1
|
Mesjasz A, Kołkowski K, Wollenberg A, Trzeciak M. How to Understand Personalized Medicine in Atopic Dermatitis Nowadays? Int J Mol Sci 2023; 24:ijms24087557. [PMID: 37108720 PMCID: PMC10145758 DOI: 10.3390/ijms24087557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Atopic dermatitis (AD) is a heterogeneous disease in terms of its phenotypical, barrier, and immunological presentation. Emerging therapies are undoubtedly contributing to a new chapter in the treatment of AD, bringing an excellent possibility of individualization, and thereby creating a tailored approach. The two most promising substance groups are biological drugs (dupilumab, tralokinumab, lebrikizumab, nemolizumab) and Janus kinase inhibitors (JAKis) (baricitinib, upadacitinib, and abrocitinib). The vision that certain well-defined phenotypes and endotypes, as well as personal preferences, may guide the future treatment of AD is both tempting and appealing, but not yet reality. The accessibility of new drugs such as biologics and small molecules has opened up the discussion regarding personalized medicine, referring to the complex nature of AD as well as the experiences from clinical trials and real-world evidence. We have now reached the point of creating new strategies and AD treatment goals by increasing the amount of new information concerning the efficacy and safety of new drugs. This article has reviewed the novel treatment options for AD in the light of the heterogeneity of this disease and proposes a broader vision on the strategy of personalized treatment of AD.
Collapse
Affiliation(s)
- Alicja Mesjasz
- Dermatological Students Scientific Association, Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Karol Kołkowski
- Dermatological Students Scientific Association, Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Andreas Wollenberg
- Department of Dermatology, Venereology and Allergology, University Hospital, Ludwig Maximilian University, Frauenlobstr. 9-11, 80337 Munich, Germany
- Department of Dermatology, Free University Brussels, University Hospital Brussels, Bd de la Plaine 2, 1050 Brussels, Belgium
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland
| |
Collapse
|
2
|
Chong AC, Visitsunthorn K, Ong PY. Genetic/Environmental Contributions and Immune Dysregulation in Children with Atopic Dermatitis. J Asthma Allergy 2022; 15:1681-1700. [PMID: 36447957 PMCID: PMC9701514 DOI: 10.2147/jaa.s293900] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/11/2022] [Indexed: 08/01/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common skin conditions in humans. AD affects up to 20% of children worldwide and results in morbidity for both patients and their caregivers. The basis of AD is an interplay between genetics and the environment characterized by immune dysregulation. A myriad of mutations that compromise the skin barrier and/or immune function have been linked to AD. Of these, filaggrin gene (FLG) mutations are the most evidenced. Many other mutations have been implicated in isolated studies that are often unreplicated, creating an archive of genes with potential but unconfirmed relevance to AD. Harnessing big data, polygenic risk scores (PRSs) and genome-wide association studies (GWAS) may provide a more practical strategy for identifying the genetic signatures of AD. Epigenetics may also play a role. Staphylococcus aureus is the most evidenced microbial contributor to AD. Cutaneous dysbiosis may result in over-colonization by pathogenic strains and aberrant skin immunity and inflammation. Aeroallergens, air pollution, and climate are other key environmental contributors to AD. The right climate and/or commensals may improve AD for some patients.
Collapse
Affiliation(s)
- Albert C Chong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Peck Y Ong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Division of Clinical Immunology and Allergy, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Significance of interleukin-31 (IL-31) gene polymorphisms and IL-31 serum level in psoriasis in correlation with pruritus. Postepy Dermatol Alergol 2021; 38:657-664. [PMID: 34658710 PMCID: PMC8501425 DOI: 10.5114/ada.2021.108926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/14/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Interleukin-31 (IL-31) impact on the development and clinical presentation of psoriasis as well as pruritus has not been widely investigated so far. Aim To analyse IL-31 -1066G/A and -2057G/A promoter gene polymorphisms as well as serum IL-31 level and their correlation with severity of psoriasis and pruritus in the population of northern Poland. Material and methods The study included 300 psoriasis patients and 186 healthy volunteers. The polymorphisms were analysed using amplified refractory mutation system - polymerase chain reaction (ARMS-PCR) method. Serum levels of IL-31 were measured using the enzyme-linked immunosorbent assay (ELISA) test. Results The -1066 AA genotype of the IL-31 gene was statistically more frequent in patients and it increased the risk of psoriasis (OR = 1.80; p = 0.04). The GG genotype as well as G allele of the IL-31 -2057 gene polymorphism were rarely observed in psoriasis and were associated with a decreased risk of the disease (OR = 0.6, p = 0.007 and OR = 0.7, p = 0.01, respectively). Serum levels of IL-31 were significantly elevated in psoriasis patients (p < 0.000001), however, they did not correlate with the studied polymorphic variants of the IL-31 gene, severity of psoriasis, disease onset, presence of psoriatic arthritis and pruritus intensity. Conclusions Distinct IL-31 promoter gene polymorphisms may be involved in psoriasis development. It seems that serum concentration of IL-31 may not be a reliable marker of psoriatic pruritus.
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Allergic skin diseases such as urticaria, atopic dermatitis and allergic contact dermatitis are among the most common skin diseases with severe socioeconomic consequences. The pathogenesis of allergic skin diseases is complex. This review provides an overview of cytocines IL-17, IL-23, IL-31 and IL-33. RECENT FINDINGS Current research results show a variety of immunological processes in the pathogenesis of the allergic skin diseases, including the role of cytokines. In addition to the Th1 and Th2 immune response, the immune response via Th17 is becoming increasingly important in allergic skin diseases but also the cytokines IL-23, IL-31 and IL-33 have been discussed in the literature recently. Different cytokines promote in a kind of orchestra the different symptoms seen in the different allergic skin diseases, including pruritus, dermatitis, mast cell mediator release and inflammation. SUMMARY We are still in the early stages of understanding pathophysiology of allergic skin diseases and the role of various cytokines in the immune system. With the development of targeted antibodies against the proinflammatory cytokines, the variety of normal therapeutic options can be expected to evolve.
Collapse
|
5
|
IL-31 and IL-8 in Cutaneous T-Cell Lymphoma: Looking for Their Role in Itch. Adv Hematol 2021; 2021:5582581. [PMID: 34335777 PMCID: PMC8318769 DOI: 10.1155/2021/5582581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 01/26/2023] Open
Abstract
The itch associated with cutaneous T-cell lymphoma (CTCL), including Mycosis Fungoides (MF) and Sézary syndrome (SS), is often severe and poorly responsive to treatment with antihistamines. Recent studies have highlighted the possible role of interleukins in nonhistaminergic itch. We investigated the role of IL-31 and IL-8 in CTCL, concerning disease severity and associated itch. Serum samples of 27 patients with CTCL (17 MF and 10 SS) and 29 controls (blood donors) were analyzed for interleukin- (IL-) 31 and IL-8; correlations with disease and itch severity were evaluated. IL-31 serum levels were higher in CTCL patients than in controls and higher in SS than in MF. Also, serum IL-31 levels were higher in patients with advanced disease compared to those with early disease, and they correlated positively with lactate dehydrogenase and beta 2-microglobulin levels, as well as with the Sézary cell count. Itch affected 67% of CTCL patients (MF: 47%; SS: 100%). Serum IL-31 levels were higher in itching patients than in controls and in patients without itching. There was no association between serum IL-8 and disease severity, nor with itching. Serum IL-8 levels correlated positively with peripheral blood leukocyte and neutrophil counts in CTCL patients. Our study suggests a role for IL-31 in CTCL-associated itch, especially in advanced disease and SS, offering a rational target for new therapeutic approaches. Increased serum IL-8 observed in some patients may be related to concomitant infections, and its role in exacerbating itch by recruiting neutrophils and promoting the release of neutrophil proteases deserves further investigation.
Collapse
|
6
|
Nedoszytko B, Arock M, Lyons JJ, Bachelot G, Schwartz LB, Reiter A, Jawhar M, Schwaab J, Lange M, Greiner G, Hoermann G, Niedoszytko M, Metcalfe DD, Valent P. Clinical Impact of Inherited and Acquired Genetic Variants in Mastocytosis. Int J Mol Sci 2021; 22:ijms22010411. [PMID: 33401724 PMCID: PMC7795405 DOI: 10.3390/ijms22010411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
Mastocytosis is a rare and complex disease characterized by expansion of clonal mast cells (MC) in skin and/or various internal organ systems. Involvement of internal organs leads to the diagnosis of systemic mastocytosis (SM). The WHO classification divides SM into indolent SM, smoldering SM and advanced SM variants, including SM with an associated hematologic neoplasm, aggressive SM, and MC leukemia. Historically, genetic analysis of individuals with pure cutaneous mastocytosis (CM) and SM have focused primarily on cohort studies of inherited single nucleotide variants and acquired pathogenic variants. The most prevalent pathogenic variant (mutation) in patients with SM is KIT p.D816V, which is detectable in most adult patients. Other somatic mutations have also been identified-especially in advanced SM-in TET2, SRSF2, ASXL1, RUNX1, CBL and JAK2, and shown to impact clinical and cellular phenotypes. Although only small patient cohorts have been analyzed, disease associations have also been identified in several germline variants within genes encoding certain cytokines or their receptors (IL13, IL6, IL6R, IL31, IL4R) and toll-like receptors. More recently, an increased prevalence of hereditary alpha-tryptasemia (HαT) caused by increased TPSAB1 copy number encoding alpha-tryptase has been described in patients with SM. Whereas HαT is found in 3-6% of general Western populations, it is identified in up to 17% of patients with SM. In the current manuscript we review the prevalence, functional role and clinical impact of various germline and somatic genetic variants in patients with mastocytosis.
Collapse
Affiliation(s)
- Boguslaw Nedoszytko
- Department of Dermatology, Allergology and Venereology, Medical University of Gdansk, 80-211 Gdansk, Poland;
- Correspondence:
| | - Michel Arock
- Department of Hematology, APHP, Hôpital Pitié-Salpêtrière and Sorbonne University, 75013 Paris, France; (M.A.); (G.B.)
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Cell Death and Drug Resistance in Hematological Disorders Team, 75006 Paris, France
| | - Jonathan J. Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-188, USA; (J.J.L.); (D.D.M.)
| | - Guillaume Bachelot
- Department of Hematology, APHP, Hôpital Pitié-Salpêtrière and Sorbonne University, 75013 Paris, France; (M.A.); (G.B.)
| | - Lawrence B. Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy & Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Andreas Reiter
- University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.R.); (M.J.); (J.S.)
| | - Mohamad Jawhar
- University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.R.); (M.J.); (J.S.)
| | - Juliana Schwaab
- University Hospital Mannheim, Heidelberg University, 68167 Mannheim, Germany; (A.R.); (M.J.); (J.S.)
| | - Magdalena Lange
- Department of Dermatology, Allergology and Venereology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (G.H.); (P.V.)
- Ihr Labor, Medical Diagnostic Laboratories, 1220 Vienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (G.H.); (P.V.)
- MLL Munich Leukemia Laboratory, 81377 Munich, Germany
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-188, USA; (J.J.L.); (D.D.M.)
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; (G.H.); (P.V.)
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
7
|
Genetic and Epigenetic Aspects of Atopic Dermatitis. Int J Mol Sci 2020; 21:ijms21186484. [PMID: 32899887 PMCID: PMC7554821 DOI: 10.3390/ijms21186484] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Atopic dermatitis is a heterogeneous disease, in which the pathogenesis is associated with mutations in genes encoding epidermal structural proteins, barrier enzymes, and their inhibitors; the role of genes regulating innate and adaptive immune responses and environmental factors inducing the disease is also noted. Recent studies point to the key role of epigenetic changes in the development of the disease. Epigenetic modifications are mainly mediated by DNA methylation, histone acetylation, and the action of specific non-coding RNAs. It has been documented that the profile of epigenetic changes in patients with atopic dermatitis (AD) differs from that observed in healthy people. This applies to the genes affecting the regulation of immune response and inflammatory processes, e.g., both affecting Th1 bias and promoting Th2 responses and the genes of innate immunity, as well as those encoding the structural proteins of the epidermis. Understanding of the epigenetic alterations is therefore pivotal to both create new molecular classifications of atopic dermatitis and to enable the development of personalized treatment strategies.
Collapse
|
8
|
The ambiguous pruritogenic role of interleukin-31 in cutaneous T-cell lymphomas in comparison to atopic dermatitis: a review. Postepy Dermatol Alergol 2020; 37:319-325. [PMID: 32792870 PMCID: PMC7394154 DOI: 10.5114/ada.2020.96260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/27/2019] [Indexed: 02/03/2023] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) comprise a group of chronic heterogeneous diseases of unknown pathogenesis, characterized by non-specific skin lesions such as patches, plaques and tumours. CTCL is accompanied by persistent pruritus poorly responding to antihistamines and therefore significantly reducing quality of life in patients with lymphomas. According to research data, interleukin-31 (IL-31) contributes to initiation and maintenance of the inflammatory process of the skin and pruritus in inflammatory dermatoses such as atopic dermatitis (AD), which is well established. The studies of a similar role of IL-31 in CTCLs are less homogenous. Due to contradictory reports concerning IL-31 and CTCL we have analysed available literature to summarize its role, focusing on CTCL and AD.
Collapse
|
9
|
Gür Çetinkaya P, Şahiner ÜM. Childhood atopic dermatitis: current developments, treatment approaches, and future expectations. Turk J Med Sci 2019; 49:963-984. [PMID: 31408293 PMCID: PMC7018348 DOI: 10.3906/sag-1810-105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disorder of childhood. Underlying factors that contribute to AD are impaired epithelial barrier, alterations in the lipid composition of the skin, immunological imbalance including increased Th2/Th1 ratio, proinflammatory cytokines, decreased T regulatory cells, genetic mutations, and epigenetic alterations. Atopic dermatitis is a multifactorial disease with a particularly complicated pathophysiology. Discoveries to date may be considered the tip of the iceberg, and the increasing number of studies in this field indicate that there are many points to be elucidated in AD pathophysiology. In this review, we aimed to illustrate the current understanding of the underlying pathogenic mechanisms in AD, to evaluate available treatment options with a focus on recently discovered therapeutic agents, and to determine the personal, familial, and economic burdens of the disease, which are frequently neglected issues in AD. Currently available therapies only provide transient solutions and cannot fully cure the disease. However, advances in the understanding of the pathogenic mechanisms of the disease have led to the production of new treatment options, while ongoing drug trials also have had promising results.
Collapse
Affiliation(s)
- Pınar Gür Çetinkaya
- Division of Pediatric Allergy and Asthma Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ümit Murat Şahiner
- Division of Pediatric Allergy and Asthma Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Antiga E, Maglie R, Quintarelli L, Verdelli A, Bonciani D, Bonciolini V, Caproni M. Dermatitis Herpetiformis: Novel Perspectives. Front Immunol 2019; 10:1290. [PMID: 31244841 PMCID: PMC6579917 DOI: 10.3389/fimmu.2019.01290] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Dermatitis herpetiformis (DH) is an inflammatory disease of the skin, considered the specific cutaneous manifestation of celiac disease (CD). Both DH and CD occur in gluten-sensitive individuals, share the same Human Leukocyte Antigen (HLA) haplotypes (DQ2 and DQ8), and improve following the administration of a gluten-free diet. Moreover, almost all DH patients show typical CD alterations at the small bowel biopsy, ranging from villous atrophy to augmented presence of intraepithelial lymphocytes, as well as the generation of circulating autoantibodies against tissue transglutaminase (tTG). Clinically, DH presents with polymorphic lesions, including papules, vesicles, and small blisters, symmetrically distributed in typical anatomical sites including the extensor aspects of the limbs, the elbows, the sacral regions, and the buttocks. Intense pruritus is almost the rule. However, many atypical presentations of DH have also been reported. Moreover, recent evidence suggested that DH is changing. Firstly, some studies reported a reduced incidence of DH, probably due to early recognition of CD, so that there is not enough time for DH to develop. Moreover, data from Japanese literature highlighted the absence of intestinal involvement as well as of the typical serological markers of CD (i.e., anti-tTG antibodies) in Japanese patients with DH. Similar cases may also occur in Caucasian patients, complicating DH diagnosis. The latter relies on the combination of clinical, histopathologic, and immunopathologic findings. Detecting granular IgA deposits at the dermal-epidermal junction by direct immunofluorescence (DIF) from perilesional skin represents the most specific diagnostic tool. Further, assessing serum titers of autoantibodies against epidermal transglutaminase (eTG), the supposed autoantigen of DH, may also serve as a clue for the diagnosis. However, a study from our group has recently demonstrated that granular IgA deposits may also occur in celiac patients with non-DH inflammatory skin diseases, raising questions about the effective role of eTG IgA autoantibodies in DH and suggesting the need of revising diagnostic criteria, conceivably emphasizing clinical aspects of the disease along with DIF. DH usually responds to the gluten-free diet. Topical clobetasol ointment or dapsone may be also applied to favor rapid disease control. Our review will focus on novel pathogenic insights, controversies, and management aspects of DH.
Collapse
Affiliation(s)
- Emiliano Antiga
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Roberto Maglie
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Lavinia Quintarelli
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Alice Verdelli
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Diletta Bonciani
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Veronica Bonciolini
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Marzia Caproni
- Section of Dermatology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Saleem MD, Oussedik E, D'Amber V, Feldman SR. Interleukin-31 pathway and its role in atopic dermatitis: a systematic review. J DERMATOL TREAT 2017; 28:591-599. [PMID: 28145790 DOI: 10.1080/09546634.2017.1290205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Atopic dermatitis, a chronic inflammatory disease, has a lifetime prevalence of 10-20%. Atopic dermatitis reduces quality of life, primarily due to pruritus. Interleukin-31 and its target receptor are newly discovered entities that are involved in pruritus. PURPOSE To summarize the current understanding of interleukin-31 and its role in atopic dermatitis, potential therapeutic interventions and future prospects. METHODS A systematic review was designed to identify articles related to interleukin-31 and its role in pruritus. Predefined queries containing interleukin-31 and related key terms were searched with no past date restriction, through 31 August 2016, using MEDLINE, Cochrane Controlled Trials Register, ClinicalTrials.gov and the International Clinical Trials Registry Platform Search Portal database. RESULTS Of 151 identified articles, 61 met eligibility criteria. Interleukin-31 receptors are expressed constitutively on the surface of keratinocytes, eosinophils and small diameter neurons. Overexpression of interleukin-31, independent of mast cells and lymphocytes, induces clinical and histological features consistent with atopic dermatitis. In addition, overexpression of interleukin-31 causes reversible alopecia. Human monoclonal interleukin-31 antagonist, CIM331, decreased pruritus in phase-I and phase-II clinical trials. CONCLUSIONS Interleukin-31 plays an important role in atopic dermatitis and alopecia. Inhibiting this pathway may provide an alternative to antihistamines for the pruritus of atopic dermatitis.
Collapse
Affiliation(s)
- Mohammed D Saleem
- a Department of Dermatology , Wake Forest School of Medicine, Center for Dermatology Research , Winston-Salem , NC , USA
| | - Elias Oussedik
- a Department of Dermatology , Wake Forest School of Medicine, Center for Dermatology Research , Winston-Salem , NC , USA
| | - Veronica D'Amber
- a Department of Dermatology , Wake Forest School of Medicine, Center for Dermatology Research , Winston-Salem , NC , USA
| | - Steven R Feldman
- a Department of Dermatology , Wake Forest School of Medicine, Center for Dermatology Research , Winston-Salem , NC , USA.,b Department of Pathology , Wake Forest School of Medicine , Winston-Salem , NC , USA.,c Department of Pathology and Public Health Sciences , Wake Forest School of Medicine , Winston-Salem , NC , USA
| |
Collapse
|
12
|
Fukuyama T, Ganchingco JR, Bäumer W. Demonstration of rebound phenomenon following abrupt withdrawal of the JAK1 inhibitor oclacitinib. Eur J Pharmacol 2017; 794:20-26. [DOI: 10.1016/j.ejphar.2016.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 11/26/2022]
|
13
|
Bin L, Leung DYM. Genetic and epigenetic studies of atopic dermatitis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2016; 12:52. [PMID: 27777593 PMCID: PMC5069938 DOI: 10.1186/s13223-016-0158-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory disease caused by the complex interaction of genetic, immune and environmental factors. There have many recent discoveries involving the genetic and epigenetic studies of AD. METHODS A retrospective PubMed search was carried out from June 2009 to June 2016 using the terms "atopic dermatitis", "association", "eczema", "gene", "polymorphism", "mutation", "variant", "genome wide association study", "microarray" "gene profiling", "RNA sequencing", "epigenetics" and "microRNA". A total of 132 publications in English were identified. RESULTS To elucidate the genetic factors for AD pathogenesis, candidate gene association studies, genome-wide association studies (GWAS) and transcriptomic profiling assays have been performed in this period. Epigenetic mechanisms for AD development, including genomic DNA modification and microRNA posttranscriptional regulation, have been explored. To date, candidate gene association studies indicate that filaggrin (FLG) null gene mutations are the most significant known risk factor for AD, and genes in the type 2 T helper lymphocyte (Th2) signaling pathways are the second replicated genetic risk factor for AD. GWAS studies identified 34 risk loci for AD, these loci also suggest that genes in immune responses and epidermal skin barrier functions are associated with AD. Additionally, gene profiling assays demonstrated AD is associated with decreased gene expression of epidermal differentiation complex genes and elevated Th2 and Th17 genes. Hypomethylation of TSLP and FCER1G in AD were reported; and miR-155, which target the immune suppressor CTLA-4, was found to be significantly over-expressed in infiltrating T cells in AD skin lesions. CONCLUSIONS The results suggest that two major biologic pathways are responsible for AD etiology: skin epithelial function and innate/adaptive immune responses. The dysfunctional epidermal barrier and immune responses reciprocally affect each other, and thereby drive development of AD.
Collapse
Affiliation(s)
- Lianghua Bin
- The Department of Dermatology, the First Affiliated Hospital, Jinan University, Guangzhou, China
- Biomedical Translational Research Institute, Jinan University, Guangzhou, China
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Room K926i, Denver, CO 80206 USA
| | - Donald Y. M. Leung
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Room K926i, Denver, CO 80206 USA
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Molecular Mechanisms of Cutaneous Inflammatory Disorder: Atopic Dermatitis. Int J Mol Sci 2016; 17:ijms17081234. [PMID: 27483258 PMCID: PMC5000632 DOI: 10.3390/ijms17081234] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis (AD) is a multifactorial inflammatory skin disease resulting from interactions between genetic susceptibility and environmental factors. The pathogenesis of AD is poorly understood, and the treatment of recalcitrant AD is still challenging. There is accumulating evidence for new gene polymorphisms related to the epidermal barrier function and innate and adaptive immunity in patients with AD. Newly-found T cells and dendritic cell subsets, cytokines, chemokines and signaling pathways have extended our understanding of the molecular pathomechanism underlying AD. Genetic changes caused by environmental factors have been shown to contribute to the pathogenesis of AD. We herein present a review of the genetics, epigenetics, barrier dysfunction and immunological abnormalities in AD with a focus on updated molecular biology.
Collapse
|
15
|
IL-31 is overexpressed in lichen planus but its level does not correlate with pruritus severity. J Immunol Res 2015; 2015:854747. [PMID: 25756056 PMCID: PMC4333326 DOI: 10.1155/2015/854747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/24/2015] [Indexed: 11/21/2022] Open
Abstract
Background. Pruritus is one of the major features of lichen planus (LP); however, its pathogenesis remains largely unknown. Objective. The aim of our study was to analyze the role of IL-31 in the pathogenesis of pruritus in LP. Materials and Methods. The study group included 22 patients with LP. Control group consisted of 14 healthy volunteers. All subjects underwent thorough examination. Pruritus severity was evaluated with the visual analogue scale (VAS) and the 12-item Itch Questionnaire. IL-31 expression in the skin was assessed using semiquantitative immunofluorescence analysis. Results. Pruritus maximal intensity according to VAS was 6.5 ± 2.7 points and according to the 12-item Itch Questionnaire 6.9 ± 2.8 points. Lesional LP skin showed significantly higher IL-31 expression compared to healthy skin (P < 0.001). The most abundant immunofluorescence was observed within granular layer. However, there was no correlation between expression of IL-31 and pruritus intensity assessed according to VAS (VASmax: ρ = −0.08, P = 0.73), as well as 12-item Itch Questionnaire: ρ = −0.11, P = 0.65. Conclusions. Pruritus is a very common symptom of LP. For the first time we have demonstrated that IL-31 is overexpressed in the lesional skin of LP but its expression does not correlate with intensity of pruritus.
Collapse
|