1
|
Kalyakulina A, Yusipov I, Kondakova E, Sivtseva T, Zakharova R, Semenov S, Klimova T, Ammosova E, Trukhanov A, Franceschi C, Ivanchenko M. Inflammaging Markers in the Extremely Cold Climate: A Case Study of Yakutian Population. Int J Mol Sci 2024; 25:13741. [PMID: 39769502 PMCID: PMC11679676 DOI: 10.3390/ijms252413741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Yakutia is one of the coldest permanently inhabited regions in the world, characterized by a subarctic climate with average January temperatures near -40 °C and the minimum below -60 °C. Recently, we demonstrated accelerated epigenetic aging of the Yakutian population in comparison to their Central Russian counterparts, residing in a considerably milder climate. In this paper, we analyzed these cohorts from the inflammaging perspective and addressed two hypotheses: a mismatch in the immunological profiles and accelerated inflammatory aging in Yakuts. We found that the levels of 17 cytokines displayed statistically significant differences in the mean values between the groups (with minimal p-value = 2.06 × 10-19), and 6 of them are among 10 SImAge markers. We demonstrated that five out of these six markers (PDGFB, CD40LG, VEGFA, PDGFA, and CXCL10) had higher mean levels in the Yakutian cohort, and therefore, due to their positive chronological age correlation, might indicate a trend toward accelerated inflammatory aging. At the same time, a statistically significant biological age acceleration difference between the two cohorts according to the inflammatory SImAge clock was not detected because they had similar levels of CXCL9, CCL22, and IL6, the top contributing biomarkers to SImAge. We introduced an explainable deep neural network to separate individual inflammatory profiles between the two groups, resulting in over 95% accuracy. The obtained results allow for hypothesizing the specificity of cytokine and chemokine profiles among people living in extremely cold climates, possibly reflecting the effects of long-term human (dis)adaptation to cold conditions related to inflammaging and the risk of developing a number of pathologies.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (I.Y.); (E.K.); (M.I.)
- Institute of Biogerontology, Lobachevsky State University, 603022 Nizhny Novgorod, Russia;
| | - Igor Yusipov
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (I.Y.); (E.K.); (M.I.)
- Institute of Biogerontology, Lobachevsky State University, 603022 Nizhny Novgorod, Russia;
| | - Elena Kondakova
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (I.Y.); (E.K.); (M.I.)
- Institute of Biogerontology, Lobachevsky State University, 603022 Nizhny Novgorod, Russia;
| | - Tatiana Sivtseva
- Research Center of the Medical Institute, M.K. Ammosov North-Eastern Federal University, 677013 Yakutsk, Russia; (T.S.); (R.Z.); (S.S.); (T.K.); (E.A.)
| | - Raisa Zakharova
- Research Center of the Medical Institute, M.K. Ammosov North-Eastern Federal University, 677013 Yakutsk, Russia; (T.S.); (R.Z.); (S.S.); (T.K.); (E.A.)
| | - Sergey Semenov
- Research Center of the Medical Institute, M.K. Ammosov North-Eastern Federal University, 677013 Yakutsk, Russia; (T.S.); (R.Z.); (S.S.); (T.K.); (E.A.)
| | - Tatiana Klimova
- Research Center of the Medical Institute, M.K. Ammosov North-Eastern Federal University, 677013 Yakutsk, Russia; (T.S.); (R.Z.); (S.S.); (T.K.); (E.A.)
| | - Elena Ammosova
- Research Center of the Medical Institute, M.K. Ammosov North-Eastern Federal University, 677013 Yakutsk, Russia; (T.S.); (R.Z.); (S.S.); (T.K.); (E.A.)
| | - Arseniy Trukhanov
- Mriya Life Institute, National Academy of Active Longevity, 124489 Moscow, Russia;
| | - Claudio Franceschi
- Institute of Biogerontology, Lobachevsky State University, 603022 Nizhny Novgorod, Russia;
| | - Mikhail Ivanchenko
- Artificial Intelligence Research Center, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (I.Y.); (E.K.); (M.I.)
- Institute of Biogerontology, Lobachevsky State University, 603022 Nizhny Novgorod, Russia;
| |
Collapse
|
2
|
Kortekaas Krohn I, Callewaert C, Belasri H, De Pessemier B, Diez Lopez C, Mortz CG, O'Mahony L, Pérez-Gordo M, Sokolowska M, Unger Z, Untersmayr E, Homey B, Gomez-Casado C. The influence of lifestyle and environmental factors on host resilience through a homeostatic skin microbiota: An EAACI Task Force Report. Allergy 2024; 79:3269-3284. [PMID: 39485000 DOI: 10.1111/all.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Human skin is colonized with skin microbiota that includes commensal bacteria, fungi, arthropods, archaea and viruses. The composition of the microbiota varies at different anatomical locations according to changes in body temperature, pH, humidity/hydration or sebum content. A homeostatic skin microbiota is crucial to maintain epithelial barrier functions, to protect from invading pathogens and to interact with the immune system. Therefore, maintaining homeostasis holds promise to be an achievable goal for microbiome-directed treatment strategies as well as a prophylactic strategy to prevent the development of skin diseases, as dysbiosis or disruption of homeostatic skin microbiota is associated with skin inflammation. A healthy skin microbiome is likely modulated by genetic as well as environmental and lifestyle factors. In this review, we aim to provide a complete overview of the lifestyle and environmental factors that can contribute to maintaining the skin microbiome healthy. Awareness of these factors could be the basis for a prophylactic strategy to prevent the development of skin diseases or to be used as a therapeutic approach.
Collapse
Affiliation(s)
- Inge Kortekaas Krohn
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Department of Dermatology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Chris Callewaert
- Faculty of Bioscience Engineering, Ghent University, Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Hafsa Belasri
- Vrije Universiteit Brussel (VUB), Skin Immunology & Immune Tolerance (SKIN) Research Group, Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Department of Dermatology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Britta De Pessemier
- Faculty of Bioscience Engineering, Ghent University, Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Celia Diez Lopez
- Faculty of Bioscience Engineering, Ghent University, Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Charlotte G Mortz
- Department of Dermatology and Allergy Centre, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Liam O'Mahony
- APC Microbiome Ireland, School of Microbiology, and Department of medicine, University College Cork, Cork, Ireland
| | - Marina Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Zsofia Unger
- Department of Dermatology, University Hospital, Heinrich-Heine University, Duesseldorf, Germany
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Homey
- Department of Dermatology, University Hospital, Heinrich-Heine University, Duesseldorf, Germany
| | - Cristina Gomez-Casado
- Department of Dermatology, University Hospital, Heinrich-Heine University, Duesseldorf, Germany
| |
Collapse
|
3
|
Ricchezze G, Buratti E, De Micco F, Cingolani M, Scendoni R. Medico-Legal Applications of the Human Microbiome and Critical Issues Due to Environmental Transfer: A Review. Microorganisms 2024; 12:2424. [PMID: 39770627 PMCID: PMC11677503 DOI: 10.3390/microorganisms12122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Microbiome has recently seen an increase in its forensic applications. It could be employed to identify a suspect when DNA is not available; it can be used to establish postmortem interval (PMI). Furthermore, it could prove to be fundamental in cases of sexual assault. One of the most interesting aspects to study is how microbiomes are transferred. The aim of this review is to analyze the existing literature focusing on the potential transfer of microbiome from humans to environment. Searches on PubMed, Scopus, and Web of Science identified a total of 348 articles. Furthermore, from the bibliographies of the included articles, an additional publication was selected, in accordance with the established inclusion and exclusion criteria. This study has shown the potential of utilizing microbiomes as trace evidence, particularly in connecting individuals to specific environments or objects. However, the variability and dynamics of microbial transfer and persistence need to be carefully addressed.
Collapse
Affiliation(s)
- Giulia Ricchezze
- Department of Law, Institute of Legal Medicine, University of Macerata, 62100 Macerata, Italy; (E.B.); (M.C.); (R.S.)
| | - Erika Buratti
- Department of Law, Institute of Legal Medicine, University of Macerata, 62100 Macerata, Italy; (E.B.); (M.C.); (R.S.)
| | - Francesco De Micco
- Research Unit of Bioethics and Humanities, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy;
| | - Mariano Cingolani
- Department of Law, Institute of Legal Medicine, University of Macerata, 62100 Macerata, Italy; (E.B.); (M.C.); (R.S.)
| | - Roberto Scendoni
- Department of Law, Institute of Legal Medicine, University of Macerata, 62100 Macerata, Italy; (E.B.); (M.C.); (R.S.)
| |
Collapse
|
4
|
Dohm L, Saha S, Fronhoffs K, Gieler U. [Mental disorders from climate and environmental changes using the example of dermatology]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:704-710. [PMID: 39117980 DOI: 10.1007/s00105-024-05396-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Global climate and environmental changes impose a significant impact on human health by increasing prevalences of chronic and acute skin diseases. Climate-associated environmental changes can also trigger or intensify mental illnesses independently of a skin disease. AIM Discussion of the effects of the climate and environmental changes on dermatological diseases applying the biopsychosocial model. MATERIALS AND METHODS A selective literature search in the PubMed database and other sources was conducted. RESULTS The biopsychosocial model considers complex interactions between biological, psychological, and social factors. In view of the consequences of climate and environmental changes, an extension of the model is proposed for the first time in order to address new challenges. The modified presentation supports the understanding of the dynamics and underscores that in dermatological care not only direct health effects of climate and environmental changes have to be dealt with, but also with an increasing number of mental illnesses, which in turn are to be regarded as direct and indirect health effects. CONCLUSION Coping with the predicted increase in the burden of disease and the decline in the available labor force associated with demographic change poses a major challenge. In order to maintain the functionality of the healthcare system, the prompt implementation of resource-efficient, sustainable measures in all areas of society is essential. The integrative consideration of dermatological and psychological complaints in the context of climate and environmental changes requires the adaptation of content for the education, training, and continuing education of specialists.
Collapse
Affiliation(s)
- Lea Dohm
- Deutsche Allianz Klimawandel und Gesundheit e. V. (KLUG e. V.), Cuvrystr. 1, 10997, Berlin, Deutschland.
| | - Susanne Saha
- Arbeitsgemeinschaft Nachhaltigkeit in der Dermatologie (AGN) e. V., Guntramstr. 8, 79106, Freiburg, Deutschland.
| | - Kristina Fronhoffs
- Arbeitskreis Psychosomatische Dermatologie e. V., Rheinbach, Deutschland
| | - Uwe Gieler
- Psychodermatologie Univ. Hautklinik Gießen, Ärztlicher Direktor der Vitos-Klinik für Psychosomatik Gießen, Gießen, Deutschland
| |
Collapse
|
5
|
Ghosal S, Bag S, Rao SR, Bhowmik S. Exposure to polyethylene microplastics exacerbate inflammatory bowel disease tightly associated with intestinal gut microflora. RSC Adv 2024; 14:25130-25148. [PMID: 39139248 PMCID: PMC11320195 DOI: 10.1039/d4ra04544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Polyethylene microplastics (PE MPs) have sparked widespread concern about their possible health implications because of their abundance, pervasiveness in the environment and in our daily life. Multiple investigations have shown that a high dosage of PE MPs may adversely impact gastrointestinal health. In tandem with the rising prevalence of Inflammatory bowel disease (IBD) in recent decades, global plastic manufacturing has risen to more than 300 million tons per year, resulting in a build-up of plastic by-products such as PE MPs in our surroundings. We have explored current advancements in the effect PE MPs on IBD in this review. Furthermore, we compared and summarized the detrimental roles of PE MPs in gut microbiota of different organisms viz., earthworms, super worm's larvae, yellow mealworms, brine shrimp, spring tails, tilapia, gilt-head bream, crucian carp, zebrafish, juvenile yellow perch, European sea bass, c57BL/6 mice and human. According to this review, PE MPs played a significant role in decreasing the diversity of gut microbiota of above-mentioned species which leads to the development of IBD and causes severe intestinal inflammation. Finally, we pinpoint significant scientific gaps, such as the movement of such hazardous PE MPs and the accompanying microbial ecosystems and propose prospective research directions.
Collapse
Affiliation(s)
- Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
| | - Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta 92, A. P. C. Road Kolkata - 700009 India
| | - S R Rao
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
| | - Sudipta Bhowmik
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta 92, A. P. C. Road Kolkata - 700009 India
| |
Collapse
|
6
|
Wecker H, Ziehfreund S, Sitaru S, Johansson EK, Elberling J, Doll A, Nicolaidou E, Scala E, Boffa MJ, Schmidt L, Sikora M, Torres T, Chernyshov PV, Zink A. Burden of atopic dermatitis in Europe: A population-centred approach leveraging web search data in 21 European countries. J Eur Acad Dermatol Venereol 2024; 38:1637-1648. [PMID: 38641980 DOI: 10.1111/jdv.19989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/28/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND The complexity, high prevalence, and substantial personal and socioeconomic burden collectively render atopic dermatitis (AD) a major public health concern. Using crowdsourced Internet data has the potential to provide unique insights into this concern, as demonstrated by several previous studies. However, a comprehensive comparison across European countries remains lacking. OBJECTIVES The study aimed to investigate AD-related web searches across Europe to assess spatiotemporal variations and associations between disease-related and external factors. METHODS AD-related web search data were extracted for 21 European countries between February 2019 and January 2023. Descriptive analysis and autocorrelation functions were performed to examine spatiotemporal patterns. Correlations (r) were used to evaluate the associations between web searches and disease-related, socioeconomic and meteorological data. RESULTS Over 241 million AD-related web searches were identified, with search volume varying substantially among European countries (p < 0.001) and correlating with AD prevalence and disease burden (both r = 0.51, p = 0.019). Search volume increased between 2019 and 2023 in all countries and seasonally peaked in January and March. Negative correlations with median population age (r = -0.46, p = 0.039), number of general practitioners (r = -0.29, p = 0.226) and specialists (r = -0.27, p = 0.270) were observed. Moderate to strong correlations were found between search volume and cold, humid and windy weather with fewer sunshine hours, while higher online interest typically occurred 1-3 months after such weather conditions. CONCLUSION The study highlights the great potential of online crowdsourced data analysis, for example, to investigate the impact of climate change or to identify unmet needs at a population level. Furthermore, the growing online interest in AD and the corresponding seasonal peaks emphasize the necessity of adapting treatment plans, intensifying public health campaigns, and disseminating reliable online information by governments and healthcare providers, especially during these periods.
Collapse
Affiliation(s)
- Hannah Wecker
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Stefanie Ziehfreund
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sebastian Sitaru
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Emma K Johansson
- Division of Dermatology and Venereology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology and Venereology, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Elberling
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anaïs Doll
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Electra Nicolaidou
- 1st Department of Dermatology and Venereology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Emanuele Scala
- Department of Dermatology and Venereology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Dermatology and Venereology, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Lea Schmidt
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Tiago Torres
- Department of Dermatology, Centro Hospitalar Universitário de Santo António, University of Porto, Porto, Portugal
| | - Pavel V Chernyshov
- Department of Dermatology and Venereology, National Medical University, Kiev, Ukraine
| | - Alexander Zink
- Department of Dermatology and Allergy, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Division of Dermatology and Venereology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Gestal MC, Oates AE, Akob DM, Criss AK. Perspectives on the future of host-microbe biology from the Council on Microbial Sciences of the American Society for Microbiology. mSphere 2024; 9:e0025624. [PMID: 38920371 PMCID: PMC11288050 DOI: 10.1128/msphere.00256-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Host-microbe biology (HMB) stands on the cusp of redefinition, challenging conventional paradigms to instead embrace a more holistic understanding of the microbial sciences. The American Society for Microbiology (ASM) Council on Microbial Sciences hosted a virtual retreat in 2023 to identify the future of the HMB field and innovations needed to advance the microbial sciences. The retreat presentations and discussions collectively emphasized the interconnectedness of microbes and their profound influence on humans, animals, and environmental health, as well as the need to broaden perspectives to fully embrace the complexity of these interactions. To advance HMB research, microbial scientists would benefit from enhancing interdisciplinary and transdisciplinary research to utilize expertise in diverse fields, integrate different disciplines, and promote equity and accessibility within HMB. Data integration will be pivotal in shaping the future of HMB research by bringing together varied scientific perspectives, new and innovative techniques, and 'omics approaches. ASM can empower under-resourced groups with the goal of ensuring that the benefits of cutting-edge research reach every corner of the scientific community. Thus, ASM will be poised to steer HMB toward a future that champions inclusivity, innovation, and accessible scientific progress.
Collapse
Affiliation(s)
- Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | | | - Denise M. Akob
- U.S. Geological Survey, Geology, Energy and Minerals Science Center, Reston, Virginia, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Host-Microbe Retreat Planning CommitteeFidel, Jr.Paul L.1WatnickPaula I.2YoungVincent B.3ZackularJoseph4Department of Oral and Craniofacial Biology, Louisiana State University Health, New Orleans, Louisiana, USADivision of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USADepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USAInstitute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
- American Society for Microbiology, Washington, DC, USA
- U.S. Geological Survey, Geology, Energy and Minerals Science Center, Reston, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Host-Microbe Retreat SpeakersCasadevallArturo1GibbonsSean M.2HuffnagleGary B.3McFall-NgaiMargaret4NewmanDianne K.5NickersonCheryl A.6Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USAInstitute for Systems Biology, Seattle, Washington, USADepartment of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USAPacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USADivision of Biology and Biological Engineering, Caltech, Pasadena, California, USASchool of Life Sciences, Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
- American Society for Microbiology, Washington, DC, USA
- U.S. Geological Survey, Geology, Energy and Minerals Science Center, Reston, Virginia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Hülpüsch C, Rohayem R, Reiger M, Traidl-Hoffmann C. Exploring the skin microbiome in atopic dermatitis pathogenesis and disease modification. J Allergy Clin Immunol 2024; 154:31-41. [PMID: 38761999 DOI: 10.1016/j.jaci.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Inflammatory skin diseases such as atopic eczema (atopic dermatitis [AD]) affect children and adults globally. In AD, the skin barrier is impaired on multiple levels. Underlying factors include genetic, chemical, immunologic, and microbial components. Increased skin pH in AD is part of the altered microbial microenvironment that promotes overgrowth of the skin microbiome with Staphylococcus aureus. The secretion of virulence factors, such as toxins and proteases, by S aureus further aggravates the skin barrier deficiency and additionally disrupts the balance of an already skewed immune response. Skin commensal bacteria, however, can inhibit the growth and pathogenicity of S aureus through quorum sensing. Therefore, restoring a healthy skin microbiome could contribute to remission induction in AD. This review discusses direct and indirect approaches to targeting the skin microbiome through modulation of the skin pH; UV treatment; and use of prebiotics, probiotics, and postbiotics. Furthermore, exploratory techniques such as skin microbiome transplantation, ozone therapy, and phage therapy are discussed. Finally, we summarize the latest findings on disease and microbiome modification through targeted immunomodulatory systemic treatments and biologics. We believe that targeting the skin microbiome should be considered a crucial component of successful AD treatment in the future.
Collapse
Affiliation(s)
- Claudia Hülpüsch
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Robin Rohayem
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland; Dermatology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Matthias Reiger
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Chair of Environmental Medicine, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland; ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
9
|
Kim HJ, Kim YH. Exploring Acne Treatments: From Pathophysiological Mechanisms to Emerging Therapies. Int J Mol Sci 2024; 25:5302. [PMID: 38791344 PMCID: PMC11121268 DOI: 10.3390/ijms25105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Acne vulgaris is a common dermatological condition that can present across different ages but predominantly affects adolescents and young adults. Characterized by various lesion types, the pathogenesis of acne is complex, involving genetic, hormonal, microbial, and inflammatory factors. This review comprehensively addresses current and emerging acne management strategies, emphasizing both topical and systemic treatments, procedural therapies, and dietary modifications. Key topical agents include retinoids, benzoyl peroxide, antibiotics, and other specialized compounds. Systemic options like antibiotics, hormonal therapies, and retinoids offer significant therapeutic benefits, particularly for moderate to severe cases. Procedural treatments such as laser devices, photodynamic therapy, chemical peels, and intralesional injections present viable alternatives for reducing acne symptoms and scarring. Emerging therapies focus on novel biologics, bacteriophages, probiotics, and peptides, providing promising future options. This review underscores the importance of personalized approaches to treatment due to the multifaceted nature of acne, highlighting the potential of innovative therapies for improving patient outcomes.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
10
|
Ishibashi H, Nishimura S, Tanaka K, Haruta S, Takayama K, Yamashiro H, Takeuchi I. Transcriptome analysis reveals limited toxic effects of the UV-filter benzophenone-3 (BP-3) on the hermatypic coral Acropora tenuis and its symbiotic dinoflagellates. MARINE POLLUTION BULLETIN 2024; 201:116260. [PMID: 38522341 DOI: 10.1016/j.marpolbul.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
This study aimed to investigate the toxic and transcriptomic effects of the ultraviolet filter benzophenone-3 (BP-3) on Acropora tenuis and its symbiotic dinoflagellates while using acetone as a solvent. Seven-day exposure to 50 and 500 μg/L, which is higher than most BP-3 records from coastal waters, did not affect coral colour or dinoflagellate photosynthesis. Differentially expressed genes (DEGs) between seawater and solvent controls were <20 in both corals and dinoflagellates. Eleven coral DEGs were detected after treatment with 50 μg/L BP-3. Fourteen coral DEGs, including several fluorescent protein genes, were detected after treatment with 500 μg/L BP-3. In contrast, no dinoflagellate DEGs were detected in the BP-3 treatment group. These results suggest that the effects of 50-500 μg/L BP-3 on adult A. tenuis and its dinoflagellates are limited. Our experimental methods with lower acetone toxicity provide a basis for establishing standard ecotoxicity tests for corals.
Collapse
Affiliation(s)
- Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Saori Nishimura
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Kokoro Tanaka
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Shinsuke Haruta
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Kotaro Takayama
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Hideyuki Yamashiro
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, Japan
| | - Ichiro Takeuchi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center of Advanced Technology for the Environment, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| |
Collapse
|
11
|
Myslicka M, Kawala-Sterniuk A, Bryniarska A, Sudol A, Podpora M, Gasz R, Martinek R, Kahankova Vilimkova R, Vilimek D, Pelc M, Mikolajewski D. Review of the application of the most current sophisticated image processing methods for the skin cancer diagnostics purposes. Arch Dermatol Res 2024; 316:99. [PMID: 38446274 DOI: 10.1007/s00403-024-02828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/28/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
This paper presents the most current and innovative solutions applying modern digital image processing methods for the purpose of skin cancer diagnostics. Skin cancer is one of the most common types of cancers. It is said that in the USA only, one in five people will develop skin cancer and this trend is constantly increasing. Implementation of new, non-invasive methods plays a crucial role in both identification and prevention of skin cancer occurrence. Early diagnosis and treatment are needed in order to decrease the number of deaths due to this disease. This paper also contains some information regarding the most common skin cancer types, mortality and epidemiological data for Poland, Europe, Canada and the USA. It also covers the most efficient and modern image recognition methods based on the artificial intelligence applied currently for diagnostics purposes. In this work, both professional, sophisticated as well as inexpensive solutions were presented. This paper is a review paper and covers the period of 2017 and 2022 when it comes to solutions and statistics. The authors decided to focus on the latest data, mostly due to the rapid technology development and increased number of new methods, which positively affects diagnosis and prognosis.
Collapse
Affiliation(s)
- Maria Myslicka
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland.
| | - Aleksandra Kawala-Sterniuk
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758, Opole, Poland.
| | - Anna Bryniarska
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758, Opole, Poland
| | - Adam Sudol
- Faculty of Natural Sciences and Technology, University of Opole, Dmowskiego 7-9, 45-368, Opole, Poland
| | - Michal Podpora
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758, Opole, Poland
| | - Rafal Gasz
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758, Opole, Poland
| | - Radek Martinek
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758, Opole, Poland
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava, 70800, Czech Republic
| | - Radana Kahankova Vilimkova
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758, Opole, Poland
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava, 70800, Czech Republic
| | - Dominik Vilimek
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava, 70800, Czech Republic
| | - Mariusz Pelc
- Institute of Computer Science, University of Opole, Oleska 48, 45-052, Opole, Poland
- School of Computing and Mathematical Sciences, University of Greenwich, Old Royal Naval College, Park Row, SE10 9LS, London, UK
| | - Dariusz Mikolajewski
- Institute of Computer Science, Kazimierz Wielki University in Bydgoszcz, ul. Kopernika 1, 85-074, Bydgoszcz, Poland
- Neuropsychological Research Unit, 2nd Clinic of the Psychiatry and Psychiatric Rehabilitation, Medical University in Lublin, Gluska 1, 20-439, Lublin, Poland
| |
Collapse
|
12
|
Liu S, He M, Jiang J, Duan X, Chai B, Zhang J, Tao Q, Chen H. Triggers for the onset and recurrence of psoriasis: a review and update. Cell Commun Signal 2024; 22:108. [PMID: 38347543 PMCID: PMC10860266 DOI: 10.1186/s12964-023-01381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease, involving a complex interplay between genetic and environmental factors. Previous studies have demonstrated that genetic factors play a major role in the pathogenesis of psoriasis. However, non-genetic factors are also necessary to trigger the onset and recurrence of psoriasis in genetically predisposed individuals, which include infections, microbiota dysbiosis of the skin and gut, dysregulated lipid metabolism, dysregulated sex hormones, and mental illness. Psoriasis can also be induced by other environmental triggers, such as skin trauma, unhealthy lifestyles, and medications. Understanding how these triggers play a role in the onset and recurrence of psoriasis provides insights into psoriasis pathogenesis, as well as better clinical administration. In this review, we summarize the triggers for the onset and recurrence of psoriasis and update the current evidence on the underlying mechanism of how these factors elicit the disease. Video Abstract.
Collapse
Grants
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
Collapse
Affiliation(s)
- Suwen Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengwen He
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoru Duan
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Jingyu Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Qingxiao Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
13
|
Andrees V, Wolf S, Sander M, Augustin M, Augustin J. Sociodemographic and Environmental Determinants of Regional Prevalence of Psoriasis in Germany: A Spatiotemporal Study of Ambulatory Claims Data. Acta Derm Venereol 2024; 104:adv12430. [PMID: 38323497 PMCID: PMC10863622 DOI: 10.2340/actadv.v104.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/17/2023] [Indexed: 02/08/2024] Open
Abstract
There are regional differences in the prevalence of psoriasis between countries, as well as within countries. However, regional determinants of differences in prevalence are not yet understood. The aim of this study was to identify sociodemographic and environmental determinants of regional prevalence rates for psoriasis. Analyses were based on German outpatient billing data from statutory health insurance, together with data from databases on sociodemographic and environment factors at the county level (N = 402) for 2015-2017. Descriptive statistics were calculated for all variables. To identify determinants for prevalence at the county level, spatiotemporal regression analysis was performed, with prevalence as the dependent variable, and the number of physicians, mean age, mean precipitation, sunshine hours, mean temperature, level of urbanity, and the German Index of Socioeconomic Deprivation (GISD) as independent variables. Mean prevalence of psoriasis increased from 168.63 per 10,000 in 2015 to 173.54 per 10,000 in 2017 for Germany as a whole, with high regional variation. Five determinants were detected (p < 0.05). The prevalence increased by 4.18 per 10,000 persons with SHI with each GISD unit, and by 3.76 per 10,000 with each year increase in age. Each additional hour of sunshine resulted in a decrease of 0.04 and each °C increase in mean temperature resulted in an increase of 4.22. Each additional dermatologist per 10,000 inhabitants resulted in a decrease of 0.07. In conclusion, sociodemographic and environmental factors result in significant differences in prevalence of psoriasis, even within-country.
Collapse
Affiliation(s)
- Valerie Andrees
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Sandra Wolf
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Marie Sander
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Matthias Augustin
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jobst Augustin
- Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
14
|
Watson TPG, Tong M, Bailie J, Ekanayake K, Bailie RS. Relationship between climate change and skin cancer and implications for prevention and management: a scoping review. Public Health 2024; 227:243-249. [PMID: 38262229 DOI: 10.1016/j.puhe.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/04/2023] [Accepted: 12/02/2023] [Indexed: 01/25/2024]
Abstract
OBJECTIVES This study aimed to explore the published research on the relationship between climate change and skin cancer and the implications for prevention, management and further research. STUDY DESIGN Scoping review. METHODS This scoping review following JBI methodology reviewed English articles identified in searches of MEDLINE, Embase, CINAHL, Web of Science and Scopus on 14 April 2023. The screening of articles was completed by two independent reviewers. Data were extracted by a single reviewer and checked by another. A causal pathway diagram was iteratively developed throughout the review and was used to categorise the findings. RESULTS The search identified 1376 papers, of which 45 were included in the final review. Nine papers reported primary research, and 36 papers were reviews, perspectives, commentaries, editorials, or essays. The papers examined climate change influencing behaviours related to ultraviolet exposure (30 papers), ambient temperature (21 papers) and air pollution (five papers) as possible risk factors; occupational, rural, and contextual factors affecting skin cancer (11 papers); and prevention and access to health care in the context of climate change (seven papers). Most papers were published in journals in subject areas other than health. CONCLUSIONS This review identified ultraviolet radiation, occupation, rising temperature, individual behaviour and air pollution as possible influences on skin cancer rates. Furthermore, it highlights the complexity and uncertainties in the relationship between climate change and skin cancer and the need for further research on this relationship, including primary epidemiological research and reviews that follow recognised review guidelines and include assessment of health services and social determinants in the causal pathways of this relationship.
Collapse
Affiliation(s)
- T P G Watson
- Sydney Medical School, The University of Sydney, Camperdown, New South Wales, 2050, Australia; University Centre for Rural Health, The University of Sydney, Lismore, New South Wales, 2480, Australia
| | - M Tong
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - J Bailie
- University Centre for Rural Health, The University of Sydney, Lismore, New South Wales, 2480, Australia; School of Public Health, The University of Sydney, Camperdown, New South Wales, 2050, Australia
| | - K Ekanayake
- University of Sydney Library, The University of Sydney, Camperdown, New South Wales, 2050, Australia
| | - R S Bailie
- School of Public Health, The University of Sydney, Camperdown, New South Wales, 2050, Australia.
| |
Collapse
|
15
|
Tao R, Li T, Wang Y, Wang R, Li R, Bianchi P, Duplan H, Zhang Y, Li H, Wang R. The facial microbiome and metabolome across different geographic regions. Microbiol Spectr 2024; 12:e0324823. [PMID: 38063390 PMCID: PMC10783011 DOI: 10.1128/spectrum.03248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/09/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Characterization of the skin microbiome and metabolome across geography will help uncover the climate factors behind the prevalence of skin disorders and provide suggestions for skincare products for people living in different geographic regions.
Collapse
Affiliation(s)
- Rong Tao
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Dermatology of Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Tingting Li
- Department of Dermatology of Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Yalin Wang
- Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Rong Wang
- Hexi University Affiliated Zhangye People’s Hospital, Zhangye, Gansu, China
| | - Ruoyu Li
- Department of Dermatology of Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Pascale Bianchi
- Department of Research & Development, Pierre Fabre Dermo-Cosmetic & Personal Care, Boulogne-billancourt, France
| | - Hélène Duplan
- Department of Research & Development, Pierre Fabre Dermo-Cosmetic & Personal Care, Boulogne-billancourt, France
| | - Ying Zhang
- Medical Department, Pierre Fabre Dermo-Cosmetic, Shanghai, China
| | - Hang Li
- Department of Dermatology of Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Ruojun Wang
- Department of Dermatology of Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| |
Collapse
|
16
|
Du S, Tong X, Leung MHY, Betts RJ, Woo AC, Bastien P, Misra N, Aguilar L, Clavaud C, Lee PKH. Chronic exposure to polycyclic aromatic hydrocarbons alters skin virome composition and virus-host interactions. THE ISME JOURNAL 2024; 18:wrae218. [PMID: 39450991 PMCID: PMC11549919 DOI: 10.1093/ismejo/wrae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) in polluted air influences the composition of the skin microbiome, which in turn is associated with altered skin phenotypes. However, the interactions between PAH exposure and viromes are unclear. This study aims to elucidate how PAH exposure affects the composition and function of skin viruses, their role in shaping the metabolism of bacterial hosts, and the subsequent effects on skin phenotype. We analyzed metagenomes from cheek skin swabs collected from 124 Chinese women in our previous study and found that the viruses associated with the two microbiome cutotypes had distinct diversities, compositions, functions, and lifestyles following PAH exposure. Moreover, exposure to high concentrations of PAHs substantially increased interactions between viruses and certain biodegrading bacteria. Under high-PAH exposure, the viruses were enriched in xenobiotic degradation functions, and there was evidence suggesting that the insertion of bacteriophage-encoded auxiliary metabolic genes into hosts aids biodegradation. Under low-PAH exposure conditions, the interactions followed the "Piggyback-the-Winner" model, with Cutibacterium acnes being "winners," whereas under high-PAH exposure, they followed the "Piggyback-the-Persistent" model, with biodegradation bacteria being "persistent." These findings highlight the impact of air pollutants on skin bacteria and viruses, their interactions, and their modulation of skin health. Understanding these intricate relationships could provide insights for developing targeted strategies to maintain skin health in polluted environments, emphasizing the importance of mitigating pollutant exposure and harnessing the potential of viruses to help counteract the adverse effects.
Collapse
Affiliation(s)
- Shicong Du
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Ren’ai Road, Suzhou, 215123, P. R. China
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Richard J Betts
- L’Oréal Research and Innovation, Raffles Quay, North Tower, 048583, Singapore
| | - Anthony C Woo
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Philippe Bastien
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Namita Misra
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Luc Aguilar
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Cécile Clavaud
- L’Oréal Research and Innovation, Rue Blaise-Pascal, Aulnay-Sous-Bois, 93600, France
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China
- Low-Carbon and Climate Impact Research Centre, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China
| |
Collapse
|
17
|
Seo JY, You SW, Gu KN, Kim H, Shin JG, Leem S, Hwang BK, Kim Y, Kang NG. Longitudinal study of the interplay between the skin barrier and facial microbiome over 1 year. Front Microbiol 2023; 14:1298632. [PMID: 38033568 PMCID: PMC10687563 DOI: 10.3389/fmicb.2023.1298632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Skin is a diverse ecosystem that provides a habitat for microorganisms. The skin condition and the skin microbiome interact each other under diverse environmental conditions. This study was conducted on 10 study participants for a one-year, from September 2020 to August 2021, to investigate the variability of skin microbiome and skin biophysical parameters [TEWL, hydration, and elasticity (R5)] according to season, and to understand the interplay between skin microbiome and skin characteristics. We identified that Cutibacterium, Corynebacterium, Staphyloccocus, unclassified genus within Neisseriaceae, and Streptococcus were major skin microbial taxa at the genus level, and fluctuated with the seasons. Cutibacterium was more abundant in winter, while Corynebacterium, Staphylococcus, and Streptococcus were more abundant in summer. Notably, Cutibacterium and skin barrier parameter, TEWL, exhibited a co-decreasing pattern from winter to summer and showed a significant association between Cutibacterium and TEWL. Furthermore, functional profiling using KEGG provided clues on the impact of Cutibacterium on the host skin barrier. This study enhances our understanding of the skin microbiome and its interplay with skin characteristics and highlights the importance of seasonal dynamics in shaping skin microbial composition.
Collapse
|
18
|
Sharma S, Kumari M, Vakhlu J. Metatranscriptomic insight into the possible role of clay microbiome in skin disease management. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:1803-1811. [PMID: 37584759 DOI: 10.1007/s00484-023-02540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
Even though the scientific documentation is limited, microbiome of healing clay is gradually gaining attention of the scientific community, as a therapeutic force playing an indispensable role in skin disease management. The present study explores the metatranscriptome profile of the Chamliyal clay, widely known for its efficacy in managing various skin problems, using Illumina NextSeq sequencing technology. The gene expression profile of the clay microbial community was analyzed through SEED subsystems of the MG-RAST server. Due to the unavailability of metatranscriptomic data on other therapeutic clays, Chamliyal's profile was compared to non-therapeutic soils, as well as healthy and diseased human skin microbiomes. The study identified Firmicutes, Proteobacteria, and Actinobacteria as the primary active microbial phyla in Chamliyal clay. These resemble those abundant in a healthy human skin microbiome. This is significant as lower levels of these phyla in the skin are linked to inflammatory skin conditions like psoriasis. Interestingly, pathogenic microbes actively metabolizing in the clay were absent. Importantly, 6% of the transcripts annotated to sulfur and iron metabolism, which are known to play a major role in skin disease management. This study provides the most comprehensive and a novel overview of the metatranscriptome of any of the healing clay available worldwide. The findings offer valuable insights into the clay microbiome's potential in managing skin disorders, inspiring future endeavors to harness these insights for medical applications.
Collapse
Affiliation(s)
- Sakshi Sharma
- School of Biotechnology, University of Jammu, J&K, 180006, India
| | - Monika Kumari
- School of Biotechnology, University of Jammu, J&K, 180006, India
| | - Jyoti Vakhlu
- School of Biotechnology, University of Jammu, J&K, 180006, India.
| |
Collapse
|
19
|
Roche CE, Montague MJ, Wang J, Dickey AN, Ruiz-Lambides A, Brent LJN, Platt ML, Horvath JE. Yearly variation coupled with social interactions shape the skin microbiome in free-ranging rhesus macaques. Microbiol Spectr 2023; 11:e0297423. [PMID: 37750731 PMCID: PMC10580906 DOI: 10.1128/spectrum.02974-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
While skin microbes are known to mediate human health and disease, there has been minimal research on the interactions between skin microbiota, social behavior, and year-to-year effects in non-human primates-important animal models for translational biomedical research. To examine these relationships, we analyzed skin microbes from 78 rhesus macaques living on Cayo Santiago Island, Puerto Rico. We considered age, sex, and social group membership, and characterized social behavior by assessing dominance rank and patterns of grooming as compared to nonsocial behaviors. To measure the effects of a shifting environment, we sampled skin microbiota (based on sequence analysis of the 16S rRNA V4 region) and assessed weather across sampling periods between 2013 and 2015. We hypothesized that, first, monkeys with similar social behavior and/or in the same social group would possess similar skin microbial composition due, in part, to physical contact, and, second, microbial diversity would differ across sampling periods. We found significant phylum-level differences between social groups in the core microbiome as well as an association between total grooming rates and alpha diversity in the complete microbiome, but no association between microbial diversity and measures of rank or other nonsocial behaviors. We also identified alpha and beta diversity differences in microbiota and differential taxa abundance across two sampling periods. Our findings indicate that social dynamics interact with yearly environmental changes to shape the skin microbiota in rhesus macaques, with potential implications for understanding the factors affecting the microbiome in humans, which share many biological and social characteristics with these animals. IMPORTANCE Primate studies are valuable for translational and evolutionary insights into the human microbiome. The majority of primate microbiome studies focus on the gut, so less is known about the factors impacting the microbes on skin and how their links affect health and behavior. Here, we probe the impact of social interactions and the yearly environmental changes on food-provisioned, free-ranging monkeys living on a small island. We expected animals that lived together and groomed each other would have more similar microbes on their skin, but surprisingly found that the external environment was a stronger influence on skin microbiome composition. These findings have implications for our understanding of the human skin microbiome, including potential manipulations to improve health and treat disease.
Collapse
Affiliation(s)
| | - Michael J. Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - JiCi Wang
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Allison N. Dickey
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Angelina Ruiz-Lambides
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico, USA
| | - Lauren J. N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, United Kingdom
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Marketing Department, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie E. Horvath
- North Carolina Museum of Natural Sciences, Raleigh, North Carolina, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina, USA
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
Martins C, Piontkivska D, Mil-Homens D, Guedes P, Jorge JMP, Brinco J, Bárria C, Santos ACF, Barras R, Arraiano C, Fialho A, Goldman GH, Silva Pereira C. Increased Production of Pathogenic, Airborne Fungal Spores upon Exposure of a Soil Mycobiota to Chlorinated Aromatic Hydrocarbon Pollutants. Microbiol Spectr 2023; 11:e0066723. [PMID: 37284774 PMCID: PMC10434042 DOI: 10.1128/spectrum.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Organic pollutants are omnipresent and can penetrate all environmental niches. We evaluated the hypothesis that short-term (acute) exposure to aromatic hydrocarbon pollutants could increase the potential for fungal virulence. Specifically, we analyzed whether pentachlorophenol and triclosan pollution results in the production of airborne fungal spores with greater virulence than those derived from an unpolluted (Control) condition. Each pollutant altered the composition of the community of airborne spores compared to the control, favoring an increase in strains with in vivo infection capacity (the wax moth Galleria mellonella was used as an infection model). Fungi subsisting inside larvae at 72 h postinjection with airborne spore inocula collected in polluted and unpolluted conditions exhibited comparable diversity (mainly within Aspergillus fumigatus). Several virulent Aspergillus strains were isolated from larvae infected with the airborne spores produced in a polluted environment. Meanwhile, strains isolated from larvae injected with spores from the control, including one A. fumigatus strain, showed no virulence. Potential pathogenicity increased when two Aspergillus virulent strains were assembled, suggesting the existence of synergisms that impact pathogenicity. None of the observed taxonomic or functional traits could separate the virulent from the avirulent strains. Our study emphasizes pollution stress as a possible driver of phenotypic adaptations that increase Aspergillus pathogenicity, as well as the need to better understand the interplay between pollution and fungal virulence. IMPORTANCE Fungi colonizing soil and organic pollutants often meet. The consequences of this encounter constitute an outstanding question. We scrutinized the potential for virulence of airborne fungal spores produced under unpolluted and polluted scenarios. The airborne spores showed increased diversity of strains with higher infection capacity in Galleria mellonella whenever pollution is present. Inside the larvae injected with either airborne spore community, the surviving fungi demonstrated a similar diversity, mainly within Aspergillus fumigatus. However, the isolated Aspergillus strains greatly differ since virulence was only observed for those associated with a polluted environment. The interplay between pollution and fungal virulence still hides many unresolved questions, but the encounter is costly: pollution stress promotes phenotypic adaptations that may increase Aspergillus pathogenicity.
Collapse
Affiliation(s)
- Celso Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daryna Piontkivska
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dalila Mil-Homens
- Institute for Bioengineering and Biosciences and Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Paula Guedes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- CENSE (Center for Environmental and Sustainability Research)/CHANGE (Global Change and Sustainability Institute), NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - João M. P. Jorge
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João Brinco
- CENSE (Center for Environmental and Sustainability Research)/CHANGE (Global Change and Sustainability Institute), NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Cátia Bárria
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ariana C. F. Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Barras
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Arsénio Fialho
- Institute for Bioengineering and Biosciences and Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Gustavo H. Goldman
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
21
|
Lupu VV, Butnariu LI, Fotea S, Morariu ID, Badescu MC, Starcea IM, Salaru DL, Popp A, Dragan F, Lupu A, Mocanu A, Chisnoiu T, Pantazi AC, Jechel E. The Disease with a Thousand Faces and the Human Microbiome-A Physiopathogenic Intercorrelation in Pediatric Practice. Nutrients 2023; 15:3359. [PMID: 37571295 PMCID: PMC10420997 DOI: 10.3390/nu15153359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Numerous interrelationships are known in the literature that have the final effect of unmasking or influencing various pathologies. Among these, the present article aims to discuss the connection between systemic lupus erythematosus (SLE) and the human microbiome. The main purpose of this work is to popularize information about the impact of dysbiosis on the pathogenesis and evolutionary course of pediatric patients with SLE. Added to this is the interest in knowledge and awareness of adjunctive therapeutic means that has the ultimate goal of increasing the quality of life. The means by which this can be achieved can be briefly divided into prophylactic or curative, depending on the phase of the condition in which the patient is. We thus reiterate the importance of the clinician acquiring an overview of SLE and the human microbiome, doubled by in-depth knowledge of the physio-pathogenic interactions between the two (in part achieved through the much-studied gut-target organ axes-brain, heart, lung, skin), with the target objective being that of obtaining individualized, multimodal and efficient management for each individual patient.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Ionela Daniela Morariu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Minerva Codruta Badescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Iuliana Magdalena Starcea
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alina Popp
- Pediatrics Department, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Ancuta Lupu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adriana Mocanu
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Tatiana Chisnoiu
- Pediatrics Department, Faculty of Medicine, Ovidius University, 900470 Constanta, Romania
| | | | - Elena Jechel
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
22
|
Bocheva G, Slominski RM, Slominski AT. Environmental Air Pollutants Affecting Skin Functions with Systemic Implications. Int J Mol Sci 2023; 24:10502. [PMID: 37445680 PMCID: PMC10341863 DOI: 10.3390/ijms241310502] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The increase in air pollution worldwide represents an environmental risk factor that has global implications for the health of humans worldwide. The skin of billions of people is exposed to a mixture of harmful air pollutants, which can affect its physiology and are responsible for cutaneous damage. Some polycyclic aromatic hydrocarbons are photoreactive and could be activated by ultraviolet radiation (UVR). Therefore, such UVR exposure would enhance their deleterious effects on the skin. Air pollution also affects vitamin D synthesis by reducing UVB radiation, which is essential for the production of vitamin D3, tachysterol, and lumisterol derivatives. Ambient air pollutants, photopollution, blue-light pollution, and cigarette smoke compromise cutaneous structural integrity, can interact with human skin microbiota, and trigger or exacerbate a range of skin diseases through various mechanisms. Generally, air pollution elicits an oxidative stress response on the skin that can activate the inflammatory responses. The aryl hydrocarbon receptor (AhR) can act as a sensor for small molecules such as air pollutants and plays a crucial role in responses to (photo)pollution. On the other hand, targeting AhR/Nrf2 is emerging as a novel treatment option for air pollutants that induce or exacerbate inflammatory skin diseases. Therefore, AhR with downstream regulatory pathways would represent a crucial signaling system regulating the skin phenotype in a Yin and Yang fashion defined by the chemical nature of the activating factor and the cellular and tissue context.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Radomir M. Slominski
- Department of Genetics, Informatics Institute in the School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
23
|
Belzer A, Parker ER. Climate Change, Skin Health, and Dermatologic Disease: A Guide for the Dermatologist. Am J Clin Dermatol 2023:10.1007/s40257-023-00770-y. [PMID: 37336870 DOI: 10.1007/s40257-023-00770-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 06/21/2023]
Abstract
Climate change has a pervasive impact on health and is of clinical relevance to every organ system. Climate change-related factors impact the skin's capacity to maintain homeostasis, leading to a variety of cutaneous diseases. Stratospheric ozone depletion has led to increased risk of melanoma and keratinocyte carcinomas due to ultraviolet radiation exposure. Atopic dermatitis, psoriasis, pemphigus, acne vulgaris, melasma, and photoaging are all associated with rising levels of air pollution. Elevated temperatures due to global warming induce disruption of the skin microbiome, thereby impacting atopic dermatitis, acne vulgaris, and psoriasis, and high temperatures are associated with exacerbation of skin disease and increased risk of heat stroke. Extreme weather events due to climate change, including floods and wildfires, are of relevance to the dermatologist as these events are implicated in cutaneous injuries, skin infections, and acute worsening of inflammatory skin disorders. The health consequences as well as the economic and social burden of climate change fall most heavily on vulnerable and marginalized populations due to structural disparities. As dermatologists, understanding the interaction of climate change and skin health is essential to appropriately manage dermatologic disease and advocate for our patients.
Collapse
Affiliation(s)
- Annika Belzer
- Yale University School of Medicine, New Haven, CT, USA
| | - Eva Rawlings Parker
- Department of Dermatology, Center for Biomedical Ethics and Society, Vanderbilt University Medical Center, 719 Thompson Lane, Suite 26-300, Nashville, TN, 37204, USA.
| |
Collapse
|
24
|
Wang T, Xia Y, Zhang X, Qiao N, Ke S, Fang Q, Ye D, Fan Y. Short-term effects of air pollutants on outpatients with psoriasis in a Chinese city with a subtropical monsoon climate. Front Public Health 2022; 10:1071263. [PMID: 36620227 PMCID: PMC9817471 DOI: 10.3389/fpubh.2022.1071263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Psoriasis is a common skin disease that seriously affects patients' quality of life. The association of air pollutants with psoriasis, and the extent of their effects remains unclear. Methods Based on a distributed lag non-linear model, this study explored the short-term effects of air pollutants on outpatients with psoriasis in Hefei, China, between 2015 and 2019 by analyzing the exposure-lag-response relationship, after controlling for confounding influences such as meteorological factors, long-term trends, day of the week, and holidays. Stratified analyses were performed for patients of different ages and genders. Results The maximum relative risks of psoriasis outpatients' exposure to SO2, NO2, and O3 were 1.023 (95% confidence intervals (CI): 1.004-1.043), 1.170 (95% CI: 1.046-1.307), and 1.059 (95% CI: 1.030-1.090), respectively. An increase of 10 μg/m 3 of NO2 was associated with a 2.1% (95% CI: 0.7-3.5%) increase in outpatients with psoriasis, and a decrease of 10 μg/m 3 of O3 was associated with an 0.8% (95% CI: 0.4-1.2%) increase in outpatients with psoriasis. Stratified analyses showed that male subjects were more sensitive to a change in meteorological factors, while female subjects and outpatients with psoriasis aged 0-17 years old were more sensitive to a change in air pollutants. Discussion Short-term air pollutant exposures were associated with outpatients having psoriasis, suggesting that patients and high-risk people with psoriasis should reduce their time spent outside and improve their skin protection gear when air quality is poor.
Collapse
Affiliation(s)
- Ting Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yuanrui Xia
- Department of Health Education, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Xinhong Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Nini Qiao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Susu Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Quan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Dongqing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China,*Correspondence: Dongqing Ye ✉
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China,Yinguang Fan ✉
| |
Collapse
|