s)
- D.R. De Paula
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - M.S. França
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - L.K.R. Leão
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - A.A. Maciel
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - T.A.A. Moura
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - S.A.S. de Moraes
- Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, Brasil
| | - C.P. Bahia
- Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, Brasil
| | - R.S. Borges
- Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, Brasil
| | - E.J.O. Batista
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, PA, Brasil
| | - A.C.F. Passos
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - K.R.H.M. Oliveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - A.M. Herculano
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| |
Collapse
|
8
|
Huang T, Wan L, Chen Y, Xiong Y, Yuan F, Xie S, Huang J, Lu H. The effect of local sympatholysis on bone-tendon interface healing in a murine rotator cuff repair model. J Orthop Translat 2023; 40:1-12. [PMID: 37181480 PMCID: PMC10173072 DOI: 10.1016/j.jot.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/04/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023] Open
Abstract
Background Although neuroregulation plays an important role in tissue healing, the key neuroregulatory pathways and related neurotransmitters involved in bone-tendon interface (BTI) healing are still unknown. It is reported that sympathetic nerves can regulate cartilage and bone metabolism, which are the basic aspects of BTI repair after injury, through the release of norepinephrine (NE). Thus, the purpose of this study was to explore the effect of local sympatholysis (LS) on BTI healing in a murine rotator cuff repair model. Methods Specifically, C57BL/6 mice underwent unilateral supraspinatus tendon (SST) detachment and repair was established on a total of 174 mature C57BL/6 mice (12 weeks old): 54 mice were used to examine the sympathetic fibers and its neurotransmitter NE for the representation of sympathetic innervation of BTI, while the rest of them were randomly allocated into (LS) group and control group to verify the effect of sympathetic denervation during BTI healing. The LS group were intervened with fibrin sealant containing 10 ng/ml guanethidine, while the control group received fibrin sealant only. Mice were euthanized at postoperative 2, 4 and 8 weeks for immunofluorescent, qRT-PCR, ELISA, Micro-computed tomography (CT), histology and biomechanical evaluations. Results Immunofluorescence, qRT-PCR and ELISA evaluations indicated that there were the expression of tyrosine hydroxylase (TH), NE and β2-adrenergic receptor (β2-AR) at the BTI site. All the above showed a trend of increasing at the early postoperative stage and they started to decrease with the healing time after a significant peak. Meanwhile, local sympathetic denervation of BTI was achieved after the use of guanethidine as shown in the NE ELISA outcomes in two groups. QRT-PCR analysis revealed that the healing interface in the LS group expressed more transcription factors, such as Runx2, Bmp2, Sox9, and Aggrecan, than the control group. Further, radiographic data showed that the LS group significantly possessed higher bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and lower trabecular spacing (Tb.Sp) than the control group. Also, histological test results showed that there was more fibrocartilage regenerated at the healing interface in the LS group compared with the control group. Mechanical testing results demonstrated that the failure load, ultimate strength and stiffness in the LS group were significantly higher at postoperative week 4 (P < 0.05), but not at postoperative week 8 (P > 0.05), compared to the control group. Conclusion The regulation of sympathetic innervation was involved in the healing process of injured BTI, and local sympathetic denervation by using guanethidine was beneficial for BTI healing outcomes.The translational potential of this article: This is the first study to evaluate the expression and specific role of sympathetic innervation during BTI healing. The findings of this study also imply that the antagonists of β2-AR could serve as a potential therapeutic strategy for BTI healing. Also, we firstly successfully constructed a local sympathetic denervation mouse model by using guanethidine loaded fibrin sealant, which provided a new effective methodology for future neuroskeletal biology study.
Collapse
Affiliation(s)
- Tingmo Huang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Liyang Wan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yinghong Xiong
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Feifei Yuan
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shanshan Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jianjun Huang
- Department of Orthopaedics, Ningde Affiliated Hospital, Fujian Medical University, Ningde, 352000, China
- Corresponding author. Ningde City Hospital, Fujian Medical University, Ningde, 352000, China.
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Corresponding author. Xiangya Hospital, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, China.
| |
Collapse
|
9
|
Marques Azzini GO, Marques Azzini VO, Santos GS, Visoni S, Fusco MA, Beker NS, Mahmood A, Bizinotto Lana JV, Jeyaraman M, Nallakumarasamy A, Jeyaraman N, da Fonseca LF, Luz Arab MG, Vicente R, Rajendran RL, Gangadaran P, Ahn BC, Duarte Lana JFS. Cannabidiol for musculoskeletal regenerative medicine. Exp Biol Med (Maywood) 2023; 248:445-455. [PMID: 37158062 PMCID: PMC10281618 DOI: 10.1177/15353702231162086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Chronic musculoskeletal (MSK) pain is one of the most prevalent causes, which lead patients to a physician's office. The most common disorders affecting MSK structures are osteoarthritis, rheumatoid arthritis, back pain, and myofascial pain syndrome, which are all responsible for major pain and physical disability. Although there are many known management strategies currently in practice, phytotherapeutic compounds have recently begun to rise in the medical community, especially cannabidiol (CBD). This natural, non-intoxicating molecule derived from the cannabis plant has shown interesting results in many preclinical studies and some clinical settings. CBD plays vital roles in human health that go well beyond the classic immunomodulatory, anti-inflammatory, and antinociceptive properties. Recent studies demonstrated that CBD also improves cell proliferation and migration, especially in mesenchymal stem cells (MSCs). The foremost objective of this review article is to discuss the therapeutic potential of CBD in the context of MSK regenerative medicine. Numerous studies listed in the literature indicate that CBD possesses a significant capacity to modulate mammalian tissue to attenuate and reverse the notorious hallmarks of chronic musculoskeletal disorders (MSDs). The most of the research included in this review report common findings like immunomodulation and stimulation of cell activity associated with tissue regeneration, especially in human MSCs. CBD is considered safe and well tolerated as no serious adverse effects were reported. CBD promotes many positive effects which can manage detrimental alterations brought on by chronic MSDs. Since the application of CBD for MSK health is still undergoing expansion, additional randomized clinical trials are warranted to further clarify its efficacy and to understand its cellular mechanisms.
Collapse
Affiliation(s)
| | | | - Gabriel Silva Santos
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
| | - Silvia Visoni
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
| | | | | | - Ansar Mahmood
- University Hospitals Birmingham,
Birmingham B15 2PR, UK
| | - João Vitor Bizinotto Lana
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
- Medical Specialties School Centre,
Centro Universitário Max Planck, Indaiatuba, 13343-060, Brazil
| | - Madhan Jeyaraman
- Department of Orthopaedics, A.C.S.
Medical College and Hospital, Dr.M.G.R. Educational and Research Institute, Chennai
600056, India
- Department of Biotechnology, School of
Engineering and Technology, Sharda University, Greater Noida 201310, India
- South Texas Orthopaedic Research
Institute (STORI Inc.), Laredo, TX 78045, USA
- Indian Stem Cell Study Group (ISCSG)
Association, Lucknow 226010, India
| | - Arulkumar Nallakumarasamy
- Indian Stem Cell Study Group (ISCSG)
Association, Lucknow 226010, India
- Department of Orthopaedics, All India
Institute of Medical Sciences, Bhubaneswar 751019, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG)
Association, Lucknow 226010, India
- Department of Orthopaedics, Atlas
Hospitals, Tiruchirappalli 620002, India
| | - Lucas Furtado da Fonseca
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
- Universidade Federal de São Paulo
(UNIFESP), São Paulo, 04021-001, Brazil
| | - Miguel Gustavo Luz Arab
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
- Saúde Máxima (SAMAX), São Paulo,
01239-040, Brazil
| | - Rodrigo Vicente
- Brazilian Institute of Regenerative
Medicine (BIRM), Indaiatuba 13334-170, Brazil
- Ultra Sports Science, São Paulo,
Brazil
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine,
School of Medicine, Kyungpook National University Hospital, Kyungpook National
University, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine,
School of Medicine, Kyungpook National University Hospital, Kyungpook National
University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational
Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical
Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of
Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine,
School of Medicine, Kyungpook National University Hospital, Kyungpook National
University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational
Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical
Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of
Korea
| | | |
Collapse
|
10
|
Costa FR, Costa Marques MR, Costa VC, Santos GS, Martins RA, Santos MDS, Santana MHA, Nallakumarasamy A, Jeyaraman M, Lana JVB, Lana JFSD. Intra-Articular Hyaluronic Acid in Osteoarthritis and Tendinopathies: Molecular and Clinical Approaches. Biomedicines 2023; 11:biomedicines11041061. [PMID: 37189679 DOI: 10.3390/biomedicines11041061] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Musculoskeletal diseases continue to rise on a global scale, causing significant socioeconomic impact and decreased quality of life. The most common disorders affecting musculoskeletal structures are osteoarthritis and tendinopathies, complicated orthopedic conditions responsible for major pain and debilitation. Intra-articular hyaluronic acid (HA) has been a safe, effective, and minimally invasive therapeutic tool for treating these diseases. Several studies from bedside to clinical practice reveal the multiple benefits of HA such as lubrication, anti-inflammation, and stimulation of cellular activity associated with proliferation, differentiation, migration, and secretion of additional molecules. Collectively, these effects have demonstrated positive outcomes that assist in the regeneration of chondral and tendinous tissues which are otherwise destroyed by the predominant catabolic and inflammatory conditions seen in tissue injury. The literature describes the physicochemical, mechanical, and biological properties of HA, their commercial product types, and clinical applications individually, while their interfaces are seldom reported. Our review addresses the frontiers of basic sciences, products, and clinical approaches. It provides physicians with a better understanding of the boundaries between the processes that lead to diseases, the molecular mechanisms that contribute to tissue repair, and the benefits of the HA types for a conscientious choice. In addition, it points out the current needs for the treatments.
Collapse
|
11
|
Wasker SVZ, Challoumas D, Weng W, Murrell GAC, Millar NL. Is neurogenic inflammation involved in tendinopathy? A systematic review. BMJ Open Sport Exerc Med 2023; 9:e001494. [PMID: 36793930 PMCID: PMC9923261 DOI: 10.1136/bmjsem-2022-001494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Neurogenic pain and inflammation have been hypothesised to play an important role in tendinopathy. This systematic review aimed to present and assess the evidence on neurogenic inflammation in tendinopathy. A systematic search was conducted through multiple databases to identify human case-control studies assessing neurogenic inflammation through the upregulation of relevant cells, receptors, markers and mediators. A newly devised tool was used for the methodological quality assessment of studies. Results were pooled based on the cell/receptor/marker/mediator assessed. A total of 31 case-control studies were eligible for inclusion. The tendinopathic tissue was obtained from Achilles (n=11), patellar (n=8), extensor carpi radialis brevis (n=4), rotator cuff (n=4), distal biceps (n=3) and gluteal (n=1) tendons. Through pooling the results of included studies based on the marker of neurogenic inflammation assessed, we identified possible upregulation of protein gene product 9.5 (PGP 9.5), N-methyl-D-aspartate Receptors, glutamate, glutamate receptors (mGLUT), neuropeptide Y (NPY) and adrenoreceptors in tendinopathic tissue versus control. Calcitonin gene-related peptide (CGRP) was not found to be upregulated, and the evidence was conflicting for several other markers. These findings show the involvement of the glutaminergic and sympathetic nervous systems and the upregulation of nerve ingrowth markers supporting the concept that neurogenic inflammation plays a role in tendinopathy.
Collapse
Affiliation(s)
- Shimon Vinay Zedeck Wasker
- Orthopaedic Research Institute, St George Hospital Sydney, University of New South Wales, Sydney, New South Wales, Australia
| | - Dimitris Challoumas
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Wai Weng
- Orthopaedic Research Institute, St George Hospital Sydney, University of New South Wales, Sydney, New South Wales, Australia
| | - George A C Murrell
- Orthopaedic Research Institute, St George Hospital Sydney, University of New South Wales, Sydney, New South Wales, Australia
| | - Neal L Millar
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Hart DA, Ahmed AS, Ackermann P. Optimizing repair of tendon ruptures and chronic tendinopathies: Integrating the use of biomarkers with biological interventions to improve patient outcomes and clinical trial design. Front Sports Act Living 2023; 4:1081129. [PMID: 36685063 PMCID: PMC9853460 DOI: 10.3389/fspor.2022.1081129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Tendons are dense connective tissues of the musculoskeletal system that link bones with muscles to foster mobility. They have complex structures and exist in varying biomechanical, metabolic and biological environments. In addition, tendon composition and mechanical properties can change over the lifespan as an individual ages. Many tendons function in high stress conditions with a low vascular and neuronal supply, conditions often leading to development of chronic tendinopathies, and in some cases, overt rupture of the tissues. Given their essential nature for human mobility and navigation through the environment, the effective repair and regeneration of different tendons after injury or damage is critical for quality of life, and for elite athletes, the return to sport participation at a high level. However, for mainly unknown reasons, the outcomes following injury are not always successful and lead to functional compromise and risk for re-injury. Thus, there is a need to identify those patients who are at risk for developing tendon problems, as well those at risk for poor outcomes after injury and to design interventions to improve outcomes after injury or rupture to specific tendons. This review will discuss recent advances in the identification of biomarkers prognostic for successful and less successful outcomes after tendon injury, and the mechanistic implications of such biomarkers, as well as the potential for specific biologic interventions to enhance outcomes to improve both quality of life and a return to participation in sports. In addition, the implication of these biomarkers for clinical trial design is discussed, as is the issue of whether such biomarkers for successful healing of one tendon can be extended to all tendons or are valid only for tendons in specific biomechanical and biological environments. As maintaining an active lifestyle is critical for health, the successful implementation of these advances will benefit the large number of individuals at risk.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada,Correspondence: David A. Hart
| | - Aisha S. Ahmed
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paul Ackermann
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Nyland J, Pyle B, Krupp R, Kittle G, Richards J, Brey J. ACL microtrauma: healing through nutrition, modified sports training, and increased recovery time. J Exp Orthop 2022; 9:121. [PMID: 36515744 PMCID: PMC9751252 DOI: 10.1186/s40634-022-00561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Sports injuries among youth and adolescent athletes are a growing concern, particularly at the knee. Based on our current understanding of microtrauma and anterior cruciate ligament (ACL) healing characteristics, this clinical commentary describes a comprehensive plan to better manage ACL microtrauma and mitigate the likelihood of progression to a non-contact macrotraumatic ACL rupture. METHODS Medical literature related to non-contact ACL injuries among youth and adolescent athletes, collagen and ACL extracellular matrix metabolism, ACL microtrauma and sudden failure, and concerns related to current sports training were reviewed and synthesized into a comprehensive intervention plan. RESULTS With consideration for biopsychosocial model health factors, proper nutrition and modified sports training with increased recovery time, a comprehensive primary ACL injury prevention plan is described for the purpose of better managing ACL microtrauma, thereby reducing the incidence of non-contact macrotraumatic ACL rupture among youth and adolescent athletes. CONCLUSION Preventing non-contact ACL injuries may require greater consideration for reducing accumulated ACL microtrauma. Proper nutrition including glycine-rich collagen peptides, or gelatin-vitamin C supplementation in combination with healthy sleep, and adjusted sports training periodization with increased recovery time may improve ACL extracellular matrix collagen deposition homeostasis, decreasing sudden non-contact ACL rupture incidence likelihood in youth and adolescent athletes. Successful implementation will require compliance from athletes, parents, coaches, the sports medicine healthcare team, and event organizers. Studies are needed to confirm the efficacy of these concepts. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- J Nyland
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA.
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA.
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA.
| | - B Pyle
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA
| | - R Krupp
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - G Kittle
- MSAT Program, Spalding University, 901 South Third St, Louisville, KY, USA
| | - J Richards
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| | - J Brey
- Norton Orthopedic Institute, 9880 Angies Way, Louisville, KY, 40241, USA
- Department of Orthopaedic Surgery, University of Louisville, Louisville, KY, USA
| |
Collapse
|
14
|
Edgar N, Clifford C, O'Neill S, Pedret C, Kirwan P, Millar NL. Biopsychosocial approach to tendinopathy. BMJ Open Sport Exerc Med 2022; 8:e001326. [PMID: 35990762 PMCID: PMC9345071 DOI: 10.1136/bmjsem-2022-001326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 12/15/2022] Open
Abstract
Tendinopathy describes a spectrum of changes that occur in damaged tendons, leading to pain and reduced function that remains extremely challenging for all clinicians. There is an increasing awareness of the influence that psychological and psychosocial components, such as self-efficacy and fear-avoidance, have on rehabilitation outcomes in musculoskeletal medicine. Although it is widely accepted that psychological/psychosocial factors exist in tendinopathy, there is currently a distinct lack of trials measuring how these factors affect clinical outcomes. Biopsychosocial treatments acknowledge and address the biological, psychological and social contributions to pain and disability are currently seen as the most efficacious approach to chronic pain. Addressing and modulating these factors are crucial in the pathway of personalised treatments in tendinopathy and offer a real opportunity to drive positive outcomes in patients. In this education review, we also provide the current evidence-based guidance on psychological and psychosocial developments in musculoskeletal medicine and how these may be translated to treating tendinopathy using a biopsychosocial model.
Collapse
Affiliation(s)
- Nathan Edgar
- Institute of Infection, Immunity and Inflammation College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christopher Clifford
- Institute of Infection, Immunity and Inflammation College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK,Department of Physiotherapy, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Seth O'Neill
- Department of Physiotherapy, School of Allied Health Professionals, University of Leicester, Leicester, UK
| | - Carles Pedret
- Sports Medicine and Imaging Department, Clinica Mapfre de Medicina del Tenis C/Muntaner, Barcelona, Spain
| | - Paul Kirwan
- Discipline of Physiotherapy, Trinity College Dublin School of Medicine, Dublin, Ireland
| | - Neal L Millar
- Institute of Infection, Immunity and Inflammation College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Ramires LC, Jeyaraman M, Muthu S, Shankar A N, Santos GS, da Fonseca LF, Lana JF, Rajendran RL, Gangadaran P, Jogalekar MP, Cardoso AA, Eickhoff A. Application of Orthobiologics in Achilles Tendinopathy: A Review. Life (Basel) 2022; 12:life12030399. [PMID: 35330150 PMCID: PMC8954398 DOI: 10.3390/life12030399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Orthobiologics are biological materials that are intended for the regeneration of bone, cartilage, and soft tissues. In this review, we discuss the application of orthobiologics in Achilles tendinopathy, more specifically. We explain the concepts and definitions of each orthobiologic and the literature regarding its use in tendon disorders. The biological potential of these materials can be harnessed and administered into injured tissues, particularly in areas where standard healing is disrupted, a typical feature of Achilles tendinopathy. These products contain a wide variety of cell populations, cytokines, and growth factors, which have been shown to modulate many other cells at local and distal sites in the body. Collectively, they can shift the state of escalated inflammation and degeneration to reestablish tissue homeostasis. The typical features of Achilles tendinopathy are failed healing responses, persistent inflammation, and predominant catabolic reactions. Therefore, the application of orthobiologic tools represents a viable solution, considering their demonstrated efficacy, safety, and relatively easy manipulation. Perhaps a synergistic approach regarding the combination of these orthobiologics may promote more significant clinical outcomes rather than individual application. Although numerous optimistic results have been registered in the literature, additional studies and clinical trials are still highly desired to further illuminate the clinical utility and efficacy of these therapeutic strategies in the management of tendinopathies.
Collapse
Affiliation(s)
- Luciano C. Ramires
- Department of Orthopaedics and Sports Medicine, Centro Clínico Mãe de Deus, Porto Alegre 90110-270, Brazil;
| | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India;
- Department of Orthopaedics, Apollo Hospitals, Greams Road, Chennai 600006, India;
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, India
- Correspondence: (S.M.); (G.S.S.); (P.G.)
| | - Navaladi Shankar A
- Department of Orthopaedics, Apollo Hospitals, Greams Road, Chennai 600006, India;
| | - Gabriel Silva Santos
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
- Correspondence: (S.M.); (G.S.S.); (P.G.)
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
- Department of Orthopaedics, The Federal University of São Paulo, São Paulo 04024-002, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, Brazil; (L.F.d.F.); (J.F.L.)
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (S.M.); (G.S.S.); (P.G.)
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA;
| | - Alfredo A. Cardoso
- Department of Oncology-Integrative Medicine-Pain Care, IAC—Instituto Ana Cardoso de Práticas Integrativas e Medicina Regenerative, Gramado 95670-000, Brazil;
| | - Alex Eickhoff
- Department of Orthopaedics, Centro Ortopédico Eickhoff, Três de Maio 98910-000, Brazil;
| |
Collapse
|
16
|
Rajpar I, Tomlinson RE. Function of peripheral nerves in the development and healing of tendon and bone. Semin Cell Dev Biol 2022; 123:48-56. [PMID: 33994302 PMCID: PMC8589913 DOI: 10.1016/j.semcdb.2021.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 01/03/2023]
Abstract
Although the functions of the peripheral nervous system in whole body homeostasis and sensation have been understood for many years, recent investigation has uncovered new roles for innervation in the musculoskeletal system. This review centers on advances regarding the function of nerves in the development and repair of two connected tissues: tendon and bone. Innervation in healthy tendons is generally confined to the tendon sheaths, and tendon-bone attachment units are typically aneural. In contrast to tendon, bone is an innervated and vascularized structure. Historically, the function of abundant peripheral nerves in bone has been limited to pain and some non-painful sensory perception in disease and injury. Indeed, much of our understanding of peripheral nerves in tendons, bones, and entheses is limited to the source and type of innervation in healthy and injured tissues. However, more recent studies have made important observations regarding the appearance, type, and innervation patterns of nerves during embryonic and postnatal development and in response to injury, which suggest a more expansive role for peripheral nerves in the formation of musculoskeletal tissues. Indeed, tendons and bones develop in a close spatiotemporal relationship in the embryonic mesoderm. Models of limb denervation have shed light on the importance of sensory innervation in bone and to a lesser extent, tendon development, and more recent work has unraveled key nerve signaling pathways. Furthermore, loss of sensory innervation also impairs healing of bone fractures and may contribute to chronic tendinopathy. However, more study is required to translate our knowledge of peripheral nerves to therapeutic strategies to combat bone and tendon diseases.
Collapse
Affiliation(s)
- Ibtesam Rajpar
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ryan E Tomlinson
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Russo V, El Khatib M, Prencipe G, Citeroni MR, Faydaver M, Mauro A, Berardinelli P, Cerveró-Varona A, Haidar-Montes AA, Turriani M, Di Giacinto O, Raspa M, Scavizzi F, Bonaventura F, Stöckl J, Barboni B. Tendon Immune Regeneration: Insights on the Synergetic Role of Stem and Immune Cells during Tendon Regeneration. Cells 2022; 11:434. [PMID: 35159244 PMCID: PMC8834336 DOI: 10.3390/cells11030434] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Tendon disorders represent a very common pathology in today's population, and tendinopathies that account 30% of tendon-related injuries, affect yearly millions of people which in turn cause huge socioeconomic and health repercussions worldwide. Inflammation plays a prominent role in the development of tendon pathologies, and advances in understanding the underlying mechanisms during the inflammatory state have provided additional insights into its potential role in tendon disorders. Different cell compartments, in combination with secreted immune modulators, have shown to control and modulate the inflammatory response during tendinopathies. Stromal compartment represented by tenocytes has shown to display an important role in orchestrating the inflammatory response during tendon injuries due to the interplay they exhibit with the immune-sensing and infiltrating compartments, which belong to resident and recruited immune cells. The use of stem cells or their derived secretomes within the regenerative medicine field might represent synergic new therapeutical approaches that can be used to tune the reaction of immune cells within the damaged tissues. To this end, promising opportunities are headed to the stimulation of macrophages polarization towards anti-inflammatory phenotype together with the recruitment of stem cells, that possess immunomodulatory properties, able to infiltrate within the damaged tissues and improve tendinopathies resolution. Indeed, the comprehension of the interactions between tenocytes or stem cells with the immune cells might considerably modulate the immune reaction solving hence the inflammatory response and preventing fibrotic tissue formation. The purpose of this review is to compare the roles of distinct cell compartments during tendon homeostasis and injury. Furthermore, the role of immune cells in this field, as well as their interactions with stem cells and tenocytes during tendon regeneration, will be discussed to gain insights into new ways for dealing with tendinopathies.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Melisa Faydaver
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Arlette A. Haidar-Montes
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maura Turriani
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Marcello Raspa
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Ferdinando Scavizzi
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Fabrizio Bonaventura
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| |
Collapse
|
18
|
Merkel MFR, Hellsten Y, Magnusson SP, Kjaer M. Tendon blood flow, angiogenesis, and tendinopathy pathogenesis. TRANSLATIONAL SPORTS MEDICINE 2021. [DOI: 10.1002/tsm2.280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Max Flemming Ravn Merkel
- Institute of Sports Medicine Department of Orthopedic Surgery Copenhagen University Hospital ‐ Bispebjerg‐Frederiksberg University of Copenhagen Copenhagen Denmark
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Stig Peter Magnusson
- Institute of Sports Medicine Department of Orthopedic Surgery Copenhagen University Hospital ‐ Bispebjerg‐Frederiksberg University of Copenhagen Copenhagen Denmark
- Center for Healthy Aging Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Department of Orthopedic Surgery Copenhagen University Hospital ‐ Bispebjerg‐Frederiksberg University of Copenhagen Copenhagen Denmark
- Center for Healthy Aging Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
| |
Collapse
|
19
|
Hou J, Yang R, Vuong I, Li F, Kong J, Mao HQ. Biomaterials strategies to balance inflammation and tenogenesis for tendon repair. Acta Biomater 2021; 130:1-16. [PMID: 34082095 DOI: 10.1016/j.actbio.2021.05.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
Adult tendon tissue demonstrates a limited regenerative capacity, and the natural repair process leaves fibrotic scar tissue with inferior mechanical properties. Surgical treatment is insufficient to provide the mechanical, structural, and biochemical environment necessary to restore functional tissue. While numerous strategies including biodegradable scaffolds, bioactive factor delivery, and cell-based therapies have been investigated, most studies have focused exclusively on either suppressing inflammation or promoting tenogenesis, which includes tenocyte proliferation, ECM production, and tissue formation. New biomaterials-based approaches represent an opportunity to more effectively balance the two processes and improve regenerative outcomes from tendon injuries. Biomaterials applications that have been explored for tendon regeneration include formation of biodegradable scaffolds presenting topographical, mechanical, and/or immunomodulatory cues conducive to tendon repair; delivery of immunomodulatory or tenogenic biomolecules; and delivery of therapeutic cells such as tenocytes and stem cells. In this review, we provide the biological context for the challenges in tendon repair, discuss biomaterials approaches to modulate the immune and regenerative environment during the healing process, and consider the future development of comprehensive biomaterials-based strategies that can better restore the function of injured tendon. STATEMENT OF SIGNIFICANCE: Current strategies for tendon repair focus on suppressing inflammation or enhancing tenogenesis. Evidence indicates that regulated inflammation is beneficial to tendon healing and that excessive tissue remodeling can cause fibrosis. Thus, it is necessary to adopt an approach that balances the benefits of regulated inflammation and tenogenesis. By reviewing potential treatments involving biodegradable scaffolds, biological cues, and therapeutic cells, we contrast how each strategy promotes or suppresses specific repair steps to improve the healing outcome, and highlight the advantages of a comprehensive approach that facilitates the clearance of necrotic tissue and recruitment of cells during the inflammatory stage, followed by ECM synthesis and organization in the proliferative and remodeling stages with the goal of restoring function to the tendon.
Collapse
|
20
|
Xu W, Wu J, Xu P. An Immunological Hypothesis of Fu's Subcutaneous Needling Acupuncture. J Acupunct Meridian Stud 2021; 14:110-115. [DOI: 10.51507/j.jams.2021.14.3.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 11/03/2022] Open
Affiliation(s)
- Wenbo Xu
- FSNAE, British Acupuncture Federation, Cambridge, United Kingdom
| | - Jidong Wu
- FSNAE, British Acupuncture Federation, Cambridge, United Kingdom
| | - Ping Xu
- FSNAE, British Acupuncture Federation, Cambridge, United Kingdom
| |
Collapse
|
21
|
Meeremans M, Van de Walle GR, Van Vlierberghe S, De Schauwer C. The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Front Cell Dev Biol 2021; 9:651164. [PMID: 34012963 PMCID: PMC8126669 DOI: 10.3389/fcell.2021.651164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Overuse tendon injuries are a major cause of musculoskeletal morbidity in both human and equine athletes, due to the cumulative degenerative damage. These injuries present significant challenges as the healing process often results in the formation of inferior scar tissue. The poor success with conventional therapy supports the need to search for novel treatments to restore functionality and regenerate tissue as close to native tendon as possible. Mesenchymal stem cell (MSC)-based strategies represent promising therapeutic tools for tendon repair in both human and veterinary medicine. The translation of tissue engineering strategies from basic research findings, however, into clinical use has been hampered by the limited understanding of the multifaceted MSC mechanisms of action. In vitro models serve as important biological tools to study cell behavior, bypassing the confounding factors associated with in vivo experiments. Controllable and reproducible in vitro conditions should be provided to study the MSC healing mechanisms in tendon injuries. Unfortunately, no physiologically representative tendinopathy models exist to date. A major shortcoming of most currently available in vitro tendon models is the lack of extracellular tendon matrix and vascular supply. These models often make use of synthetic biomaterials, which do not reflect the natural tendon composition. Alternatively, decellularized tendon has been applied, but it is challenging to obtain reproducible results due to its variable composition, less efficient cell seeding approaches and lack of cell encapsulation and vascularization. The current review will overview pros and cons associated with the use of different biomaterials and technologies enabling scaffold production. In addition, the characteristics of the ideal, state-of-the-art tendinopathy model will be discussed. Briefly, a representative in vitro tendinopathy model should be vascularized and mimic the hierarchical structure of the tendon matrix with elongated cells being organized in a parallel fashion and subjected to uniaxial stretching. Incorporation of mechanical stimulation, preferably uniaxial stretching may be a key element in order to obtain appropriate matrix alignment and create a pathophysiological model. Together, a thorough discussion on the current status and future directions for tendon models will enhance fundamental MSC research, accelerating translation of MSC therapies for tendon injuries from bench to bedside.
Collapse
Affiliation(s)
- Marguerite Meeremans
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Catharina De Schauwer
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
22
|
O'Brien C, Marr N, Thorpe C. Microdamage in the equine superficial digital flexor tendon. Equine Vet J 2021; 53:417-430. [PMID: 32772396 DOI: 10.1111/evj.13331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/02/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
The forelimb superficial digital flexor tendon (SDFT) is an energy-storing tendon that is highly susceptible to injury during activities such as galloping and jumping, such that it is one of the most commonly reported causes of lameness in the performance horse. This review outlines the biomechanical and biothermal effects of strain on the SDFT and how these contribute to the accumulation of microdamage. The effect of age-related alterations on strain response and subsequent injury risk is also considered. Given that tendon is a slowly healing and poorly regenerative tissue, prompt detection of early stages of pathology in vivo and timely adaptations to training protocols are likely to have a greater outcome than advances in treatment. Early screening tools and detection protocols could subsequently be of benefit in identifying subclinical signs of degeneration during the training programme. This provides an opportunity for preventative strategies to be implemented to minimise incidences of SDFT injury and reduce recovery periods in elite performance horses. Therefore, this review will focus on the modalities available to implement early screening and prevention protocols as opposed to methods to diagnose and treat injuries.
Collapse
Affiliation(s)
| | - Neil Marr
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Chavaunne Thorpe
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
23
|
Chow DHK, Wang J, Wan P, Zheng L, Ong MTY, Huang L, Tong W, Tan L, Yang K, Qin L. Biodegradable magnesium pins enhanced the healing of transverse patellar fracture in rabbits. Bioact Mater 2021; 6:4176-4185. [PMID: 33997501 PMCID: PMC8099917 DOI: 10.1016/j.bioactmat.2021.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Displaced fractures of patella often require open reduction surgery and internal fixation to restore the extensor continuity and articular congruity. Fracture fixation with biodegradable magnesium (Mg) pins enhanced fracture healing. We hypothesized that fixation with Mg pins and their degradation over time would enhance healing of patellar fracture radiologically, mechanically, and histologically. Transverse patellar fracture surgery was performed on thirty-two 18-weeks old female New Zealand White Rabbits. The fracture was fixed with a pin made of stainless steel or pure Mg, and a figure-of-eight stainless steel band wire. Samples were harvested at week 8 or 12, and assessed with microCT, tensile testing, microindentation, and histology. Microarchitectural analysis showed that Mg group showed 12% higher in the ratio of bone volume to tissue volume at week 8, and 38.4% higher of bone volume at week 12. Tensile testing showed that the failure load and stiffness of Mg group were 66.9% and 104% higher than the control group at week 8, respectively. At week 12, Mg group was 60.8% higher in ultimate strength than the control group. Microindentation showed that, compared to the Control group, Mg group showed 49.9% higher Vickers hardness and 31% higher elastic modulus at week 8 and 12, respectively. At week 12, the new bone of Mg group remodelled to laminar bone, but those of the control group remained woven bone-like. Fixation of transverse patellar fracture with Mg pins and its degradation enhanced new bone formation and mechanical properties of the repaired patella compared to the Control group. Kirschner wires (K-wire) with tension band wire is widely used fixation implants for repairing of displaced patellar fractures. Fixation of patellar fracture with Mg pins enhanced new bone formation and mechanical properties of the repaired patella. With a stainless steel tension band wire, Mg pins may be an alternative to K-wire for fixation of patellar fractures.
Collapse
Affiliation(s)
- Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiali Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Peng Wan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China.,School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Michael Tim Yun Ong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Le Huang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
24
|
The Bonar Score in the Histopathological Assessment of Tendinopathy and Its Clinical Relevance-A Systematic Review. ACTA ACUST UNITED AC 2021; 57:medicina57040367. [PMID: 33918645 PMCID: PMC8069001 DOI: 10.3390/medicina57040367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022]
Abstract
This study aimed to perform a comprehensive systematic review, which reports the role of the Bonar score in the histopathological assessment of tendinopathy and its clinical relevance. To identify all of the studies that reported relevant information on the Bonar scoring system and tendinopathy, an extensive search of the major and the most significant electronic databases (PubMed, Cochrane Central, ScienceDirect, SciELO, Web of Science) was performed. A systematic review of the literature was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The extracted data included—year of study, geographical location, type of the study, radiological modifications, gender, number of patients, region of tendinopathy, mean age, control group, characteristics of the Bonar score and alterations in the scale, mean Bonar score, number of investigators, area of tendon investigation, clinical and radiological implications. An extensive search of the databases and other sources yielded a total of 807 articles. Eighteen papers were finally included in this systematic review, and of these, 13 original papers included the clinical and radiological implications of tendinopathy. Radiological evaluation was present in eight studies (both magnetic resonance imaging (MRI) and ultrasound (US)). The clinical implications were more frequent and present in 10 studies. Using the Bonar score, it is easy to quantify the pathological changes in tendinous tissue. However, its connection with clinical and radiological evaluation is much more complicated. Based on the current state of knowledge, we concluded that the neovascularization variable in the Bonar system should be reconsidered. Ideally, the microscopic assessment score should follow the established classification scale with the radiological and clinical agreement and should have a prognostic value.
Collapse
|
25
|
Abstract
Tendinopathy refers to the clinical diagnosis of activity-related pain resulting in a decline in tendon function. In the last few years, much has been published concerning the basic science and clinical investigation of tendinopathy and debates and discussions to new questions and points of view started many years ago. This advances review will discuss the current thinking on the basic science and clinical management of tendinopathy and in particular new findings in the tendon repair space that are relevant to the pathophysiology of tendinopathy. We will further discuss potential novel therapies on the horizon in human tendon disease.
Collapse
Affiliation(s)
- Dimitris Challoumas
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
- Department of Orthopaedic Surgery, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Mairiosa Biddle
- Department of Orthopaedic Surgery, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Neal L Millar
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
- Department of Orthopaedic Surgery, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| |
Collapse
|
26
|
Sustained Exposure of Substance P Causes Tendinopathy. Int J Mol Sci 2020; 21:ijms21228633. [PMID: 33207770 PMCID: PMC7709031 DOI: 10.3390/ijms21228633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 01/09/2023] Open
Abstract
Recently, neuromediators such as substance P (SP) have been found to be important factors in tendon homeostasis. Some studies have found SP to be the cause of inflammation and tendinopathy, whereas others have determined it to be a critical component of tendon healing. As demonstrated by these conflicting findings, the effects of SP on tendinopathy remain unclear. In this study, we hypothesized that the duration of SP exposure determines its effect on the tendons, with repetitive long-term exposure leading to the development of tendinopathy. First, we verified the changes in gene and protein expression using in vitro tenocytes with 10-day exposure to SP. SP and SP + Run groups were injected with SP in their Achilles tendon every other day for 14 days. Achilles tendons were then harvested for biomechanical testing and histological processing. Notably, tendinopathic changes with decreased tensile strength, as observed in the Positive Control, were observed in the Achilles in the SP group compared to the Negative Control. Subsequent histological analysis, including Alcian blue staining, also revealed alterations in the Achilles tendon, which were generally consistent with the findings of tendinopathy in SP and SP + Run groups. Immunohistochemical analysis revealed increased expression of SP in the SP group, similar to the Positive Control. In general, the SP + Run group showed worse tendinopathic changes. These results suggest that sustained exposure to SP may be involved in the development of tendinopathy. Future research on inhibiting SP is warranted to target SP in the treatment of tendinopathy and may be beneficial to patients with tendinopathy.
Collapse
|
27
|
Citeroni MR, Ciardulli MC, Russo V, Della Porta G, Mauro A, El Khatib M, Di Mattia M, Galesso D, Barbera C, Forsyth NR, Maffulli N, Barboni B. In Vitro Innovation of Tendon Tissue Engineering Strategies. Int J Mol Sci 2020; 21:E6726. [PMID: 32937830 PMCID: PMC7555358 DOI: 10.3390/ijms21186726] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano (SA), Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK;
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5BG, UK
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| |
Collapse
|
28
|
Suprascapular nerve neuropathy leads to supraspinatus tendon degeneration. J Orthop Sci 2020; 25:588-594. [PMID: 31718907 DOI: 10.1016/j.jos.2019.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/20/2019] [Accepted: 09/20/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nowadays most of attention regarding rotator cuff is payed to how to reduce the failure after rotator cuff surgical repair rather than how to prevent the rotator cuff tear before surgery. The etiologies of rotator cuff tear are still unclear. As we all know, the nerve system include brain, spinal cord, sensory organs and all the neurons allover our body coordinates the homoeostasis of our body. We hypothesis that the nerve injury proximal to suprascapular nerve can leads to rotator cuff degeneration even tear. METHODS Thirty-six SD rats were used. A defect on the suprascapular nerve was made on the right side and a sham surgery on the nerve (expose nerve only) at the left side. The insertion of supraspinatus tendon and supraspinatus muscle were harvested for testing. Twelve rats were sacrificed for biomechanical (six rats) and histological (six rats) properties were evaluated at 3, 6, and 9 weeks after surgery, respectively. RESULTS Significant inferior biomechanical properties of rotator cuff were found in nerve injured side compared to the nerve intact side at 6-9 weeks. Significant muscle atrophy was found at nerve injured side from 3 to 9 weeks. The enthesis of nerve injured side showed significant excessive cell maturity, reduced cellularity, smaller metachromasia area and more type-III collagen especially at 9 weeks after surgery. CONCLUSIONS The neuropathy proximal to suprascapular nerve can leads to rotator cuff degeneration even tear. The nerve dysfunction maybe an important etiology for rotator cuff tear.
Collapse
|
29
|
The shift in macrophages polarisation after tendon injury: A systematic review. J Orthop Translat 2019; 21:24-34. [PMID: 32071872 PMCID: PMC7013123 DOI: 10.1016/j.jot.2019.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background The role of macrophages (Mφs) in tendon injury healing is controversy. The aims of this study were to determine whether there is a shift in Mφs polarisation after an acute and chronic tendon injury and to assess whether the Mφs polarisation between the partial and complete rupture is different. Methods This systematic review of the scientific literature was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Cochrane guidelines. PubMed database and Excerpta Medica Database (EMBASE) were used for specific search criteria. Only studies measuring Mφs using specific cell markers in Achilles tendon tissue and rotator cuff tendon tissue were included, respectively. Results Five Achilles tendon injury studies and four rotator cuff injury studies were included. Expression of the pan Mϕs marker Cluster of Differentiation (CD) 68 was significantly upregulated in acute Achilles tendon ruptures compared to intact tendons, while no significant changes were found in Mφs polarisation markers CD80 (M1 Mφs) and CD206 (M2 Mφs). High levels of CD86 (M1 Mφs) and CD206 were observed in acute partial rupture. Expression of CD68 and CD206 were significantly upregulated in chronic rotator cuff tendinopathy and downregulated as structural failure increases. A low level of CD206 was observed in complete tendon rupture regardless of acute or chronic injury. Discussion and conclusion In spite of the limited number of articles included, findings from this study suggested that the process of inflammation plays an important role in acute Achilles tendon injuries, indicated by the increased expression of CD68+ Mφs. Low levels of CD206+ Mφs were constantly observed in complete Achilles tendon rupture, while high levels of CD80+ Mφs and CD206+ Mφs were observed in partial Achilles tendon rupture, which suggested the potential correlation between M2 Mφs and tendon structure. For chronic rotator cuff injury, CD68+ Mφs and CD206+ Mφs were higher in tendinopathic tissues in comparison to the intact control tissues. Both CD68+ Mφs and CD206+ Mφs has an inverse relation to the structural failure in the torn rotator cuff tendon. After tendon rupture, the time point of biopsy specimen collection is an important factor, which could occur in the acute phase or chronic phase. Collectively, the understanding of the roles in Mφs after tendon injury is inadequate, and more research efforts should be devoted to this direction. The translational potential of this article This article provided a potential implication on how pan Mφs or M2 Mφs might be associated with ruptured or torn tendon structure. Managing Mφs numbers and phenotypes may lead to possible novel therapeutic approaches to the management of early tendinopathy, early acute tendon rupture, hence, promote healing after restoration surgery.
Collapse
|
30
|
The Neurochemical Characterization of Parasympathetic Nerve Fibers in the Porcine Uterine Wall Under Physiological Conditions and After Exposure to Bisphenol A (BPA). Neurotox Res 2019; 35:867-882. [PMID: 30788711 PMCID: PMC6469660 DOI: 10.1007/s12640-019-00013-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
Bisphenol A, a substance commonly used in plastic manufacturing, is relatively well known as an endocrine disruptor, which may bind to estrogen receptors and has multidirectional negative effects on both human and animal organisms. Previous studies have reported that BPA may act on the reproductive organs, but knowledge concerning BPA-induced changes within the nerves located in the uterine wall is extremely scant. The aim of this study was to investigate the impact of various doses of BPA on the parasympathetic nerves located in the corpus and horns of the uterus using a single and double immunofluorescence method. The obtained results have shown that BPA may change not only the expression of vesicular acetylcholine transporter (VAChT—a marker of parasympathetic nervous structures) in the uterine intramural nerve fibers, but also the degree of colocalization of this substance with other neuronal factors, including substance P (SP), vasoactive intestinal polypeptide (VIP), galanin (GAL), and calcitonin gene–related peptide (CGRP). Moreover, BPA caused changes in the density of the overall populations of fibers immunoreactive to the particular neuropeptides mentioned above. The characteristics of the changes clearly depended on the part of the uterus, the neuronal factors studied, and the dosage of BPA. The mechanisms of the observed fluctuations are probably connected with the neurotoxic and/or pro-inflammatory activity of BPA. Moreover, the results have shown that even low doses of BPA are not neutral to living organisms. Changes in the neurochemical characterization of nerves supplying the uterine wall may be the first subclinical sign of intoxication with this substance.
Collapse
|
31
|
Bordachar D. Lateral epicondylalgia: A primary nervous system disorder. Med Hypotheses 2019; 123:101-109. [PMID: 30696578 DOI: 10.1016/j.mehy.2019.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 01/05/2023]
Abstract
Lateral epicondylalgia (LE) is the most common chronic painful condition affecting the elbow in the general population. Although major advances have been accomplished in recent years in the understanding of LE, the underlying physiopathology is still a reason for debate. Differences in clinical presentation and evolution of the symptoms among patients, suggest the need for revisiting the current knowledge about subjacent mechanisms that attempt to explain pain and functional loss. Previous models have suggested that the condition is mainly a degenerative tendinopathy, associated with changes in pain pathways and the motor system. The hypothesis of this work is that LE is the clinical manifestation of a primary nervous system disorder, characterized by an abnormal increase in neuronal activity and a subsequent loss of homeostasis, which secondarily affects the musculoskeletal tissues of the elbow-forearm-hand complex. A new model for LE is presented, supported by an in-deep analysis of basic sciences, epidemiological and clinical studies.
Collapse
Affiliation(s)
- Diego Bordachar
- Instituto Universitario del Gran Rosario (IUGR), Centro Universitario de Asistencia, Docencia e Investigación (CUADI), Unidad de Investigación Musculoesquelética (UIM), Argentina.
| |
Collapse
|
32
|
Wheeler PC. Up to a quarter of patients with certain chronic recalcitrant tendinopathies may have central sensitisation: a prospective cohort of more than 300 patients. Br J Pain 2018; 13:137-144. [PMID: 31308939 DOI: 10.1177/2049463718800352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Introduction To identify the possible prevalence of 'central sensitisation', in patients with chronic recalcitrant lower limb tendinopathy conditions, with the Central Sensitisation Inventory (CSI) questionnaire. Methods Patients with chronic lower limb tendinopathy conditions treated within a single hospital outpatient clinic specialising in tendinopathy were identified from clinical records. As part of routine care, self-reported numerical markers of pain, global function (using the EuroQol-5D (EQ-5D) questionnaire) and the CSI score to investigate the possibility of central sensitisation were completed. Results A total of 312 suitable patients with chronic lower limb tendinopathy and similar conditions were identified, who had completed a CSI questionnaire. Of these, 108 presented with greater trochanteric pain syndrome, 12 with patella tendinopathy, 33 with non-insertional Achilles tendinopathy, 48 with insertional Achilles tendinopathy and 110 with plantar fasciitis. A total of 66% of the patients were female, the median age was 54.9 years and the median duration of symptoms was 24 months. There was a median CSI score of 25%, with statistically significant differences noted between the different conditions studied. Overall, 20% of patients scored above a threshold of 40% on CSI questionnaire, indicating that central sensitisation was possible. Greater trochanteric pain syndrome and plantar fasciitis had the highest proportions in the conditions studied. Weak correlations were found between CSI and other pain scores studied. Conclusion The CSI questionnaire may identify up to a quarter of patients with some chronic lower limb tendinopathy and associated conditions as being more likely to have central sensitisation, and these proportions differed between conditions. The clinical significance of this is unclear, but worth further study to see if/how this may relate to treatment outcomes. These are results from a single hospital clinic dealing with patients with chronic tendinopathy, and comparison with a control group is currently lacking. However, on the information presented here, the concept of central sensitisation should be considered in patients being treated for chronic tendinopathy.
Collapse
Affiliation(s)
- Patrick C Wheeler
- Department of Sport and Exercise Medicine, Leicester General Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,National Centre for Sport and Exercise Medicine, Loughborough, UK
| |
Collapse
|
33
|
Beccati F, Pepe M, Antinori L, Pascucci L, Chiaradia E, Mandara MT. Sympathetic Innervation and Adrenergic Receptors in Equine Deep Digital Flexor Tendinopathy: Preliminary Results. J Comp Pathol 2018; 163:33-37. [PMID: 30213372 DOI: 10.1016/j.jcpa.2018.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/01/2022]
Abstract
The aim of this study was to delineate the pattern of sympathetic innervation in the suprasesamoidean region of the deep digital flexor tendon (DDFT) in horses with tendinopathy by immunohistochemical labelling for tyrosine hydroxylase (TH) and α-1 adrenergic receptor (α1-AR). Twelve forelimbs were obtained from 10 horses with DDFT tendinopathy and six feet obtained from six horses were used as healthy controls. Post-mortem radiographic, ultrasonographic and gross examinations were performed on the suprasesamoidean area of the DDFT to assess the presence of tendinopathy. Longitudinal sections were collected and processed. Lesions were classified as core lesions, dorsal border lesions and parasagittal oblique splits. Immunohistochemistry was performed and the degree of immunoreaction was classified as absent, mild or marked. Seven core lesions, four dorsal border lesions and one parasagittal oblique split were identified. There was no increased expression of sympathetic innervation in samples with a dorsal border lesion of the DDFT compared with healthy samples. In contrast, core lesions showed increased expression of α1-AR and reduced expression of TH, which supports the hypothesis of a compensatory imbalance between the sympathetic mediator and the sympathetic receptors as a cause or effect of structural damage. In addition, adrenergic activation could stimulate cell proliferation and differentiation within these lesions.
Collapse
Affiliation(s)
- F Beccati
- Sport Horses Studies Centre, Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia, Italy.
| | - M Pepe
- Sport Horses Studies Centre, Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia, Italy
| | - L Antinori
- Clinica Veterinaria Roma Sud, Via Pilade Mazza, 24, Roma, Italy
| | - L Pascucci
- Sport Horses Studies Centre, Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia, Italy
| | - E Chiaradia
- Sport Horses Studies Centre, Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia, Italy
| | - M T Mandara
- Sport Horses Studies Centre, Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia, Italy
| |
Collapse
|
34
|
|
35
|
Watson J, Barker-Davies RM, Bennett AN, Fong DTP, Wheeler PC, Lewis M, Ranson C. Sport and exercise medicine consultants are reliable in assessing tendon neovascularity using ultrasound Doppler. BMJ Open Sport Exerc Med 2018; 4:e000298. [PMID: 29527321 PMCID: PMC5841524 DOI: 10.1136/bmjsem-2017-000298] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2017] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE Several lower limb tendinopathy treatment modalities involve identification of pathological paratendinous or intratendinous neovascularisation to target proposed co-location of painful neoneuralisation. The ability to reliably locate and assess the degree of neovascularity is therefore clinically important. The Modified Ohberg Score (MOS) is frequently used to determine degree of neovascularity, but reliability has yet to be established among Sport and Exercise Medicine (SEM) consultants. This study aims to determine inter-rater and intra-rater reliability of an SEM consultant cohort when assessing neovascularity using the 5-point MOS. METHOD Eleven participants (7 male and 4 female) provided 16 symptomatic Achilles and patella tendons. These were sequentially examined using power Doppler (PD) enabled ultrasound (US) imaging by 6 SEM consultants who rated neovascular changes seen using the MOS. Representative digital scan images were saved for rescoring 3 weeks later. Inter-rater and intra-rater reliability of the MOS was examined using intraclass correlation coefficient (ICC) and Kappa Agreement scores. RESULTS Neovascular changes were reported in 65.6% of 96 scans undertaken. ICC for inter-rater reliability was 0.86 and Fleiss Kappa 0.52. ICC for intra-rater reliability was 0.95 and Weighted Kappa 0.91. CONCLUSIONS Neovascular changes were present in two-thirds of symptomatic tendons. Excellent SEM consultant inter-rater and intra-rater reliability was demonstrated. These findings support the use of PD-enabled US to assess neovascularity by appropriately experienced SEM consultants. Furthermore, future interventional research using a similarly experienced SEM consultant cohort can be undertaken with assurance that assessment of neovascularity will be reliable.
Collapse
Affiliation(s)
- James Watson
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, London, UK
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, UK
| | - Robert M Barker-Davies
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, London, UK
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, London, UK
| | - Alexander N Bennett
- Academic Department of Military Rehabilitation, Defence Medical Rehabilitation Centre, London, UK
- Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK
| | - Daniel T P Fong
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, London, UK
| | - Patrick C Wheeler
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, London, UK
| | - Mark Lewis
- National Centre for Sport and Exercise Medicine, School of Sport Exercise and Health Sciences, Loughborough University, London, UK
| | - Craig Ranson
- Athlete Health Department, English Institute of Sport, Manchester, UK
| |
Collapse
|
36
|
Frara N, Fisher PW, Zhao Y, Tarr JT, Amin M, Popoff SN, Barbe MF. Substance P increases CCN2 dependent on TGF-beta yet Collagen Type I via TGF-beta1 dependent and independent pathways in tenocytes. Connect Tissue Res 2018; 59:30-44. [PMID: 28399671 PMCID: PMC5581284 DOI: 10.1080/03008207.2017.1297809] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transforming growth factor beta 1 (TGFbeta-1) and connective tissue growth factor (CCN2) are important mediators of tissue repair and fibrosis, with CCN2 functioning as a downstream mediator of TGFβ-1. Substance P (SP) is also linked to collagen production in tenocytes. A link between SP, TGFbeta-1 and CCN2 has yet to be established in tenocytes or fibrogenic processes. We sought to determine whether SP induces tenocyte proliferation, CCN2, or collagen production via TGFbeta-1 signaling or independently in rat primary tenocytes. Tenocytes were isolated from rat tendons, cultured and stimulated by SP and/or TGFbeta-1. Cultured cells expressed proteins characteristic of tenocytes (vimentin and tenomodulin) and underwent increased proliferation dose dependently after SP and TGFbeta-1 treatments, alone or combined (more than SP alone when combined). SP induced TGFbeta-1 expression in tenocytes in both dose- and time-dependent manners. SP and TGFbeta-1, alone or combined, stimulated CCN2 expression in tenocytes and their supernatants after both 24 and 48 h of stimulation; a response blocked with addition of a TGFbeta-1 receptor inhibitor. In contrast, SP potentiated collagen type I secretion by tenocytes, a response abrogated by the TGFbeta-1 receptor inhibitor after 48 h of stimulation, but not after the shorter 24 h of stimulation. Our findings suggest that both SP and TGFbeta-1 can stimulate tenocyte fibrogenic processes, albeit differently. TGFbeta-1 pathway signaling was involved in CCN2 production at all time points examined, while SP induced collagen type I production independently prior to the onset of signaling through the TGFbeta-1 pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mary F. Barbe
- Corresponding Author: Mary F. Barbe, PhD, Department of Anatomy and Cell Biology, Temple University School of Medicine, 3500 North Broad St., Philadelphia, PA 19140, 215/707-6422 phone, 215/707-2966 fax,
| |
Collapse
|
37
|
Snedeker JG, Foolen J. Tendon injury and repair - A perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater 2017; 63:18-36. [PMID: 28867648 DOI: 10.1016/j.actbio.2017.08.032] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/16/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022]
Abstract
Tendon is an intricately organized connective tissue that efficiently transfers muscle force to the bony skeleton. Its structure, function, and physiology reflect the extreme, repetitive mechanical stresses that tendon tissues bear. These mechanical demands also lie beneath high clinical rates of tendon disorders, and present daunting challenges for clinical treatment of these ailments. This article aims to provide perspective on the most urgent frontiers of tendon research and therapeutic development. We start by broadly introducing essential elements of current understanding about tendon structure, function, physiology, damage, and repair. We then introduce and describe a novel paradigm explaining tendon disease progression from initial accumulation of damage in the tendon core to eventual vascular recruitment from the surrounding synovial tissues. We conclude with a perspective on the important role that biomaterials will play in translating research discoveries to the patient. STATEMENT OF SIGNIFICANCE Tendon and ligament problems represent the most frequent musculoskeletal complaints for which patients seek medical attention. Current therapeutic options for addressing tendon disorders are often ineffective, and the need for improved understanding of tendon physiology is urgent. This perspective article summarizes essential elements of our current knowledge on tendon structure, function, physiology, damage, and repair. It also describes a novel framework to understand tendon physiology and pathophysiology that may be useful in pushing the field forward.
Collapse
|
38
|
Cè E, Longo S, McCoy E, Bisconti AV, Tironi D, Limonta E, Rampichini S, Rabuffetti M, Esposito F. Acute effects of direct inhibitory pressure over the biceps brachii myotendinous junction on skeletal muscle activation and force output. J Electromyogr Kinesiol 2017; 37:25-34. [PMID: 28866370 DOI: 10.1016/j.jelekin.2017.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/27/2017] [Accepted: 08/08/2017] [Indexed: 01/21/2023] Open
Abstract
Force (F) reduction is reported with myotendinous junction (MTJ) manipulation. Autogenic inhibition reflex (AIR) activation is supposed to be the main mechanism. Still, its role remains unclear. The study aimed at assessing the effects of MTJ direct inhibitory pressure (DIP) on neuromuscular activation and F in the elbow flexor (agonist) and extensor (antagonist) muscles. After maximum voluntary contraction (MVC) assessment, thirty-five participants randomly performed submaximal contractions at 20, 40, 60, and 80% MVC. Electromyographic (EMG), mechanomyographic (MMG), and F signals were recorded. Protocol was repeated under (i) DIP (10-s pressure on the biceps brachii MTJ) with the elbow at 120° (DIP120), (ii) DIP with the elbow at 180° (DIP180), and (iii) without DIP (Ctrl). Electromechanical delay (EMD) components, EMG and MMG root mean square (RMS), and rate of force development (RFD) were calculated. Independently from the angle, DIP induced decrements in MVC, RFD, and RMS of EMG and MMG signals and lengthened the EMD components in agonist muscles (P<0.05). The DIP-induced decrease in F output of the agonist muscles seems to be possibly due to a concomitant impairment of the neuromuscular activation and a transient decrease in stiffness. After DIP, the antagonist muscle displayed no changes; therefore, the intervention of AIR remains questionable.
Collapse
Affiliation(s)
- Emiliano Cè
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy
| | - Stefano Longo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy.
| | - Emily McCoy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy; Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, United States
| | - Angela Valentina Bisconti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy
| | - Davide Tironi
- IRCCS Don Gnocchi Foundation, Via Capecelatro 66, 20148 Milan, Italy
| | - Eloisa Limonta
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy
| | - Susanna Rampichini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy
| | - Marco Rabuffetti
- IRCCS Don Gnocchi Foundation, Via Capecelatro 66, 20148 Milan, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy; IRCCS Don Gnocchi Foundation, Via Capecelatro 66, 20148 Milan, Italy
| |
Collapse
|
39
|
The Implication of Substance P in the Development of Tendinopathy: A Case Control Study. Int J Mol Sci 2017; 18:ijms18061241. [PMID: 28598390 PMCID: PMC5486064 DOI: 10.3390/ijms18061241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/25/2017] [Accepted: 06/06/2017] [Indexed: 01/03/2023] Open
Abstract
It was reported that substance P had beneficial effects in the healing of acute tendon injury. However, the relationship between substance P and degenerative tendinopathy development remains unclear. The purpose of this study was to determine the role of substance P in the pathogenesis of tendinopathy. Healthy and tendinopathy tendon were harvested from human and tenocytes were cultured individually. The expression levels of genes associated with tendinopathy were compared. Next, substance P was exogenously administered to the healthy tenocyte and the effect was evaluated. The results showed that tendinopathy tenocytes had higher levels of COL3A1, MMP1, COX2, SCX, ACTA2, and substance P gene expression compared to healthy tenocytes. Next, substance P treatment on the healthy tenocyte displayed similar changes to that of the tendinopathy tenocytes. These differences between the two groups were also determined by Western blot. Additionally, cells with substance P had the tendinopathy change morphologically although cellular proliferation was significantly higher compared to that of the control group. In conclusion, substance P enhanced cellular proliferation, but concomitantly increased immature collagen (type 3 collagen). Substance P plays a crucial role in tendinopathy development and could be a future therapeutic target for treatment.
Collapse
|
40
|
Barker-Davies RM, Nicol A, McCurdie I, Watson J, Baker P, Wheeler P, Fong D, Lewis M, Bennett AN. Study protocol: a double blind randomised control trial of high volume image guided injections in Achilles and patellar tendinopathy in a young active population. BMC Musculoskelet Disord 2017; 18:204. [PMID: 28532478 PMCID: PMC5441076 DOI: 10.1186/s12891-017-1564-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/09/2017] [Indexed: 01/06/2023] Open
Abstract
Background Chronic tendinopathy is a significant problem particularly in active populations limiting sporting and occupational performance. The prevalence of patellar tendinopathy in some sports is near 50% and the incidence of lower limb tendinopathy is 1.4% p.a. in the UK Military. Management includes isometric, eccentric, heavy slow resistance exercises and extracorporeal shockwave therapy (ESWT). Often these treatments are inadequate yet there is no good evidence for injection therapies and success rates from surgery can be as low as 50%. High Volume Image Guided Injection (HVIGI) proposes to strip away the neovascularity and disrupt the nerve ingrowth seen in chronic cases and has shown promising results in case series. This study aims to investigate the efficacy of HVIGI in a randomised controlled trial (RCT). Methods RCT comparing 40ml HVIGI, with or without corticosteroid, with a 3ml local anaesthetic sham-control injection. Ninety-six participants will be recruited. Inclusion criteria: male, 18–55 years old, chronic Achilles or patellar tendinopathy of at least 6 months, failed conservative management including ESWT, and Ultrasound (US) evidence of neovascularisation, tendon thickening and echogenic changes. Outcome measures will be recorded at baseline, 6 weeks, 3, 6 and 12 months. Primary outcome measures include The Victoria Institute of Sport Assessments for Achilles and patellar tendinopathy (VISA-A and VISA-P) and VAS pain. Secondary outcome measures include Modified Ohberg score, maximum tendon diameter and assessment of hypoechoic appearance on US, and Functional Activity Assessment. Discussion Despite previous interventional trials and reviews there is still insufficient evidence to guide injectable therapy for chronic tendinopathy that has failed conservative treatment. The scant evidence available suggests HVIGI has the greatest potential however there is no level one RCT evidence to support this. Investigating the efficacy of HVIGI against control in a RCT and separating the effect of HVIGI and corticosteroid will add high level evidence to the management of chronic tendinopathy resistant to conservative treatment. Trial Registration EudraCT: 2015-003587-36 3 Dec 2015
Collapse
Affiliation(s)
- Robert M Barker-Davies
- Academic Department of Military Rehabilitation, DMRC Headley Court, Epsom, Surrey, KT18 6JW, UK. .,School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine-East Midlands, Loughboruough University, Leicestershire, LE11 3TU, UK.
| | - Alastair Nicol
- Academic Department of Military Rehabilitation, DMRC Headley Court, Epsom, Surrey, KT18 6JW, UK
| | - I McCurdie
- Academic Department of Military Rehabilitation, DMRC Headley Court, Epsom, Surrey, KT18 6JW, UK
| | - James Watson
- Academic Department of Military Rehabilitation, DMRC Headley Court, Epsom, Surrey, KT18 6JW, UK
| | - Polly Baker
- Academic Department of Military Rehabilitation, DMRC Headley Court, Epsom, Surrey, KT18 6JW, UK
| | - Patrick Wheeler
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine-East Midlands, Loughboruough University, Leicestershire, LE11 3TU, UK
| | - Daniel Fong
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine-East Midlands, Loughboruough University, Leicestershire, LE11 3TU, UK
| | - Mark Lewis
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine-East Midlands, Loughboruough University, Leicestershire, LE11 3TU, UK
| | - Alexander N Bennett
- Academic Department of Military Rehabilitation, DMRC Headley Court, Epsom, Surrey, KT18 6JW, UK
| |
Collapse
|
41
|
Ahmed AS, Li J, Abdul AMD, Ahmed M, Östenson CG, Salo PT, Hewitt C, Hart DA, Ackermann PW. Compromised Neurotrophic and Angiogenic Regenerative Capability during Tendon Healing in a Rat Model of Type-II Diabetes. PLoS One 2017; 12:e0170748. [PMID: 28122008 PMCID: PMC5266316 DOI: 10.1371/journal.pone.0170748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022] Open
Abstract
Metabolic diseases such as diabetes mellitus type-II (DM-II) may increase the risk of suffering painful connective tissue disorders and tendon ruptures. The pathomechanisms, however, by which diabetes adversely affects connective tissue matrix metabolism and regeneration, still need better definition. Our aim was to study the effect of DM-II on expressional changes of neuro- and angiotrophic mediators and receptors in intact and healing Achilles tendon. The right Achilles tendon was transected in 5 male DM-II Goto-Kakizaki (GK) and 4 age-matched Wistar control rats. The left Achilles tendons were left intact. At week 2 post-injury, NGF, BDNF, TSP, and receptors TrkA, TrkB and Nk1 gene expression was studied by quantitative RT-PCR (qRT-PCR) and their protein distribution by immunohistochemistry in intact and injured tendons. The expression of tendon-related markers, Scleraxis (SCX) and Tenomodulin (TNMD), was evaluated by qRT-PCR in intact and injured tendons. Injured tendons of diabetic GK rats exhibited significantly down-regulated Ngf and Tsp1 mRNA and corresponding protein levels, and down-regulated Trka gene expression compared to injured Wistar controls. Intact tendons of DM-II GK rats displayed reduced mRNA levels for Ngf, Tsp1 and Trkb compared to corresponding intact non-diabetic tendons. Up-regulated Scx and Tnmd gene expression was observed in injured tendons of normal and diabetic GK rats compared to intact Wistar controls. However, these molecules were not up-regulated in injured DM-II GK rats compared to their corresponding controls. Our results suggest that DM-II has detrimental effects on neuro- and angiotrophic pathways, and such effects may reflect the compromised repair seen in diabetic Achilles tendon. Thus, novel approaches for regeneration of injured, including tendinopathic, and surgically repaired diabetic tendons may include therapeutic molecular modulation of neurotrophic pathways such as NGF and its receptors.
Collapse
MESH Headings
- Achilles Tendon/injuries
- Achilles Tendon/metabolism
- Achilles Tendon/physiopathology
- Animals
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Disease Models, Animal
- Gene Expression
- Male
- Neovascularization, Physiologic/physiology
- Nerve Growth Factor/genetics
- Nerve Growth Factor/metabolism
- Rats
- Rats, Wistar
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/metabolism
- Substance P/genetics
- Substance P/metabolism
- Tendon Injuries/metabolism
- Tendon Injuries/physiopathology
- Wound Healing/physiology
Collapse
Affiliation(s)
- Aisha S. Ahmed
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Jian Li
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Alim M. D. Abdul
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Mahmood Ahmed
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Family and Community Medicine (CeFAM), Huddinge, Sweden
| | - Claes-Göran Östenson
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Paul T. Salo
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - Carolyn Hewitt
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - David A. Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB, Canada
| | - Paul W. Ackermann
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Solna, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
42
|
Lui PPY. Tendinopathy in diabetes mellitus patients-Epidemiology, pathogenesis, and management. Scand J Med Sci Sports 2017; 27:776-787. [PMID: 28106286 DOI: 10.1111/sms.12824] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2016] [Indexed: 12/15/2022]
Abstract
Chronic tendinopathy is a frequent and disabling musculo-skeletal problem affecting the athletic and general populations. The affected tendon is presented with local tenderness, swelling, and pain which restrict the activity of the individual. Tendon degeneration reduces the mechanical strength and predisposes it to rupture. The pathogenic mechanisms of chronic tendinopathy are not fully understood and several major non-mutually exclusive hypotheses including activation of the hypoxia-apoptosis-pro-inflammatory cytokines cascade, neurovascular ingrowth, increased production of neuromediators, and erroneous stem cell differentiation have been proposed. Many intrinsic and extrinsic risk/causative factors can predispose to the development of tendinopathy. Among them, diabetes mellitus is an important risk/causative factor. This review aims to appraise the current literature on the epidemiology and pathology of tendinopathy in diabetic patients. Systematic reviews were done to summarize the literature on (a) the association between diabetes mellitus and tendinopathy/tendon tears, (b) the pathological changes in tendon under diabetic or hyperglycemic conditions, and (c) the effects of diabetes mellitus or hyperglycemia on the outcomes of tendon healing. The potential mechanisms of diabetes mellitus in causing and exacerbating tendinopathy with reference to the major non-mutually exclusive hypotheses of the pathogenic mechanisms of chronic tendinopathy as reported in the literature are also discussed. Potential strategies for the management of tendinopathy in diabetic patients are presented.
Collapse
Affiliation(s)
- P P Y Lui
- Headquarter, Hospital Authority, Hong Kong SAR, China
| |
Collapse
|
43
|
Wheeler PC. Neuropathic pain may be common in chronic lower limb tendinopathy: a prospective cohort study. Br J Pain 2016; 11:16-22. [PMID: 28386400 DOI: 10.1177/2049463716680560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND To identify the prevalence of neuropathic pain, through the use of the painDETECT questionnaire, in a cohort of patients with chronic lower limb tendinopathy conditions. METHODS Patients with chronic lower limb tendinopathy conditions treated within a Sport and Exercise Medicine hospital clinic were identified from clinical records. At the time of the clinical consultation, pain and painDETECT scores were recorded. RESULTS In total, 282 suitable patients with chronic lower limb tendinopathy conditions were identified who had completed a painDETECT questionnaire. There was a median age of 51.9 years, 35% of patients were male and a median duration of symptoms of 24.0 months. There was a median score of 7.0/10 for self-reported 'average' pain and 8.0/10 for self-reported 'worst' pain. There was a median painDETECT score of 14.0, 28% of respondents scored 19 or higher with painDETECT (neuropathic component to pain may be likely), 29% scored 13-18 (equivocal result) and 43% of respondents scored 12 or less (neuropathic pain component was unlikely). CONCLUSIONS This study suggests that neuropathic pain as identified by the painDETECT questionnaire may be common in patients with chronic lower limb tendinopathy conditions. It is unclear if patients with tendinopathy who have neuropathic pain may have poorer outcomes from initial treatments, contributing to the high proportion seen in secondary care. These are results from a single hospital clinic, and comparison with a control group is currently lacking. However, on the results to date, neuropathic pain should be considered in management strategies in patients with chronic tendinopathy.
Collapse
Affiliation(s)
- Patrick C Wheeler
- Department of Sport and Exercise Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK; School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK; National Centre for Sport and Exercise Medicine, Loughborough, UK
| |
Collapse
|
44
|
Begovic H, Zhou GQ, Schuster S, Zheng YP. The neuromotor effects of transverse friction massage. MANUAL THERAPY 2016; 26:70-76. [PMID: 27497646 DOI: 10.1016/j.math.2016.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/14/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Transverse friction massage (TFM), as an often used technique by therapists, is known for its effect in reducing the pain and loosing the scar tissues. Nevertheless, its effects on neuromotor driving mechanism including the electromechanical delay (EMD), force transmission and excitation-contraction (EC) coupling which could be used as markers of stiffness changes, has not been computed using ultrafast ultrasound (US) when combined with external sensors. AIM Hence, the aim of this study was to find out produced neuromotor changes associated to stiffness when TFM was applied over Quadriceps femoris (QF) tendon in healthy subjcets. METHODS Fourteen healthy males and fifteen age-gender matched controls were recruited. Surface EMG (sEMG), ultrafast US and Force sensors were synchronized and signals were analyzed to depict the time delays corresponding to EC coupling, force transmission, EMD, torque and rate of force development (RFD). RESULTS TFM has been found to increase the time corresponding to EC coupling and EMD, whilst, reducing the time belonging to force transmission during the voluntary muscle contractions. CONCLUSIONS A detection of the increased time of EC coupling from muscle itself would suggest that TFM applied over the tendon shows an influence on changing the neuro-motor driving mechanism possibly via afferent pathways and therefore decreasing the active muscle stiffness. On the other hand, detection of decreased time belonging to force transmission during voluntary contraction would suggest that TFM increases the stiffness of tendon, caused by faster force transmission along non-contractile elements. Torque and RFD have not been influenced by TFM.
Collapse
Affiliation(s)
- Haris Begovic
- The Hong Kong Polytechnic University, Interdisciplinary Division of Biomedical Engineering, Hung Hom, Kowloon, Hong Kong, SAR 999077, China.
| | - Guang-Quan Zhou
- The Hong Kong Polytechnic University, Interdisciplinary Division of Biomedical Engineering, Hung Hom, Kowloon, Hong Kong, SAR 999077, China.
| | - Snježana Schuster
- University of Applied Health Science, Mlinarska Street 38, HR-10000, Zagreb, Croatia.
| | - Yong-Ping Zheng
- The Hong Kong Polytechnic University, Interdisciplinary Division of Biomedical Engineering, Hung Hom, Kowloon, Hong Kong, SAR 999077, China.
| |
Collapse
|
45
|
Musculoskeletal overuse injuries and heart rate variability: Is there a link? Med Hypotheses 2015; 87:1-7. [PMID: 26826630 DOI: 10.1016/j.mehy.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/05/2015] [Accepted: 12/06/2015] [Indexed: 01/06/2023]
Abstract
Accurate detection and prevention of overuse musculoskeletal injuries is limited by the nature of somatic tissue injury. In the pathogenesis of overuse injuries, it is well recognized that an abnormal inflammatory response occurs within somatic tissue before pain is perceived which can disrupt the normal remodeling process and lead to subsequent degeneration. Current overuse injury prevention methods focused on biomechanical faults or performance standards lack the sensitivity needed to identify the status of tissue injury or repair. Recent evidence has revealed an apparent increase in the prevalence and impact of overuse musculoskeletal injuries in athletics. When compared to acute injuries, overuse injuries have a potentially greater negative impact on athletes' overall health burden. Further, return to sport rehabilitation following overuse injury is complicated by the fact that the absence of pain does not equate to complete physiological healing of the injured tissue. Together, this highlights the need for exercise monitoring and injury prevention methods which incorporate assessment of somatic tissue response to loading. One system primarily involved in the activation of pathways and neuromediators responsible for somatic tissue repair is the autonomic nervous system (ANS). Although not completely understood, emerging research supports the critical importance of peripheral ANS activity in the health and repair of somatic tissue injury. Due to its significant contributions to cardiac function, ANS activity can be measured indirectly with heart rate monitoring. Heart rate variability (HRV) is one index of ANS activity that has been used to investigate the relationship between athletes' physiological response to accumulating training load. Research findings indicated that HRV may provide a reflection of ANS homeostasis, or the body's stress-recovery status. This noninvasive marker of the body's primary driver of recovery has the potential to incorporate important and as yet unmonitored physiological mechanisms involved in overuse injury development. We hypothesize that abnormal somatic tissue response to accumulating microtrauma may modulate ANS activity at the level of HRV. Exploring the link between HRV modulation and somatic tissue injury has the potential to reveal the putative role of ANS homeostasis on overuse musculoskeletal injury development.
Collapse
|
46
|
Stålman A, Bring D, Ackermann PW. Chemokine expression of CCL2, CCL3, CCL5 and CXCL10 during early inflammatory tendon healing precedes nerve regeneration: an immunohistochemical study in the rat. Knee Surg Sports Traumatol Arthrosc 2015; 23:2682-9. [PMID: 24809505 DOI: 10.1007/s00167-014-3010-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Chemokines are major promoters of repair and may regulate nerve ingrowth that is essential in tendon healing. The purpose of this study was to assess the temporal occurrence of different chemokines during Achilles tendon healing in relation to sensory nerve regeneration. Chemokine presence in tendon healing has not been studied previously. METHODS Chemokine expression, nerve regeneration, angiogenesis and inflammatory cell occurrence during healing of Achilles tendon rupture in the rat were studied by immunohistochemistry and histology including semiquantitative assessment. Markers for chemokines (CCL5, CCL2, CCL3, CXCL10), nerves (PGP-9.5) and sensory neuropeptide substance P (SP) were analysed at different time points (1 day-16 weeks) post-rupture. RESULTS In intact tendons (controls) immunoreactivity to all chemokines, PGP-9.5 and SP were confined to the tendon surroundings. After rupture, there was rapid increase in the tendon proper of the chemokines studied, all exhibiting their peak expression at week 1. Subsequently, at weeks 2-6, emerging inflammatory cells and maximum sprouting of PGP-/SP-positive nerves were observed close to newly formed blood vessels within the tendon proper, while chemokine expression already decreased. During weeks 6-8, PGP-/SP-positive nerves withdrew from the rupture site and relocated together with the chemokines in the surrounding tendon. CONCLUSIONS Early chemokine expression in the healing tendon precedes ingrowth of new nerves, angiogenesis and emergence of inflammatory cells. The fine-tuned temporal and spatial appearance of chemokines suggests a chemoattractant role for inflammatory cell migration and possibly also a role in angiogenesis and neurogenesis. Chemokines may thus exhibit vital targets for biological modulation of tendon repair.
Collapse
Affiliation(s)
- A Stålman
- Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden,
| | | | | |
Collapse
|
47
|
O’Neill S, Watson PJ, Barry S. WHY ARE ECCENTRIC EXERCISES EFFECTIVE FOR ACHILLES TENDINOPATHY? Int J Sports Phys Ther 2015; 10:552-62. [PMID: 26347394 PMCID: PMC4527202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Abstract
UNLABELLED Achilles Tendinopathy is a complex problem, with the most common conservative treatment being eccentric exercises. Despite multiple studies assessing this treatment regime little is known about the mechanism of effect. This lack of understanding may be hindering therapeutic care and preventing optimal rehabilitation. Of the mechanisms proposed, most relate to tendon adaptation and fail to consider other possibilities. The current consensus is that tendon adaptation does not occur within timeframes associated with clinical improvements, therefore the clinical benefits must occur through another unidentified pathway. This clinical commentary critically reviews each of the proposed theories and highlights that muscle alterations are observed prior to onset of Achilles Tendinopathy and during the disease. Evidence shows that the observed muscle alterations change with treatment and that these adaptations have the ability to reduce tendon load and thereby improve tendon health. The purpose of this clinical commentary is to review previous theories regarding the mechanisms by which eccentric exercise might affect Achilles tendinopathy and offers a novel mechanism by which the plantarflexor muscles may shield the Achilles tendon. LEVEL OF EVIDENCE 5.
Collapse
|
48
|
Beccati F, Pepe M, Pascucci L, Ceccarelli P, Chiaradia E, Mancini F, Mandara MT. Sympathetic innervation of the suprasesamoidean region of the deep digital flexor tendon in the forelimbs of horses. Vet J 2015; 205:413-6. [PMID: 26095033 DOI: 10.1016/j.tvjl.2015.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to delineate the pattern of sympathetic innervation in the suprasesamoidean region of the deep digital flexor tendon (DDFT) in horses using immunohistochemical staining (IHC) for tyrosine hydroxylase (TH) and alpha-1 adrenergic receptor (α1-AR). Fourteen forelimbs were collected from 10 horses. Longitudinal sections of the suprasesamoidean region of healthy DDFTs were harvested. Most of the sympathetic innervation was found to be in the walls of blood vessels. The tendon tissue proper was sparsely innervated, with a lesser degree of innervation within the dorsal fibrocartilage. Increased α1-AR immunostaining was also detected in walls of blood vessels and in spindle cells of fibrocartilage. Both α1-AR and TH immunostaining were detected in tenocytes. These findings support the presence of autocrine/paracrine catecholaminergic signalling in equine tendon tissue.
Collapse
Affiliation(s)
- F Beccati
- Centro di Studi del Cavallo Sportivo, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - M Pepe
- Centro di Studi del Cavallo Sportivo, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - L Pascucci
- Centro di Studi del Cavallo Sportivo, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - P Ceccarelli
- Centro di Studi del Cavallo Sportivo, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - E Chiaradia
- Centro di Studi del Cavallo Sportivo, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - F Mancini
- Centro di Studi del Cavallo Sportivo, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - M T Mandara
- Centro di Studi del Cavallo Sportivo, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| |
Collapse
|
49
|
Russo V, Mauro A, Martelli A, Di Giacinto O, Di Marcantonio L, Nardinocchi D, Berardinelli P, Barboni B. Cellular and molecular maturation in fetal and adult ovine calcaneal tendons. J Anat 2014; 226:126-42. [PMID: 25546075 PMCID: PMC4304568 DOI: 10.1111/joa.12269] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
Processes of development during fetal life profoundly transform tendons from a plastic tissue into a highly differentiated structure, characterised by a very low ability to regenerate after injury in adulthood. Sheep tendon is frequently used as a translational model to investigate cell-based regenerative approaches. However, in contrast to other species, analytical and comparative baseline studies on the normal developmental maturation of sheep tendons from fetal through to adult life are not currently available. Thus, a detailed morphological and biochemical study was designed to characterise tissue maturation during mid- (2 months of pregnancy: 14 cm of length) and late fetal (4 months: 40 cm of length) life, through to adulthood. The results confirm that ovine tendon morphology undergoes profound transformations during this period. Endotenon was more developed in fetal tendons than in adult tissues, and its cell phenotype changed through tendon maturation. Indeed, groups of large rounded cells laying on smaller and more compacted ones expressing osteocalcin, vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) were identified exclusively in fetal mid-stage tissues, and not in late fetal or adult tendons. VEGF, NGF as well as blood vessels and nerve fibers showed decreased expression during tendon development. Moreover, the endotenon of mid- and late fetuses contained identifiable cells that expressed several pluripotent stem cell markers [Telomerase Reverse Transcriptase (TERT), SRY Determining Region Y Box-2 (SOX2), Nanog Homeobox (NANOG) and Octamer Binding Transcription Factor-4A (OCT-4A)]. These cells were not identifiable in adult specimens. Ovine tendon development was also accompanied by morphological modifications to cell nuclei, and a progressive decrease in cellularity, proliferation index and expression of connexins 43 and 32. Tendon maturation was similarly characterised by modulation of several other gene expression profiles, including Collagen type I, Collagen type III, Scleraxis B, Tenomodulin, Trombospondin 4 and Osteocalcin. These gene profiles underwent a dramatic reduction in adult tissues. Transforming growth factor-1 expression (involved in collagen synthesis) underwent a similar decrease. In conclusion, these morphological studies carried out on sheep tendons at different stages of development and aging offer normal structural and molecular baseline data to allow accurate evaluation of data from subsequent interventional studies investigating tendon healing and regeneration in ovine experimental models.
Collapse
|
50
|
|