1
|
McDowall S, Aung-Htut M, Wilton S, Li D. Antisense oligonucleotides and their applications in rare neurological diseases. Front Neurosci 2024; 18:1414658. [PMID: 39376536 PMCID: PMC11456401 DOI: 10.3389/fnins.2024.1414658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/20/2024] [Indexed: 10/09/2024] Open
Abstract
Rare diseases affect almost 500 million people globally, predominantly impacting children and often leading to significantly impaired quality of life and high treatment costs. While significant contributions have been made to develop effective treatments for those with rare diseases, more rapid drug discovery strategies are needed. Therapeutic antisense oligonucleotides can modulate target gene expression with high specificity through various mechanisms determined by base sequences and chemical modifications; and have shown efficacy in clinical trials for a few rare neurological conditions. Therefore, this review will focus on the applications of antisense oligonucleotides, in particular splice-switching antisense oligomers as promising therapeutics for rare neurological diseases, with key examples of Duchenne muscular dystrophy and spinal muscular atrophy. Challenges and future perspectives in developing antisense therapeutics for rare conditions including target discovery, antisense chemical modifications, animal models for therapeutic validations, and clinical trial designs will also be briefly discussed.
Collapse
Affiliation(s)
- Simon McDowall
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
| | - May Aung-Htut
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Steve Wilton
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Dunhui Li
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
2
|
Vijayakumar KK, Manoharan D, Subbarayan R, Shrestha R, Harshavardhan S. Construction of pVAX-1-based linear covalently closed vector with improved transgene expression. Mol Biol Rep 2024; 51:934. [PMID: 39180671 DOI: 10.1007/s11033-024-09856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
INTRODUCTION This study presents a Mammalian Linear Expression System (MLES), a linear covalently closed (LCC) vector based on pVAX-1. The purpose of this system was to improve gene expression in mammalian cells and to test the efficacy of MLES in transient transfection and transgene expression using in vitro and in vivo models. Additionally, we aimed to evaluate potential inflammatory responses in vivo. MATERIALS AND METHODS MLES was developed by modifying pVAX-1, and the construct was confirmed by gel electrophoresis. Lipofectamine®2000 was used to assess the transfection efficiency and expression of MLES in various cell lines. In vivo studies were conducted in mice injected with MLES/EGFP, and the resulting transfection efficiency, gene expression, and inflammatory responses were analyzed. RESULTS MLES exhibited higher transfection efficiency and expression levels compared to pVAX-1 when tested on HEK-293, CHO-K1, and NIH-3T3 cells. When tested in vivo, MLES/EGFP showed elevated expression in the heart, kidney, liver, and spleen compared with pVAX-1/EGFP. Minimal changes are observed in the lungs. Additionally, MLES induced a reduced inflammatory response in mice compared with pVAX-1/EGFP. CONCLUSIONS MLES offer improved transfection efficiency and reduced inflammation, representing a significant advancement in gene therapy and recombinant protein production. Further research on MLES-mediated gene expression and immune modulation will enhance gene therapy strategies.
Collapse
Affiliation(s)
- Kevin Kumar Vijayakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India
| | - Devaprakash Manoharan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India
| | - Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutic and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Rupendra Shrestha
- Research and Collaboration, Anka Analytica, Melbourne, Australia
- External Consultant, Independent Researcher, Pittsfield, MA, USA
| | - Shakila Harshavardhan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
3
|
Sheth J, Nair A, Sheth F, Ajagekar M, Dhondekar T, Panigrahi I, Bavdekar A, Nampoothiri S, Datar C, Gandhi A, Muranjan M, Kaur A, Desai M, Mistri M, Patel C, Naik P, Shah M, Godbole K, Kapoor S, Gupta N, Bijarnia-Mahay S, Kadam S, Solanki D, Desai S, Iyer A, Patel K, Patel H, Shah RC, Mehta S, Shah R, Bhavsar R, Shah J, Pandya M, Patel B, Shah S, Shah H, Shah S, Bajaj S, Shah S, Thaker N, Kalane U, Kamate M, Kn VR, Tayade N, Jagadeesan S, Jain D, Chandarana M, Singh J, Mehta S, Suresh B, Sheth H. Burden of rare genetic disorders in India: twenty-two years' experience of a tertiary centre. Orphanet J Rare Dis 2024; 19:295. [PMID: 39138584 PMCID: PMC11323464 DOI: 10.1186/s13023-024-03300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Rare disorders comprise of ~ 7500 different conditions affecting multiple systems. Diagnosis of rare diseases is complex due to dearth of specialized medical professionals, testing labs and limited therapeutic options. There is scarcity of data on the prevalence of rare diseases in different populations. India being home to a large population comprising of 4600 population groups, of which several thousand are endogamous, is likely to have a high burden of rare diseases. The present study provides a retrospective overview of a cohort of patients with rare genetic diseases identified at a tertiary genetic test centre in India. RESULTS Overall, 3294 patients with 305 rare diseases were identified in the present study cohort. These were categorized into 14 disease groups based on the major organ/ organ system affected. Highest number of rare diseases (D = 149/305, 48.9%) were identified in the neuromuscular and neurodevelopmental (NMND) group followed by inborn errors of metabolism (IEM) (D = 47/305; 15.4%). Majority patients in the present cohort (N = 1992, 61%) were diagnosed under IEM group, of which Gaucher disease constituted maximum cases (N = 224, 11.2%). Under the NMND group, Duchenne muscular dystrophy (N = 291/885, 32.9%), trinucleotide repeat expansion disorders (N = 242/885; 27.3%) and spinal muscular atrophy (N = 141/885, 15.9%) were the most common. Majority cases of β-thalassemia (N = 120/149, 80.5%) and cystic fibrosis (N = 74/75, 98.7%) under the haematological and pulmonary groups were observed, respectively. Founder variants were identified for Tay-Sachs disease and mucopolysaccharidosis IVA diseases. Recurrent variants for Gaucher disease (GBA:c.1448T > C), β-thalassemia (HBB:c.92.+5G > C), non-syndromic hearing loss (GJB2:c.71G > A), albinism (TYR:c.832 C > T), congenital adrenal hyperplasia (CYP21A2:c.29-13 C > G) and progressive pseudo rheumatoid dysplasia (CCN6:c.298T > A) were observed in the present study. CONCLUSION The present retrospective study of rare disease patients diagnosed at a tertiary genetic test centre provides first insight into the distribution of rare genetic diseases across the country. This information will likely aid in drafting future health policies, including newborn screening programs, development of target specific panel for affordable diagnosis of rare diseases and eventually build a platform for devising novel treatment strategies for rare diseases.
Collapse
Affiliation(s)
- Jayesh Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India.
| | - Aadhira Nair
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Frenny Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Manali Ajagekar
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | | | - Inusha Panigrahi
- Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | | | | | - Chaitanya Datar
- Bharati Hospital and Research Centre, Dhankawadi, Pune, India
| | | | - Mamta Muranjan
- Department of Pediatrics, KEM Hospital, Parel, Mumbai, India
| | - Anupriya Kaur
- Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Manisha Desai
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Mehul Mistri
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Chitra Patel
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Premal Naik
- Rainbow Super speciality Hospital, Ahmedabad, India
| | | | - Koumudi Godbole
- Deenanath Mangeshkar Hospital & Research Centre, Pune, India
| | - Seema Kapoor
- Division of Genetics & Metabolism Department of Pediatrics, Lok Nayak Hospital and Maulana Azad Medical College, New Delhi, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sandeep Kadam
- Department of Pediatrics, K.E.M Hospital, Pune, India
| | | | - Soham Desai
- Shree Krishna Hospital, Karamsad, Anand, India
| | | | - Ketan Patel
- Himalaya Arcade, Homeopathy Clinic, Vastrapur, Ahmedabad, India
| | - Harsh Patel
- Zydus Hospital & Healthcare Research Pvt Ltd, Ahmedabad, India
| | - Raju C Shah
- Ankur Neonatal Hospital, Ashram Road, Ahmedabad, India
| | | | | | - Riddhi Bhavsar
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Jhanvi Shah
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Mili Pandya
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | | | | | - Heli Shah
- Ansa Clinic, S. G. Highway, Ahmedabad, India
| | - Shalin Shah
- Ansa Clinic, S. G. Highway, Ahmedabad, India
| | - Shruti Bajaj
- The Purple Gene Clinic, Simplex Khushaangan, SV Road, Malad West, Mumbai, India
| | | | | | - Umesh Kalane
- Deenanath Mangeshkar Hospital & Research Centre, Pune, India
| | | | - Vykunta Raju Kn
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Naresh Tayade
- Department of Paediatrics, Dr. Panjabrao Deshmukh Memorial Medical College, Amravati, India
| | - Sujatha Jagadeesan
- Department of Clinical Genetics & Genetic Counselling, Mediscan Systems, Chennai, India
| | - Deepika Jain
- Shishu Child Development and Early Intervention Centre, Ahmedabad, India
| | - Mitesh Chandarana
- Medisquare Superspeciality Hospital and Research Institute, Ahmedabad, India
| | - Jitendra Singh
- Neurology Clinic, Shivranjini Cross Road, Satellite, Ahmedabad, India
| | | | - Beena Suresh
- Department of Clinical Genetics & Genetic Counselling, Mediscan Systems, Chennai, India
| | - Harsh Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India.
| |
Collapse
|
4
|
Lee NK, Chang JW. Manufacturing Cell and Gene Therapies: Challenges in Clinical Translation. Ann Lab Med 2024; 44:314-323. [PMID: 38361427 PMCID: PMC10961620 DOI: 10.3343/alm.2023.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/24/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
The safety and efficacy of both cell and gene therapies have been demonstrated in numerous preclinical and clinical trials. Chimeric antigen receptor T (CAR-T) cell therapy, which leverages the technologies of both cell and gene therapies, has also shown great promise for treating various cancers. Advancements in pertinent fields have also highlighted challenges faced while manufacturing cell and gene therapy products. Potential problems and obstacles must be addressed to ease the clinical translation of individual therapies. Literature reviews of representative cell-based, gene-based, and cell-based gene therapies with regard to their general manufacturing processes, the challenges faced during manufacturing, and QC specifications are limited. We review the general manufacturing processes of cell and gene therapies, including those involving mesenchymal stem cells, viral vectors, and CAR-T cells. The complexities associated with the manufacturing processes and subsequent QC/validation processes may present challenges that could impede the clinical progression of the products. This article addresses these potential challenges. Further, we discuss the use of the manufacturing model and its impact on cell and gene therapy.
Collapse
Affiliation(s)
- Na Kyung Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Jong Wook Chang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Cell and Gene Therapy Institute, ENCell Co. Ltd., Seoul, Korea
| |
Collapse
|
5
|
Akinyele O, Munir A, Johnson MA, Perez MS, Gao Y, Foley JR, Nwafor A, Wu Y, Murray-Stewart T, Casero RA, Bayir H, Kemaladewi DU. Impaired polyamine metabolism causes behavioral and neuroanatomical defects in a mouse model of Snyder-Robinson syndrome. Dis Model Mech 2024; 17:dmm050639. [PMID: 38463005 PMCID: PMC11103582 DOI: 10.1242/dmm.050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Snyder-Robinson syndrome (SRS) is a rare X-linked recessive disorder caused by a mutation in the SMS gene, which encodes spermine synthase, and aberrant polyamine metabolism. SRS is characterized by intellectual disability, thin habitus, seizure, low muscle tone/hypotonia and osteoporosis. Progress towards understanding and treating SRS requires a model that recapitulates human gene variants and disease presentations. Here, we evaluated molecular and neurological presentations in the G56S mouse model, which carries a missense mutation in the Sms gene. The lack of SMS protein in the G56S mice resulted in increased spermidine/spermine ratio, failure to thrive, short stature and reduced bone density. They showed impaired learning capacity, increased anxiety, reduced mobility and heightened fear responses, accompanied by reduced total and regional brain volumes. Furthermore, impaired mitochondrial oxidative phosphorylation was evident in G56S cerebral cortex, G56S fibroblasts and Sms-null hippocampal cells, indicating that SMS may serve as a future therapeutic target. Collectively, our study establishes the suitability of the G56S mice as a preclinical model for SRS and provides a set of molecular and functional outcome measures that can be used to evaluate therapeutic interventions for SRS.
Collapse
Affiliation(s)
- Oluwaseun Akinyele
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Anushe Munir
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Marie A. Johnson
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Megan S. Perez
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yuan Gao
- Children's Neuroscience Institute, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Jackson R. Foley
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Ashley Nwafor
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Tracy Murray-Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Robert A. Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Hülya Bayir
- Children's Neuroscience Institute, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Dwi U. Kemaladewi
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Children's Neuroscience Institute, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
6
|
Duran T, Naik S, Sharifi L, DiLuzio WR, Chanda A, Chaudhuri B. Studying the ssDNA loaded adeno-associated virus aggregation using coarse-grained molecular dynamics simulations. Int J Pharm 2024; 655:123985. [PMID: 38484860 DOI: 10.1016/j.ijpharm.2024.123985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The aggregation of adeno-associated viral (AAV) capsids in an aqueous environment was investigated via coarse-grained molecular dynamics (CG-MD) simulations. The primary driving force and mechanism of the aggregation were investigated with or without single-strand DNA (ssDNA) loaded at various process temperatures. Capsid aggregation appeared to involve multiple residue interactions (i.e., hydrophobic, polar and charged residues) leading to complex protein aggregation. In addition, two aggregation mechanisms (i.e., the fivefold face-to-face contact and the edge-to-edge contact) were identified from this study. The ssDNA with its asymmetric structure could be the reason for destabilizing protein subunits and enhancing the interaction between the charged residues, and further result in the non-reversible face-to-face contact. At higher temperature, the capsid structure was found to be unstable with the significant size expansion of the loaded ssDNA which could be attributed to reduced number of intramolecular hydrogen bonds, the increased conformational deviations of protein subunits and the higher residue fluctuations. The CG-MD model was further validated with previous experimental and simulation data, including the full capsid size measurement and the capsid internal pressure. Thus, a good understanding of AAV capsid aggregation, instability and the role of ssDNA were revealed by applying the developed computational model.
Collapse
Affiliation(s)
- Tibo Duran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Shivangi Naik
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
| | - Leila Sharifi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Willow R DiLuzio
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
| | - Arani Chanda
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; Institute of Material Sciences (IMS), University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
7
|
Tricoli L, Sase S, Hacker J, Pham V, Smith S, Chappell M, Breda L, Hurwitz S, Tanaka N, Castracani CC, Guerra A, Hou Z, Schlotawa L, Radhakrishnan K, Kurre P, Ahrens-Nicklas R, Adang L, Vanderver A, Rivella S. Effective Gene Therapy for Metachromatic Leukodystrophy Achieved with Minimal Lentiviral Genomic Integrations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584404. [PMID: 38559013 PMCID: PMC10979988 DOI: 10.1101/2024.03.14.584404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metachromatic leukodystrophy (MLD) is a fatal lysosomal storage disease (LSD) characterized by the deficient enzymatic activity of arylsulfatase A (ARSA). Combined autologous hematopoietic stem cell transplant (HSCT) with lentiviral (LV) based gene therapy has great potential to treat MLD. However, if enzyme production is inadequate, this could result in continued loss of motor function, implying a high vector copy number (VCN) requirement for optimal enzymatic output. This may place children at increased risk for genomic toxicity due to higher VCN. We increased the expression of ARSA cDNA at single integration by generating novel LVs, optimizing ARSA expression, and enhancing safety. In addition, our vectors achieved optimal transduction in mouse and human HSC with minimal multiplicity of infection (MOI). Our top-performing vector (EA1) showed at least 4X more ARSA activity than the currently EU-approved vector and a superior ability to secrete vesicle-associated ARSA, a critical modality to transfer functional enzymes from microglia to oligodendrocytes. Three-month-old Arsa -KO MLD mice transplanted with Arsa -KO BM cells transduced with 0.6 VCN of EA1 demonstrated behavior and CNS histology matching WT mice. Our novel vector boosts efficacy while improving safety as a robust approach for treating early symptomatic MLD patients.
Collapse
|
8
|
Egea G. Navigating toward gene therapy in Marfan syndrome: A hope for halting aortic aneurysm. Mol Ther Methods Clin Dev 2024; 32:101196. [PMID: 38357700 PMCID: PMC10864845 DOI: 10.1016/j.omtm.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Affiliation(s)
- Gustavo Egea
- Vascular Cell Biology Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- University of Antwerpen, Medical Genetics Center-Cardiogenomics, Edegem, 2700 Antwerpen, Belgium
| |
Collapse
|
9
|
Kofoed RH, Aubert I. Focused ultrasound gene delivery for the treatment of neurological disorders. Trends Mol Med 2024; 30:263-277. [PMID: 38216449 DOI: 10.1016/j.molmed.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024]
Abstract
The transformative potential of gene therapy has been demonstrated in humans. However, there is an unmet need for non-invasive targeted gene delivery and regulation in the treatment of brain disorders. Transcranial focused ultrasound (FUS) has gained tremendous momentum to address these challenges. FUS non-invasively modulates brain cells and their environment, and is a powerful tool to facilitate gene delivery across the blood-brain barrier (BBB) with millimeter precision and promptly regulate transgene expression. This review highlights technical aspects of FUS-mediated gene therapies for the central nervous system (CNS) and lessons learned from discoveries in other organs. Understanding the possibilities and remaining obstacles of FUS-mediated gene therapy will be necessary to harness remarkable technologies and create life-changing treatments for neurological disorders.
Collapse
Affiliation(s)
- Rikke Hahn Kofoed
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Liu C, Liu Y, Ou L, Qi Y, Zhang J. Recent landscape and trends for industry-sponsored pediatric clinical trials in China from 2013 to 2022. Pediatr Investig 2024; 8:12-20. [PMID: 38516137 PMCID: PMC10951485 DOI: 10.1002/ped4.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/21/2023] [Indexed: 03/23/2024] Open
Abstract
Importance Pediatric medication is a challenging issue globally. Promoting trials of medications for children and implementing measures to encourage innovation for addressing unmet medical and health needs are important. Objective To explore the recent landscape of pediatric clinical trials of new investigational drugs conducted by pharmaceutical enterprises in China from 2013 to 2022 to provide insight into pediatric drug development in the pharmaceutical industry and regulatory policy formulation. Methods We performed a cross-sectional observational investigation of pediatric clinical trials registered from January 1, 2013, to December 31, 2022, on the Registration and Information Disclosure Platform for Drug Clinical Trials, the official registration platform established in 2013 for trials of new investigational drugs initiated by biopharmaceutical enterprises. Trials that included pediatric participants (under 18 years old) were retrieved, and their relevant characteristics were extracted and analyzed. Results In total, 895 pediatric clinical trials were collected, accounting for 5.1% of the total registered clinical trials initiated prior to January 1, 2023. The overall average annual growth rate for the number of pediatric clinical trials was 12% (P < 0.001). Phase III trials accounted for the highest proportion (49.1%, 439). Of the 895 trials included, 736 (82.2%) were domestic trials, and 159 (17.8%) were international multicenter trials. In terms of tested drugs, investigations of biological products accounted for the largest proportion of trials (67.4%, 603). Among pediatric clinical trials, studies of vaccines accounted for the largest proportion of trials (41.0%, 367), followed by trials for rare diseases (17.2%, 154). Furthermore, geographical distribution analysis revealed that the largest and smallest numbers of trials were conducted in North China (35.7%, 320) and Northeast China (0.8%, 7), respectively. Interpretation The growth trends for industry-sponsored clinical trials involving children illustrate the progress and increasing capability of pediatric drug development achieved in China since 2013. Current challenges and potential areas of focus for policymakers and stakeholders include investigating orphan drugs for rare diseases according to the unique epidemiological characteristics of Chinese children, expanding the scope of pediatric clinical trials, and improving the uneven geographical distribution of leading research centers.
Collapse
Affiliation(s)
- Chang Liu
- Drug Clinical Trial Institution, Children's Hospital, Capital Institute of PediatricsBeijingChina
| | - Yi Liu
- Drug Clinical Trial Institution, Children's Hospital, Capital Institute of PediatricsBeijingChina
| | - Ling Ou
- Drug Clinical Trial Institution, Children's Hospital, Capital Institute of PediatricsBeijingChina
| | - Yuenan Qi
- Drug Clinical Trial Institution, Children's Hospital, Capital Institute of PediatricsBeijingChina
| | - Jianmin Zhang
- Drug Clinical Trial Institution, Children's Hospital, Capital Institute of PediatricsBeijingChina
| |
Collapse
|
11
|
Rotte A. Development of Cell and Gene Therapies for Clinical Use in the US and EU: Summary of Regulatory Guidelines. Curr Gene Ther 2024; 25:10-21. [PMID: 38676481 DOI: 10.2174/0115665232306205240419091414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Recent decades have seen advancements in the management and treatment of difficultto- treat diseases such as cancer. A special class of therapeutics called cell and gene therapy has been introduced in the past 10 years. Cell and gene therapy products have strengthened the treatment options for life-threatening diseases with unmet clinical needs and also provided the possibility of a potential cure for the disease in some of the patients. Cell and gene therapy products are gaining recognition, and the interest in clinical development of cell and gene therapy products is increasing. Moreover, as the class of cell and gene therapy products is relatively new, there is a limited regulatory experience in the development, and the developers of the cell and gene therapy products can often be puzzled with an array of questions on regulations. The current review intends to provide a basic understanding of regulatory guidelines from the FDA and EMA that are applicable to cell and gene therapy products. Essentials such as which office is responsible for the evaluation of applications, which regulatory class/pathway is appropriate for development, and what are the quality, nonclinical and clinical studies that are needed to support the application are discussed in the article. In addition, a summary of regulatory designations and the post-approval requirements, such as Risk Evaluation and Mitigation Strategies (REMS) and long-term follow- up, is included in the article. Developers (referred to as 'sponsors' in this article) of cell and gene therapies can use the respective guidance documents and other specific review articles cited in this review for detailed information on the topics.
Collapse
Affiliation(s)
- Anand Rotte
- Clinical and Regulatory Affairs, Arcellx Inc, Redwood City, California, CA, USA
| |
Collapse
|
12
|
Poller W, Sahoo S, Hajjar R, Landmesser U, Krichevsky AM. Exploration of the Noncoding Genome for Human-Specific Therapeutic Targets-Recent Insights at Molecular and Cellular Level. Cells 2023; 12:2660. [PMID: 37998395 PMCID: PMC10670380 DOI: 10.3390/cells12222660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
While it is well known that 98-99% of the human genome does not encode proteins, but are nevertheless transcriptionally active and give rise to a broad spectrum of noncoding RNAs [ncRNAs] with complex regulatory and structural functions, specific functions have so far been assigned to only a tiny fraction of all known transcripts. On the other hand, the striking observation of an overwhelmingly growing fraction of ncRNAs, in contrast to an only modest increase in the number of protein-coding genes, during evolution from simple organisms to humans, strongly suggests critical but so far essentially unexplored roles of the noncoding genome for human health and disease pathogenesis. Research into the vast realm of the noncoding genome during the past decades thus lead to a profoundly enhanced appreciation of the multi-level complexity of the human genome. Here, we address a few of the many huge remaining knowledge gaps and consider some newly emerging questions and concepts of research. We attempt to provide an up-to-date assessment of recent insights obtained by molecular and cell biological methods, and by the application of systems biology approaches. Specifically, we discuss current data regarding two topics of high current interest: (1) By which mechanisms could evolutionary recent ncRNAs with critical regulatory functions in a broad spectrum of cell types (neural, immune, cardiovascular) constitute novel therapeutic targets in human diseases? (2) Since noncoding genome evolution is causally linked to brain evolution, and given the profound interactions between brain and immune system, could human-specific brain-expressed ncRNAs play a direct or indirect (immune-mediated) role in human diseases? Synergistic with remarkable recent progress regarding delivery, efficacy, and safety of nucleic acid-based therapies, the ongoing large-scale exploration of the noncoding genome for human-specific therapeutic targets is encouraging to proceed with the development and clinical evaluation of novel therapeutic pathways suggested by these research fields.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA;
| | - Roger Hajjar
- Gene & Cell Therapy Institute, Mass General Brigham, 65 Landsdowne St, Suite 143, Cambridge, MA 02139, USA;
| | - Ulf Landmesser
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anna M. Krichevsky
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
13
|
Haraguchi Y, Chiang TK, Yu M. Application of Electrophysiology in Non-Macular Inherited Retinal Dystrophies. J Clin Med 2023; 12:6953. [PMID: 37959417 PMCID: PMC10649281 DOI: 10.3390/jcm12216953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Inherited retinal dystrophies encompass a diverse group of disorders affecting the structure and function of the retina, leading to progressive visual impairment and, in severe cases, blindness. Electrophysiology testing has emerged as a valuable tool in assessing and diagnosing those conditions, offering insights into the function of different parts of the visual pathway from retina to visual cortex and aiding in disease classification. This review provides an overview of the application of electrophysiology testing in the non-macular inherited retinal dystrophies focusing on both common and rare variants, including retinitis pigmentosa, progressive cone and cone-rod dystrophy, bradyopsia, Bietti crystalline dystrophy, late-onset retinal degeneration, and fundus albipunctatus. The different applications and limitations of electrophysiology techniques, including multifocal electroretinogram (mfERG), full-field ERG (ffERG), electrooculogram (EOG), pattern electroretinogram (PERG), and visual evoked potential (VEP), in the diagnosis and management of these distinctive phenotypes are discussed. The potential for electrophysiology testing to allow for further understanding of these diseases and the possibility of using these tests for early detection, prognosis prediction, and therapeutic monitoring in the future is reviewed.
Collapse
Affiliation(s)
| | | | - Minzhong Yu
- Department of Ophthalmology, University Hospitals, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Bernstock JD, Ling A, Chiocca EA. Combined gene therapies for high-grade glioma. Lancet Oncol 2023; 24:949-950. [PMID: 37657467 DOI: 10.1016/s1470-2045(23)00389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 09/03/2023]
Affiliation(s)
- Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander Ling
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|