1
|
Motta EVS, Lariviere PJ, Jones KR, Song Y, Moran NA. Type VI secretion systems promote intraspecific competition and host interactions in a bee gut symbiont. Proc Natl Acad Sci U S A 2024; 121:e2414882121. [PMID: 39441627 PMCID: PMC11536156 DOI: 10.1073/pnas.2414882121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The Type VI Secretion System (T6SS) is a sophisticated mechanism utilized by gram-negative bacteria to deliver toxic effector proteins into target cells, influencing microbial community dynamics and host interactions. In this study, we investigated the role of T6SSs in Snodgrassella alvi wkB2, a core bacterial symbiont of the honey bee gut microbiota. We generated single- and double-knockout mutants targeting essential genes (tssD and tssE) in both T6SS-1 and T6SS-2 and assessed their colonization and competition capabilities in vivo. Our results indicate that T6SSs are nonessential for colonization of the bee gut, although T6SS-2 mutant strains exhibited significantly lower colonization levels compared to the wild-type (WT) strain. Further, a defined community experiment showed that S. alvi wkB2 T6SSs do not significantly impact interspecific competition among core gut bacteria. However, cocolonization experiments with closely related S. alvi strains demonstrated that T6SS-1 plays a role in mediating intraspecific competition. Transcriptomic analysis of bee guts monocolonized by WT or T6SS mutants revealed differential expression of host immunity-related genes relative to microbiota-deprived bees, such as upregulation of the antimicrobial peptide apidaecin in the presence of WT S. alvi and the antimicrobial peptide defensin in the presence of T6SS-2 mutant S. alvi, suggesting that T6SSs contribute to shaping host immune responses. These findings provide insight into the ecological roles of T6SSs in the honey bee gut microbiota, emphasizing their importance in maintaining competitive dynamics and influencing host-bacterial interactions.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Molecular Biosciences, The University of Texas at Austin, TX78712
| | - Korin R. Jones
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Yulin Song
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| |
Collapse
|
2
|
Zhou X, Yuan H, Ye N, Rong C, Li Y, Jiang X, Cao H, Huang Y. CYP4G subfamily genes mediate larval integument development in Spodoptera frugiperda. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae115. [PMID: 38783401 DOI: 10.1093/jee/toae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Cytochrome P450 (CYP) 4G subfamily is closely related to the synthesis of cuticular hydrocarbons, leading to the enhanced desiccation and insecticide resistance of pests. However, functions of CYP4Gs in larval integument development remain unknown in Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), which is a major transboundary migratory pest and become a common pest in China. On the basis of the genome and transcriptome datasets of S. frugiperda, CYP4G74, CYP4G75, CYP4G108, and CYP4G109 were identified, which contained the conserved domains of P450s and CYP4Gs. The spatial and temporal expression analysis showed that CYP4G74 and CYP4G75 were significantly highly expressed in adults and larval integuments, while CYP4G108 and CYP4G109 had low expressions in larval integuments. After silencing CYP4G74 and CYP4G75 by RNA interference, abnormal integument development occurred in larvae, some of which became smaller and dead, indicating important roles of CYP4G74 and CYP4G75 in the synthesis and development of integuments. The results clarify the functions of CYP4Gs in S. frugiperda and provide potential targets for the control of this pest.
Collapse
Affiliation(s)
- Xue Zhou
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Hao Yuan
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Nuojun Ye
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Changfeng Rong
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yiyu Li
- Institute of New Rural Development, Anhui Agricultural University, Hefei 230036, China
| | - Xingchuan Jiang
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yong Huang
- Key Laboratory of Agro-Products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Kefi M, Konstantinos P, Balabanidou V, Sarafoglou C, Tsakireli D, Douris V, Monastirioti M, Maréchal JD, Feyereisen R, Vontas J. Insights into unique features of Drosophila CYP4G enzymes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104041. [PMID: 38008364 DOI: 10.1016/j.ibmb.2023.104041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
The cytochrome P450 enzymes of the CYP4G subfamily are some of the most intriguing insect P450s in terms of structure and function. In Drosophila, CYP4G1 is highly expressed in the oenocytes and is the last enzyme in the biosynthesis of cuticular hydrocarbons, while CYP4G15 is expressed in the brain and is of unknown function. Both proteins have a CYP4G-specific and characteristic amino acid sequence insertion corresponding to a loop between the G and H helices whose function is unclear. Here we address these enigmatic structural and functional features of Drosophila CYP4Gs. First, we used reverse genetics to generate D. melanogaster strains in which all or part of the CYP4G-specific loop was removed from CYP4G1. We showed that the full loop was not needed for proper folding of the P450, but it is essential for function, and that just a short stretch of six amino acids is required for the enzyme's ability to make hydrocarbons. Second, we confirmed by immunocytochemistry that CYP4G15 is expressed in the brain and showed that it is specifically associated with the cortex glia cell subtype. We then expressed CYP4G15 ectopically in oenocytes, revealing that it can produce of a blend of hydrocarbons, albeit to quantitatively lower levels resulting in only a partial rescue of CYP4G1 knockdown flies. The CYP4G1 structural variants studied here should facilitate the biochemical characterization of CYP4G enzymes. Our results also raise the question of the putative role of hydrocarbons and their synthesis by cortex glial cells.
Collapse
Affiliation(s)
- Mary Kefi
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Parasyris Konstantinos
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Chara Sarafoglou
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Dimitra Tsakireli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Greece
| | - Vassilis Douris
- Department of Biological Applications and Technology, University of Ioannina, 45110, Ioannina, Greece; Biomedical Research Institute (BRI), Foundation for Research and Technology (FORTH), University Campus, 451 10, Ioannina, Greece
| | - Maria Monastirioti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Greece.
| |
Collapse
|
4
|
Moyano A, Croce AC, Scolari F. Pathogen-Mediated Alterations of Insect Chemical Communication: From Pheromones to Behavior. Pathogens 2023; 12:1350. [PMID: 38003813 PMCID: PMC10675518 DOI: 10.3390/pathogens12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens can influence the physiology and behavior of both animal and plant hosts in a manner that promotes their own transmission and dispersal. Recent research focusing on insects has revealed that these manipulations can extend to the production of pheromones, which are pivotal in chemical communication. This review provides an overview of the current state of research and available data concerning the impacts of bacterial, viral, fungal, and eukaryotic pathogens on chemical communication across different insect orders. While our understanding of the influence of pathogenic bacteria on host chemical profiles is still limited, viral infections have been shown to induce behavioral changes in the host, such as altered pheromone production, olfaction, and locomotion. Entomopathogenic fungi affect host chemical communication by manipulating cuticular hydrocarbons and pheromone production, while various eukaryotic parasites have been observed to influence insect behavior by affecting the production of pheromones and other chemical cues. The effects induced by these infections are explored in the context of the evolutionary advantages they confer to the pathogen. The molecular mechanisms governing the observed pathogen-mediated behavioral changes, as well as the dynamic and mutually influential relationships between the pathogen and its host, are still poorly understood. A deeper comprehension of these mechanisms will prove invaluable in identifying novel targets in the perspective of practical applications aimed at controlling detrimental insect species.
Collapse
Affiliation(s)
- Andrea Moyano
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Francesca Scolari
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| |
Collapse
|
5
|
Maiwald F, Haas J, Hertlein G, Lueke B, Roesner J, Nauen R. Expression profile of the entire detoxification gene inventory of the western honeybee, Apis mellifera across life stages. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105410. [PMID: 37105637 DOI: 10.1016/j.pestbp.2023.105410] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The western honeybee, Apis mellifera, is a managed pollinator of many crops and potentially exposed to a wide range of foreign compounds, including pesticides throughout its life cycle. Honeybees as well as other insects recruit molecular defense mechanisms to facilitate the detoxification of xenobiotic compounds. The inventory of detoxification genes (DETOXome) is comprised of five protein superfamilies: cytochrome P450 monooxygenases (P450), carboxylesterases, glutathione S-transferases (GST), UDP-glycosyl transferases (UGT) and ATP-binding cassette (ABC) transporters. Here we characterized the gene expression profile of the entire honeybee DETOXome by analyzing 47 transcriptomes across the honeybee life cycle, including different larval instars, pupae, and adults. All life stages were well separated by principal component analysis, and K-means clustering revealed distinct temporal patterns of gene expression. Indeed, >50% of the honeybee detoxification gene inventory is found in one cluster and follows strikingly similar expression profiles, i.e., increased expression during larval development, followed by a sharp decline after pupation and a steep increase again in adults. This cluster includes 29 P450 genes dominated by CYP3 and CYP4 clan members, 15 ABC transporter genes mostly belonging to the ABCC subfamily and 13 carboxylesterase genes including almost all members involved in dietary/detox and hormone/semiochemical processing. RT-qPCR analysis of selected detoxification genes from all families revealed high expression levels in various tissues, especially Malpighian tubules, fatbody and midgut, supporting the view that these tissues are essential for metabolic clearance of environmental toxins and pollutants in honeybees. Our study is meant to spark further research on the molecular basis of detoxification in this critical pollinator to better understand and evaluate negative impacts from potentially toxic substances. Additionally, the entire gene set of 47 transcriptomes collected and analyzed provides a valuable resource for future honeybee research across different disciplines.
Collapse
Affiliation(s)
- Frank Maiwald
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Julian Haas
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Gillian Hertlein
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Bettina Lueke
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Janin Roesner
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789 Monheim am Rhein, Germany.
| |
Collapse
|
6
|
Transcriptomic Analysis Reveals the Detoxification Mechanism of Chilo suppressalis in Response to the Novel Pesticide Cyproflanilide. Int J Mol Sci 2023; 24:ijms24065461. [PMID: 36982533 PMCID: PMC10049496 DOI: 10.3390/ijms24065461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Chilo suppressalis is one of the most damaging rice pests in China’s rice-growing regions. Chemical pesticides are the primary method for pest control; the excessive use of insecticides has resulted in pesticide resistance. C. suppressalis is highly susceptible to cyproflanilide, a novel pesticide with high efficacy. However, the acute toxicity and detoxification mechanisms remain unclear. We carried out a bioassay experiment with C. suppressalis larvae and found that the LD10, LD30 and LD50 of cyproflanilide for 3rd instar larvae was 1.7 ng/per larvae, 6.62 ng/per larvae and 16.92 ng/per larvae, respectively. Moreover, our field trial results showed that cyproflanilide had a 91.24% control efficiency against C. suppressalis. We investigated the effect of cyproflanilide (LD30) treatment on the transcriptome profiles of C. suppressalis larvae and found that 483 genes were up-regulated and 305 genes were down-regulated in response to cyproflanilide exposure, with significantly higher CYP4G90 and CYP4AU10 expression in the treatment group. The RNA interference knockdown of CYP4G90 and CYP4AU10 increased mortality by 20% and 18%, respectively, compared to the control. Our results indicate that cyproflanilide has effective insecticidal toxicological activity, and that the CYP4G90 and CYP4AU10 genes are involved in detoxification metabolism. These findings provide an insight into the toxicological basis of cyproflanilide and the means to develop efficient resistance management tools for C. suppressalis.
Collapse
|
7
|
Lu J, Zhang H, Wang Q, Huang X. Genome-Wide Identification and Expression Pattern of Cytochrome P450 Genes in the Social Aphid Pseudoregma bambucicola. INSECTS 2023; 14:212. [PMID: 36835781 PMCID: PMC9966863 DOI: 10.3390/insects14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) have a variety of functions, including involvement in the metabolism of exogenous substances and the synthesis and degradation of endogenous substances, which are important for the growth and development of insects. Pseudoregma bambucicola is a social aphid that produces genetically identical but morphologically and behaviorally distinct first-instar soldiers and normal nymphs within colonies. In this study, we identified 43 P450 genes based on P. bambucicola genome data. Phylogenetic analysis showed that these genes were classified into 4 clans, 13 families, and 23 subfamilies. The CYP3 and CYP4 clans had a somewhat decreased number of genes. In addition, differential gene expression analysis based on transcriptome data showed that several P450 genes, including CYP18A1, CYP4G332, and CYP4G333, showed higher expression levels in soldiers compared to normal nymphs and adult aphids. These genes may be candidates for causing epidermal hardening and developmental arrest in soldiers. This study provides valuable data and lays the foundation for the study of functions of P450 genes in the social aphid P. bambucicola.
Collapse
Affiliation(s)
- Jianjun Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Moris VC, Podsiadlowski L, Martin S, Oeyen JP, Donath A, Petersen M, Wilbrandt J, Misof B, Liedtke D, Thamm M, Scheiner R, Schmitt T, Niehuis O. Intrasexual cuticular hydrocarbon dimorphism in a wasp sheds light on hydrocarbon biosynthesis genes in Hymenoptera. Commun Biol 2023; 6:147. [PMID: 36737661 PMCID: PMC9898505 DOI: 10.1038/s42003-022-04370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/13/2022] [Indexed: 02/05/2023] Open
Abstract
Cuticular hydrocarbons (CHCs) cover the cuticle of insects and serve as desiccation barrier and as semiochemicals. While the main enzymatic steps of CHC biosynthesis are well understood, few of the underlying genes have been identified. Here we show how exploitation of intrasexual CHC dimorphism in a mason wasp, Odynerus spinipes, in combination with whole-genome sequencing and comparative transcriptomics facilitated identification of such genes. RNAi-mediated knockdown of twelve candidate gene orthologs in the honey bee, Apis mellifera, confirmed nine genes impacting CHC profile composition. Most of them have predicted functions consistent with current knowledge of CHC metabolism. However, we found first-time evidence for a fatty acid amide hydrolase also influencing CHC profile composition. In situ hybridization experiments furthermore suggest trophocytes participating in CHC biosynthesis. Our results set the base for experimental CHC profile manipulation in Hymenoptera and imply that the evolutionary origin of CHC biosynthesis predates the arthropods' colonization of land.
Collapse
Affiliation(s)
- Victoria C. Moris
- grid.5963.9Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany ,grid.4989.c0000 0001 2348 0746Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Lars Podsiadlowski
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany ,grid.10388.320000 0001 2240 3300Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Sebastian Martin
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany ,grid.10388.320000 0001 2240 3300Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Jan Philip Oeyen
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany ,grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway
| | - Alexander Donath
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany
| | - Malte Petersen
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany ,grid.10388.320000 0001 2240 3300High Performance Computing & Analytics Lab, University of Bonn, Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Germany
| | - Jeanne Wilbrandt
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany ,grid.418245.e0000 0000 9999 5706Leibniz Institute on Aging — Fritz Lipmann Institute, Beutenbergstraße 11, 07745 Jena, Germany
| | - Bernhard Misof
- grid.517093.90000 0005 0294 9006Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change / ZFMK, Museum Koenig, Adenauerallee 160, 53113 Bonn, Germany
| | - Daniel Liedtke
- grid.8379.50000 0001 1958 8658Institute of Human Genetics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Thamm
- grid.8379.50000 0001 1958 8658Department of Behavioral Physiology and Sociobiology, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ricarda Scheiner
- grid.8379.50000 0001 1958 8658Department of Behavioral Physiology and Sociobiology, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Schmitt
- grid.8379.50000 0001 1958 8658Department of Animal Ecology and Tropical Biology Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
9
|
Jing TX, Yuan CY, Meng LW, Hou QL, Liu XQ, Dou W, Yuan GR, Wang JJ. CYP4G100 contributes to desiccation resistance by mediating cuticular hydrocarbon synthesis in Bactrocera dorsalis. INSECT MOLECULAR BIOLOGY 2022; 31:772-781. [PMID: 35860987 DOI: 10.1111/imb.12803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The oriental fruit fly Bactrocera dorsalis (Hendel) is expanding its distribution to higher latitudes. Our goal in this study was to understand how B. dorsalis adapts to higher latitude environments that are more arid than tropical regions. Cuticular hydrocarbons (CHCs) on the surface of the epicuticle in insects act as a hydrophobic barrier against water loss. The essential decarbonylation reaction in CHC synthesis is catalysed by CYP4G, a cytochrome P450 subfamily protein. Hence, in B. dorsalis it is necessary to clarify the function of the CYP4G gene and its role in desiccation resistance. CYP4G100 was identified in the B. dorsalis genome. The complete open reading frame (ORF) encodes a CYP4 family protein (552 amino acid residues) that has the CYP4G-specific insertion. This CYP4G gene was highly expressed in adults, especially in the oenocyte-rich peripheral fat body. The gene can be induced by desiccation treatment, suggesting its role in CHC synthesis and waterproofing. Silencing of CYP4G100 resulted in a decrease of CHC levels and the accumulation of triglycerides. It also increased water loss and resulted in higher desiccation susceptibility. CYP4G100 is involved in hydrocarbon synthesis and contributes to cuticle waterproofing to help B. dorsalis resist desiccation in arid environments.
Collapse
Affiliation(s)
- Tian-Xing Jing
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chen-Yang Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiao-Qiang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Zhang L, Shen Y, Jiang X, Liu S. Transcriptomic Identification and Expression Profile Analysis of Odorant-Degrading Enzymes from the Asian Corn Borer Moth, Ostrinia furnacalis. INSECTS 2022; 13:1027. [PMID: 36354851 PMCID: PMC9697913 DOI: 10.3390/insects13111027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The Asian corn borer moth Ostrinia furnacalis is an important lepidopteran pest of maize in Asia. Odorant-degrading enzymes (ODEs), including carboxylesterases (CCEs), glutathione S-transferases (GSTs), cytochrome P450s (CYPs), UDP-glycosyltransferases (UGTs), and aldehyde oxidases (AOXs), are responsible for rapid inactivation of odorant signals in the insect antennae. In this study, we performed a transcriptome assembly for the antennae of O. furnacalis to identify putative ODE genes. Transcriptome sequencing revealed 35,056 unigenes, and 21,012 (59.94%) of these were annotated by searching against the reference sequences in the NCBI non-redundant (NR) protein database. For functional classification, these unigenes were subjected to Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations. We identified 79 genes encoding putative ODEs: 19 CCEs, 17 GSTs, 24 CYPs, 13 UGTs, and 6 AOXs. BLASTX best hit results indicated that these genes shared quite high amino acid identities with their respective orthologs from other lepidopteran species. Reverse transcription-quantitative PCR showed that OfurCCE2, OfurCCE5, and OfurCCE18 were enriched in male antennae, while OfurCCE7 and OfurCCE10 were enriched in female antennae. OfurCCE14 and OfurCCE15 were expressed at near-equal amounts in the antennae of both sexes. Our findings establish a solid foundation for future studies aimed at understanding the olfactory functions of these genes in O. furnacalis.
Collapse
Affiliation(s)
- Liya Zhang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yidan Shen
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xingchuan Jiang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Su Liu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
11
|
Wang YQ, Li GY, Li L, Song QS, Stanley D, Wei SJ, Zhu JY. Genome-wide and expression-profiling analyses of the cytochrome P450 genes in Tenebrionidea. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21954. [PMID: 36065122 DOI: 10.1002/arch.21954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) are present in almost all areas of the tree of life. As one of the largest and most diverse superfamilies of multifunctional enzymes, they play important roles in the metabolism of xenobiotics and biosynthesis of endogenous compounds, shaping the success of insects. In this study, the CYPome (an omics term for all the CYP genes in a genome) diversification was examined in the four Tenebrionidea species through genome-wide analysis. A total of 483 CYP genes were identified, of which 103, 157, 122, and 101 were respectively deciphered from the genomes of Tebebrio molitor, Asbolus verucosus, Hycleus cichorii and Hycleus phaleratus. These CYPs were classified into four major clans (mitochondrial, CYP2, CYP3, and CYP4), and clans CYP3 and CYP4 are most diverse. Phylogenetic analysis showed that most CYPs of these Tenebrionidea beetles from each clan had a very close 1:1 orthology to each other, suggesting that they originate closely and have evolutionally conserved function. Expression analysis at different developmental stages and in various tissues showed the life stage-, gut-, salivary gland-, fat body-, Malpighian tubule-, antennae-, ovary- and testis-specific expression patterns of T. molitor CYP genes, implying their various potential roles in development, detoxification, immune response, digestion, olfaction, and reproduction. Our studies provide a platform to understand the evolution of Tenebrionidea CYP gene superfamily, and a basis for further functional investigation of the T. molitor CYPs involved in various biological processes.
Collapse
Affiliation(s)
- Yu-Qin Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Guang-Ya Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lu Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
12
|
Gao S, Liu K, Liu H, Yin S, Guo X, Zhang Y, Zhang K, Li R. Functional analysis of a cytochrome P450 gene CYP9Z6 responding to terpinen-4-ol in the red flour beetle, Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105065. [PMID: 35430067 DOI: 10.1016/j.pestbp.2022.105065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/26/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
Tribolium castaneum is an agricultural and stored pest found throughout the world. The cytochrome P450 genes of T. castaneum can encode various detoxification enzymes and catabolize heterologous substances, conferring tolerance to insecticides. Herein, we describe the identification of a P450 gene (CYP9Z6) from T. castaneum and investigated its expression profile and potential role in the detoxification of terpinen-4-ol. TcCYP9Z6 expression was significantly induced after exposure to terpinen-4-ol, and RNA-mediated silencing of TcCYP9Z6 increased terpinen-4-ol-induced larval mortality from 47.75% to 63.92%, showing that TcCYP9Z6 is closely related to the detoxification of terpinen-4-ol. The developmental expression profile revealed that TcCYP9Z6 was mainly expressed in late adults and late larvae. Tissue expression profiling revealed that the highest TcCYP9Z6 expression occurred in the head, in both the adult and the larval tissues, followed by the gut in larvae and the antennae in adults. These developmental stages and tissues with high TcCYP9Z6 expression are closely related to the detoxification of heterologous substances. These results indicated that TcCYP9Z6 may play a pivotal role in the detoxification of terpinen-4-ol, which provides support for using TcCYP9Z6 a potential gene for the RNAi-mediated prevention and control of T. castaneum.
Collapse
Affiliation(s)
- Shanshan Gao
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Kui Liu
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Hui Liu
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Se Yin
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xinlong Guo
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Yonglei Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Kunpeng Zhang
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China.
| | - Ruimin Li
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China.
| |
Collapse
|
13
|
Wang ZC, Peng LY, Cheng X, Yang RR, Li DT, Zhang CX, Bao YY. A CYP380C10 gene is required for waterproofing and water retention in the insect integument. JOURNAL OF INSECT PHYSIOLOGY 2022; 138:104380. [PMID: 35304132 DOI: 10.1016/j.jinsphys.2022.104380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Cuticular hydrocarbons (CHCs) are important components in the integument of insects and are required for development and survival. Insect-specific CYP4G subfamily, of the P450 enzymes, catalyze the oxidative decarbonylation step in the biosynthesis of CHCs. Here, we characterized CYP380C10 gene function in a Hemiptera rice pest, Nilaparvata lugens. We used RNA interference-mediated expression silencing to reveal that NlCYP380C10 played a key role in waterproofing and water-retention in the integument of N. lugens. Knockdown of NlCYP380C10 significantly reduced body weight and caused mortality. Scanning electron microscopy showed the loss of the lipid layer on the surface of the abdominal cuticle of the dsNlCYP380C10-injected adults. Furthermore, CHC profile analysis revealed that NlCYP380C10 knockdown significantly decreased the amounts of CHCs in adult females. This suggested that NlCYP380C10 was involved in CHC biosynthesis. Reduction of CHC content caused the loss of the intact lipid layer of the cuticle, which resulted in loss of the waterproofing and water-retention functions. This led to failure of molting and eclosion. Our findings expanded the knowledge of CHC biosynthesis in the insect integument and led to a better understanding of the functional roles of CYP450 genes involved in waterproofing and water-retention in insects.
Collapse
Affiliation(s)
- Zhe-Chao Wang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058 Hangzhou, China
| | - Lu-Yao Peng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058 Hangzhou, China
| | - Xu Cheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058 Hangzhou, China
| | - Rui-Rui Yang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058 Hangzhou, China
| | - Dan-Ting Li
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058 Hangzhou, China; Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Chuan-Xi Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yan-Yuan Bao
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
14
|
Prado A, Brunet JL, Peruzzi M, Bonnet M, Bordier C, Crauser D, Le Conte Y, Alaux C. Warmer winters are associated with lower levels of the cryoprotectant glycerol, a slower decrease in vitellogenin expression and reduced virus infections in winter honeybees. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104348. [PMID: 34906562 DOI: 10.1016/j.jinsphys.2021.104348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Within the context of climate change, winter temperatures at high latitudes are predicted to rise faster than summer temperatures. This phenomenon is expected to negatively affect the diapause performance and survival of insects, since they largely rely on low temperatures to lower their metabolism and preserve energy. However, some insects like honeybees, remain relatively active during the winter and elevate their metabolic rate to produce endothermic heat when temperatures drop. Warming winters are thus expected to improve overwintering performance of honeybees. In order to verify this hypothesis, for two consecutive years, we exposed honeybee colonies to either a mild or cold winter. We then monitored the influence of wintering conditions on several parameters of honeybee overwintering physiology, such as levels of the cryoprotectant glycerol, expression levels of immune and antioxidant genes, and genes encoding multifunctional proteins, including vitellogenin, which promotes bee longevity. Winter conditions had no effect on the expression of antioxidant genes, and genes related to immunity were not consistently affected. However, mild winters were consistently associated with a lower investment in glycerol synthesis and a higher expression of fat body genes, especially apidaecin and vitellogenin. Finally, while we found that viral loads generally decreased through the winter, this trend was more pronounced under mild winter conditions. In conclusion, and without considering how warming temperatures might affect other aspects of honeybee biology before overwintering, our data suggest that warming temperatures will likely benefit honeybee vitality by notably reducing their viral loads over the winter.
Collapse
Affiliation(s)
- Alberto Prado
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM Querétaro, Mexico
| | | | | | - Marc Bonnet
- INRAE, Abeilles & Environnement, 84914 Avignon, France
| | - Celia Bordier
- INRAE, Abeilles & Environnement, 84914 Avignon, France
| | | | - Yves Le Conte
- INRAE, Abeilles & Environnement, 84914 Avignon, France
| | - Cedric Alaux
- INRAE, Abeilles & Environnement, 84914 Avignon, France.
| |
Collapse
|
15
|
Xin Y, Chen N, Wang Y, Ni R, Zhao H, Yang P, Li M, Qiu X. CYP4G8 is responsible for the synthesis of methyl-branched hydrocarbons in the polyphagous caterpillar of Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103701. [PMID: 34890799 DOI: 10.1016/j.ibmb.2021.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Insect cuticular hydrocarbons (CHCs) have dual functions as physical barrier and chemical signals. The last step of CHC biosynthesis is known to be catalyzed by cytochrome P450 CYP4G in a number of insects. Until recently, studies on CYP4Gs in the context of functional evolution are rare. In this study, we analyzed sequence similarity and temporal-spatial expression patterns of the five CYP4G genes in the cotton bollworm Helicoverpa armigera, an important agricultural pest and also typical representative of lepidopteran insects. Moreover, the CRISPR/Cas9-induced knockout was used to clarify the roles of the five CYP4Gs in CHC biosynthesis. Temporal-spatial expression patterns revealed that CYP4G8 was highly expressed at all developmental stages and in most tissues examined. Larvae with CYP4G8 knocked out could not produce methyl-branched CHCs and failed to pupate, while larvae with the other four CYP4G genes knocked out (4G1-type-KO) showed no significant changes in their CHC profiles, weight gain and survival. Comparative transcriptomics revealed that knocking out CYP4G8 affected the global gene expression in larvae, especially down-regulated the expression of genes in the fatty acid biosynthetic pathway, while no significant change in 4G1-type-KO transcriptome was observed. These findings indicate that the five members of the CYP4G subfamily have undergone functional divergence: CYP4G8 maintains the essential function in CHC biosynthesis, while the function of the other four CYP4G genes remains unclear. Intriguingly, CYP4G8 has evolved to be a P450 enzyme responsible for the synthesis of larval methyl-branched hydrocarbons. The observation that CYP4G8 knockout is lethal strongly suggest that CYP4G8 may serve as a candidate target for the development of insecticidal agents for the control of cotton bollworms.
Collapse
Affiliation(s)
- Yucui Xin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yawei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruoyao Ni
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongrui Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Peiqi Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
16
|
Qasim M, Xiao H, He K, Omar MAA, Hussain D, Noman A, Rizwan M, Khan KA, Al-Zoubi OM, Alharbi SA, Wang L, Li F. Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109112. [PMID: 34153507 DOI: 10.1016/j.cbpc.2021.109112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
The host-pathogen interaction has been explored by several investigations, but the impact of fungal pathogens against insect resistance is still ambiguous. Therefore, we assessed the enzymatic activity and defense-related gene expression of Asian citrus psyllid (ACP) nymphal and adult populations on Huanglongbing-diseased citrus plants under the attack of Cordyceps fumosorosea. Overall, five enzymes viz. superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione S-transferase (GST), carboxylesterase (CarE), and four genes, namely SOD, 16S, CYP4C68, CYP4BD1, were selected for respective observations from ACP populations. Enzymatic activity of four enzymes (SOD, POD, GST, CarE) was significantly decreased after 5-days post-treatment (dpt) and 3-dpt fungal exposure in fungal treated ACP adult and nymphal populations, respectively, whereas the activity of CAT was boosted substantially post-treatment time schedule. Besides, we recorded drastic fluctuations in the expression of CYP4 genes among fungal treated ACP populations. After 24 hours post-treatment (hpt), expression of both CYP4 genes was boosted in fungal treated populations than controlled populations (adult and nymph). After 3-dpt, however, the expression of CYP4 genes was declined in the given populations. Likewise, fungal attack deteriorated the resistance of adult and nymphal of ACP population, as SOD expression was down-regulated in fungal-treated adult and nymphs after 5-dpt and 3-dpt exposure, respectively. Moreover, bacterial expression via the 16S gene was significantly increased in fungal-treated adult and nymphal ACP populations with increasing post-treatment time. Overall, our data illustrate that the fungal application disrupted the insect defense system. The expression of these genes and enzymes suppress the immune function of adult and nymphal ACP populations. As it is reported first time that the applications of C. fumosorosea against ACP reduce insect resistance by interfering with the CYP4 and SOD system. Therefore, we propose new strategies to discover the role of certain toxic compounds from fungus, which can reduce insect resistance, focusing on resistance-related genes and enzymes.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Huamei Xiao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, PR China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dilbar Hussain
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
17
|
Polyphenols as Food Supplement Improved Food Consumption and Longevity of Honey Bees ( Apis mellifera) Intoxicated by Pesticide Thiacloprid. INSECTS 2021; 12:insects12070572. [PMID: 34201457 PMCID: PMC8304825 DOI: 10.3390/insects12070572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary Worldwide, mass losses of honey bee colonies are being observed more frequently. Poor nutrition may cause honey bees to be more susceptible to pesticides and more vulnerable to diseases, and as a direct result of this, honey bee colonies can collapse. Another cause of mass bee colony collapse that is no less important is the use of pesticides. The level of toxicity of most pesticides is greatly affected by nutrient uptake. In addition, the honey bee genome is known to be specific for a significantly lower number of genes associated with detoxification compared with other insect species. Intake of phenolic and flavonoid substances in food can lead to increased expression of genes encoding detoxification enzymes in bees. Therefore, in this study, we evaluated in vitro the effect of phenolic and flavonoid substances on bee mortality and food consumption in the case of intoxication by pesticide thiacloprid. The results of this study showed a significant positive effect on honey bee survival rate as well as increased food intake. In addition, the expression level of genes encoding detoxification enzymes was determined. Abstract Malnutrition is one of the main problems related to the global mass collapse of honey bee colonies, because in honey bees, malnutrition is associated with deterioration of the immune system and increased pesticide susceptibility. Another important cause of mass bee colonies losses is the use of pesticides. Therefore, the goal of this study was to verify the influence of polyphenols on longevity, food consumption, and cytochrome P450 gene expression in worker bees intoxicated by thiacloprid. The tests were carried out in vitro under artificial conditions (caged bees). A conclusively lower mortality rate and, in parallel, a higher average food intake, were observed in intoxicated bees treated using a mixture of phenolic acids and flavonoids compared to untreated intoxicated bees. This was probably caused by increased detoxification capacity caused by increased expression level of genes encoding the cytochrome P450 enzyme in the bees. Therefore, the addition of polyphenols into bee nutrition is probably able to positively affect the detoxification capacity of bees, which is often reduced by the impact of malnutrition resulting from degradation of the environment and common beekeeping management.
Collapse
|
18
|
Nauen R, Zimmer CT, Vontas J. Heterologous expression of insect P450 enzymes that metabolize xenobiotics. CURRENT OPINION IN INSECT SCIENCE 2021; 43:78-84. [PMID: 33186746 DOI: 10.1016/j.cois.2020.10.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Insect cytochrome P450-monooxygenases (P450s) are an enzyme superfamily involved in the oxidative transformation of endogenous and exogenous substrates, including insecticides. They were also shown to determine insecticide selectivity in beneficial arthropods such as bee pollinators, and to detoxify plant secondary metabolites. The recent explosion in numbers of P450s due to increased invertebrate genomes sequenced, allowed researchers to study their functional relevance for xenobiotic metabolism by recombinant expression using different expression systems. Troubleshooting strategies, including different systems and protein modifications typically adapted from mammalian P450s, have been applied to improve the functional expression, with partial success. The aim of this mini review is to critically summarize different strategies recently developed and used to produce recombinant insect P450s for xenobiotic metabolism studies.
Collapse
Affiliation(s)
- Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany.
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - John Vontas
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 9 75, 11855, Athens, Greece.
| |
Collapse
|
19
|
Holze H, Schrader L, Buellesbach J. Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation. Heredity (Edinb) 2021; 126:219-234. [PMID: 33139902 PMCID: PMC8027674 DOI: 10.1038/s41437-020-00380-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/01/2023] Open
Abstract
Cuticular hydrocarbons (CHCs) have two fundamental functions in insects. They protect terrestrial insects against desiccation and serve as signaling molecules in a wide variety of chemical communication systems. It has been hypothesized that these pivotal dual traits for adaptation to both desiccation and signaling have contributed to the considerable evolutionary success of insects. CHCs have been extensively studied concerning their variation, behavioral impact, physiological properties, and chemical compositions. However, our understanding of the genetic underpinnings of CHC biosynthesis has remained limited and mostly biased towards one particular model organism (Drosophila). This rather narrow focus has hampered the establishment of a comprehensive view of CHC genetics across wider phylogenetic boundaries. This review attempts to integrate new insights and recent knowledge gained in the genetics of CHC biosynthesis, which is just beginning to incorporate work on more insect taxa beyond Drosophila. It is intended to provide a stepping stone towards a wider and more general understanding of the genetic mechanisms that gave rise to the astonishing diversity of CHC compounds across different insect taxa. Further research in this field is encouraged to aim at better discriminating conserved versus taxon-specific genetic elements underlying CHC variation. This will be instrumental in greatly expanding our knowledge of the origins and variation of genes governing the biosynthesis of these crucial phenotypic traits that have greatly impacted insect behavior, physiology, and evolution.
Collapse
Affiliation(s)
- Henrietta Holze
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany
| | - Lukas Schrader
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany
| | - Jan Buellesbach
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, DE-48149, Münster, Germany.
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall #3114, Berkeley, CA, 94720-3114, USA.
| |
Collapse
|
20
|
Huang Y, Yin H, Zhu Z, Jiang X, Li X, Dong Y, Sheng C, Liao M, Cao H. Expression and functional analysis of cytochrome P450 genes in the integument of the oriental armyworm, Mythimna separata (Walker). PEST MANAGEMENT SCIENCE 2021; 77:577-587. [PMID: 32816378 DOI: 10.1002/ps.6058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Mythimna separata is a devastating agricultural pest that has recently developed insecticide resistance. Integument-specific cytochrome P450s were reported to participate in cuticle formation and could be potential targets for pesticide synthesis. RESULTS The transcriptome of integuments of M. separata larvae was constructed, generating a total of 38 058 unigenes with an average length of 1243 bp. These unigenes are enriched in functional categories such as lipid transport and metabolism, and secondary metabolites biosynthesis, transport and catabolism. Amongst unigenes, cytochrome P450s were identified and 66 unique P450s with complete open reading frames were named. These P450s were divided into 17 families and 32 subfamilies, containing conserved motifs such as helix C, helix I, helix K, and the heme-binding region. RNA-Seq and RT-qPCR analyses showed different expression levels of P450s in integuments of M. separata larvae. Further RT-qPCR analysis of P450s among different tissues showed that five P450s, especially CYP4G199, were specifically highly expressed in integuments. Moreover, knockdown of CYP4G199 disturbed cuticle formation, leading to imperfection in larval cuticle, and prevented pupation of M. separata. CONCLUSION Transcriptome of larval integuments provided sequence and expression of genes in M. separata. CYP4G199 is specifically highly expressed in larval integuments and is important for cuticle formation in M. separata.
Collapse
Affiliation(s)
- Yong Huang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hongqin Yin
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zeng Zhu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xingchuan Jiang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiuxia Li
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yongcheng Dong
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chengwang Sheng
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Min Liao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Haiqun Cao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
21
|
Genath A, Sharbati S, Buer B, Nauen R, Einspanier R. Comparative transcriptomics indicates endogenous differences in detoxification capacity after formic acid treatment between honey bees and varroa mites. Sci Rep 2020; 10:21943. [PMID: 33318550 PMCID: PMC7736338 DOI: 10.1038/s41598-020-79057-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
Formic acid (FA) has been used for decades to control Varroa destructor, one of the most important parasites of the western honey bee, Apis mellifera. The rather unselective molecular mode of action of FA and its possible effects on honeybees have long been a concern of beekeepers, as it has undesirable side effects that affect the health of bee colonies. This study focuses on short-term transcriptomic changes as analysed by RNAseq in both larval and adult honey bees and in mites after FA treatment under applied conditions. Our study aims to identify those genes in honey bees and varroa mites differentially expressed upon a typical FA hive exposure scenario. Five detoxification-related genes were identified with significantly enhanced and one gene with significantly decreased expression under FA exposure. Regulated genes in our test setting included members of various cytochrome P450 subfamilies, a flavin-dependent monooxygenase and a cytosolic 10-formyltetrahydrofolate dehydrogenase (FDH), known to be involved in formate metabolism in mammals. We were able to detect differences in the regulation of detoxification-associated genes between mites and honey bees as well as between the two different developmental stages of the honey bee. Additionally, we detected repressed regulation of Varroa genes involved in cellular respiration, suggesting mitochondrial dysfunction and supporting the current view on the mode of action of FA-inhibition of oxidative phosphorylation. This study shows distinct cellular effects induced by FA on the global transcriptome of both host and parasite in comparison. Our expression data might help to identify possible differences in the affected metabolic pathways and thus make a first contribution to elucidate the mode of detoxification of FA.
Collapse
Affiliation(s)
- Antonia Genath
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Benjamin Buer
- Bayer AG, Crop Science Division, Pest Control, Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Pest Control, Monheim, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Wu L, Zhang ZF, Yu Z, Yu R, Ma E, Fan YL, Liu TX, Feyereisen R, Zhu KY, Zhang J. Both LmCYP4G genes function in decreasing cuticular penetration of insecticides in Locusta migratoria. PEST MANAGEMENT SCIENCE 2020; 76:3541-3550. [PMID: 32419293 DOI: 10.1002/ps.5914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cuticular hydrocarbons (CHCs) have a critical role in preventing desiccation and penetration of xenobiotics in insects. Previous studies have shown that cytochrome P450 subfamily 4G (CYP4G) enzymes are oxidative decarbonylases, essential for CHC biosynthesis. However, it is unclear whether there are functional differences between the two CYP4G genes in most insects. In Locusta migratoria, we identified two CYP4G genes (LmCYP4G62 and LmCYP4G102). LmCYP4G102 plays a critical role in the synthesis of CHCs, but the function of LmCYP4G62 is unknown. RESULTS We identified, characterized, and compared two LmCYP4G genes, based on L. migratoria transcriptomic and genomic databases. RT-qPCR showed that both were highly expressed in tissues with which oenocytes are associated, the integument and fat body. Immunostaining indicated that LmCYP4G62 and LmCYP4G102 were highly abundant in oenocytes in these tissues. However, the two enzymes had a different subcellular distribution, with LmCYP4G62 localized on the plasma membrane and LmCYP4G102 dispersed throughout the oenocyte cytoplasm, presumably on the endoplasmic reticulum. RNA interference-mediated gene silencing against each of the two genes resulted in reduced CHC contents, in all classes for LmCYP4G102, but mostly shorter chain CHCs for LmCYP4G62. Silencing of both genes resulted in increased insecticide penetration through the cuticle, and increased locust susceptibility to desiccation and insecticides. CONCLUSION Our studies suggest that both LmCYP4G62 and LmCYP4G102 contribute to hydrocarbon biosynthesis and play key roles in protecting locusts from water loss and insecticide penetration, but they are not fully redundant. Further, the two LmCYP4G genes might be used as new targets for insect pest management. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixian Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Zhan-Feng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Zhitao Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Rongrong Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen1017, Denmark
- Department of Plant and Crops, Ghent University, Ghent, Belgium
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
23
|
Dulbecco AB, Moriconi DE, Lynn S, McCarthy A, Juárez MP, Girotti JR, Calderón-Fernández GM. Deciphering the role of Rhodnius prolixus CYP4G genes in straight and methyl-branched hydrocarbon formation and in desiccation tolerance. INSECT MOLECULAR BIOLOGY 2020; 29:431-443. [PMID: 32484986 DOI: 10.1111/imb.12653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/05/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Insect cuticle hydrocarbons are involved primarily in waterproofing the cuticle, but also participate in chemical communication and regulate the penetration of insecticides and microorganisms. The last step in insect hydrocarbon biosynthesis is carried out by an insect-specific cytochrome P450 of the 4G subfamily (CYP4G). Two genes (CYP4G106 and CYP4G107) have been reported in the triatomines Rhodnius prolixus and Triatoma infestans. In this work, their molecular and functional characterization is carried out in R. prolixus, and their relevance to insect survival is assessed. Both genes are expressed almost exclusively in the integument and have an expression pattern dependent on the developmental stage and feeding status. CYP4G106 silencing diminished significantly the straight-chain hydrocarbon production while a significant reduction - mostly of methyl-branched chain hydrocarbons - was observed after CYP4G107 silencing. Molecular docking analyses using different aldehydes as hydrocarbon precursors predicted a better fit of straight-chain aldehydes with CYP4G106 and methyl-branched aldehydes with CYP4G107. Survival bioassays exposing the silenced insects to desiccation stress showed that CYP4G107 is determinant for the waterproofing properties of the R. prolixus cuticle. This is the first report on the in vivo specificity of two CYP4Gs to make mostly straight or methyl-branched hydrocarbons, and also on their differential contribution to insect desiccation.
Collapse
Affiliation(s)
- A B Dulbecco
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| | - D E Moriconi
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| | - S Lynn
- Centro Regional de Estudios Genómicos (UNLP), Facultad de Ciencias Exactas, La Plata, Argentina
| | - A McCarthy
- Centro Regional de Estudios Genómicos (UNLP), Facultad de Ciencias Exactas, La Plata, Argentina
| | - M P Juárez
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| | - J R Girotti
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| | - G M Calderón-Fernández
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| |
Collapse
|
24
|
Wu L, Yu Z, Jia Q, Zhang X, Ma E, Li S, Zhu KY, Feyereisen R, Zhang J. Knockdown of LmCYP303A1 alters cuticular hydrocarbon profiles and increases the susceptibility to desiccation and insecticides in Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104637. [PMID: 32711771 DOI: 10.1016/j.pestbp.2020.104637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Cytochrome P450 monooxygenases (CYPs) serve many functions in insects, from the regulation of development to xenobiotic detoxification. Several conserved CYPs have been shown to play a role in insect growth and development. CYP303A1 is a highly conserved CYP with a single ortholog in most insects, but its underlying molecular characteristics and specific physiological functions remain poorly understood. In Drosophila melanogaster and Locusta migratoria, CYP303A1 is indispensable for eclosion to adult. Here, we report additional functions of the locust gene LmCYP303A1 in nymphal molts, cuticular lipid deposition and insecticide penetration. RT-qPCR revealed that LmCYP303A1 had a high expression level before ecdysis and was highly expressed in integument, wing pads, foregut and hindgut. Suppression of LmCYP303A1 expression by RNA interference (RNAi) caused a lethal phenotype with molting defect from nymph to nymph. In addition, LmCYP303A1 RNAi resulted in locusts being more susceptible to desiccation and to insecticide toxicity. Furthermore, knockdown of LmCYP303A1 efficiently suppressed the transcript level of key genes (ELO7, FAR15 and CYP4G102) responsible for cuticular hydrocarbon (CHC) synthesis, which led to a decrease in some CHC levels. Taken together, our results suggest that one of the functions of LmCYP303A1 is to regulate the biosynthesis of CHC, which plays critical roles in protecting locusts from water loss and insecticide penetration.
Collapse
Affiliation(s)
- Lixian Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhitao Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xueyao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 1017, Denmark; Department of Plant and Crops, Ghent University, B-9000Ghent, Belgium
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
25
|
Feyereisen R. Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Mol Phylogenet Evol 2020; 143:106695. [DOI: 10.1016/j.ympev.2019.106695] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
|
26
|
Chen N, Pei XJ, Li S, Fan YL, Liu TX. Involvement of integument-rich CYP4G19 in hydrocarbon biosynthesis and cuticular penetration resistance in Blattella germanica (L.). PEST MANAGEMENT SCIENCE 2020; 76:215-226. [PMID: 31149772 DOI: 10.1002/ps.5499] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cuticle penetration plays an important role as a mechanism of insecticide resistance, but the underlying molecular mechanism remains poorly understood. In Blattella germanica, the cytochrome P450 gene, CYP4G19, is overexpressed in a pyrethroid-resistant strain. Here, we investigated whether CYP4G19 is involved in the biosynthesis of hydrocarbons and further contributes to cuticular penetration resistance in B. germanica. RESULTS Compared with the susceptible strain, pyrethroid-resistant cockroaches showed lower cuticular permeability with Eosin Y staining. Removal of epicuticular lipids, mainly nonpolar hydrocarbons, with a hexane wash intensified the cuticular permeability and decreased the resistance index of the resistant strain. CYP4G19 was predominately expressed in the abdominal integument and could be upregulated by desiccation stress or short exposure to beta-cypermethrin. Overexpression of CYP4G19 in the resistant strain was positively correlated with a higher level of cuticular hydrocarbons (CHCs). RNAi-mediated knockdown of CYP4G19 significantly decreased its expression and caused a reduction in CHCs. Meanwhile, CYP4G19 suppression resulted in a non-uniform array of the lipid layer, enhanced cuticle permeability, and compromised insecticide tolerance. CONCLUSION Our findings confirm that CYP4G19 is involved in hydrocarbon production and appears to contribute to hydrocarbon-based penetration resistance in B. germanica. This study highlights the lipid-based penetration resistance, advancing our understanding of the molecular mechanism underlying P450-mediated cuticular penetration resistance in insects. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Jin Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
Mumoki FN, Yusuf AA, Pirk CWW, Crewe RM. Hydroxylation patterns associated with pheromone synthesis and composition in two honey bee subspecies Apis mellifera scutellata and A. m. capensis laying workers. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103230. [PMID: 31470083 DOI: 10.1016/j.ibmb.2019.103230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Colony losses due to social parasitism in the form of reproductive workers of the Apis mellifera capensis clones results from the production of queen-like pheromonal signals coupled with ovarian activation in these socially parasitic honey bees. While the behavioral attributes of these social parasites have been described, their genetic attributes require more detailed exploration. Here, we investigate the production of mandibular gland pheromones in queenless workers of two sub-species of African honey bees; A. m. scutellata (low reproductive potential) and A. m. capensis clones (high reproductive potential). We used standard techniques in gas chromatography to assess the amounts of various pheromone components present, and qPCR to assess the expression of cytochrome P450 genes cyp6bd1 and cyp6as8, thought to be involved in the caste-dependent hydroxylation of acylated stearic acid in queens and workers, respectively. We found that, for both subspecies, the quality and quantity of the individual pheromone components vary with age, and that from the onset, A. m. capensis parasites make use of gene pathways typically upregulated in queens in achieving reproductive dominance. Due to the high production of 9-hydroxy-decenoic acid (9-HDA) the precursor to the queen substance 9-oxo-decenoic acid (9-ODA) in newly emerged capensis clones, we argue that clones are primed for parasitism upon emergence and develop into fully fledged parasites depending on the colony's social environment.
Collapse
Affiliation(s)
- Fiona N Mumoki
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| | - Abdullahi A Yusuf
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| | - Christian W W Pirk
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| | - Robin M Crewe
- Social Insects Research Group, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| |
Collapse
|
28
|
Berenbaum MR, Liao LH. Honey Bees and Environmental Stress: Toxicologic Pathology of a Superorganism. Toxicol Pathol 2019; 47:1076-1081. [PMID: 31581932 DOI: 10.1177/0192623319877154] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a eusocial species, Apis mellifera, the European honey bee, is effectively a superorganism-a group of genetically related individuals functioning as a collective unit. Because the unit of selection is the colony and not the individual, standard methods for assessing toxicologic pathology can miss colony-level responses to stress. For over a decade, US populations of honeybees have experienced severe annual losses attributed to a variety of environmental stressors varying temporally and geographically; differentiating among those stressors is accordingly a high priority. Social interactions among individuals in this social species, however, mean that the "footprint" of stressors such as pesticides, phytochemicals, pathogens, and parasites may be most discernible in individuals that did not themselves directly encounter the stressor. For example, neurotoxic effects of pesticides on nurse bees may impair their behavioral responses to queen-destined larvae, which may then emerge as adults with altered anatomy or physiology. Similarly, pesticide-induced size alterations in nurse hypopharyngeal glands, which produce royal jelly, the exclusive food of larval and adult queens, may disproportionately affect the queen's (and thus colony) health. Thus, evaluating toxicologic pathology in the honeybee requires a new perspective and development of assays that preserve the social context that ultimately determines colony health.
Collapse
Affiliation(s)
- May R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ling-Hsiu Liao
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
29
|
Wang SY, Hackney Price J, Zhang D. Hydrocarbons catalysed by TmCYP4G122 and TmCYP4G123 in Tenebrio molitor modulate the olfactory response of the parasitoid Scleroderma guani. INSECT MOLECULAR BIOLOGY 2019; 28:637-648. [PMID: 30843299 DOI: 10.1111/imb.12581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrocarbons (HCs) present on the epicuticle of terrestrial insects are not only used to reduce water loss but are also used as chemical signals. The cytochrome p450 CYP4G gene is essential for HC biosynthesis in some insects. However, its function in Tenebrio molitor is unknown. Moreover, it is not yet known whether CYP4G of a host can modulate the searching behaviours of its parasitoid. Here, we explore the function of the TmCYP4G122 and CYP4G123 genes in T. molitor. The TmCYP4G122 and CYP4G123 transcripts could be detected in all developmental stages. Their expression was higher in the fat body and abdominal cuticle than in the gut. Their transcript levels in mature larvae under desiccation stress [relative humidity (RH) < 5%] was significantly higher than that in the control (RH = 70%). Injection of dsCYP4G122 and dsCYP4G123 caused a reduction in HC biosynthesis and was associated with increased susceptibility to desiccation. Individuals of the parasitoid Scleroderma guani that emerged from mealworm pupae showed host preference for normal pupae whereas S. guani that emerged from pupae lacking CYP4G122 or/and CYP4G123 lost this searching preference. The current results confirm that CYP4G122 and CYP4G123 regulate the biosynthesis of HCs and modulate the olfactory response of its parasitoid S. guani.
Collapse
Affiliation(s)
- S Y Wang
- College of Agricultural and Food Science, Zhejiang A&F University at Hangzhou, Zhejiang, China
| | - J Hackney Price
- School of Mathematical & Natural Sciences, New College of Interdisciplinary Arts & Sciences, Arizona State University, Phoenix, AZ, USA
| | - D Zhang
- College of Agricultural and Food Science, Zhejiang A&F University at Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Kefi M, Balabanidou V, Douris V, Lycett G, Feyereisen R, Vontas J. Two functionally distinct CYP4G genes of Anopheles gambiae contribute to cuticular hydrocarbon biosynthesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:52-59. [PMID: 31051237 DOI: 10.1016/j.ibmb.2019.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/21/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Cuticular hydrocarbon (CHC) biosynthesis is a major pathway of insect physiology. In Drosophila melanogaster the cytochrome P450 CYP4G1 catalyses the insect-specific oxidative decarbonylation step, while in the malaria vector Anopheles gambiae, two CYP4G paralogues, CYP4G16 and CYP4G17 are present. Analysis of the subcellular localization of CYP4G17 and CYP4G16 in larval and pupal stages revealed that CYP4G16 preserves its PM localization across developmental stages analyzed; however CYPG17 is differentially localized in two distinct types of pupal oenocytes, presumably oenocytes of larval and adult developmental specificity. Western blot analysis showed the presence of two CYP4G17 forms, potentially associated with each oenocyte type. Both An. gambiae CYP4Gs were expressed in D. melanogaster flies in a Cyp4g1 silenced background in order to functionally characterize them in vivo. CYP4G16, CYP4G17 or their combination rescued the lethal phenotype of Cyp4g1-knock down flies, demonstrating that CYP4G17 is also a functional decarbonylase, albeit of somewhat lower efficiency than CYP4G16 in Drosophila. Flies expressing mosquito CYP4G16 and/or CYP4G17 produced similar CHC profiles to 'wild-type' flies expressing the endogenous CYP4G1, but they also produce very long-chain dimethyl-branched CHCs not detectable in wild type flies, suggesting that the specificity of the CYP4G enzymes contributes to determine the complexity of the CHC blend. In conclusion, both An. gambiae CYP4G enzymes contribute to the unique Anopheles CHC profile, which has been associated to defense, adult desiccation tolerance, insecticide penetration rate and chemical communication.
Collapse
Affiliation(s)
- Mary Kefi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece; Department of Biology, University of Crete, VassilikaVouton, 71409, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - Gareth Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, United Kingdom
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, 1017, Denmark
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
31
|
MacLean M, Nadeau J, Gurnea T, Tittiger C, Blomquist GJ. Mountain pine beetle (Dendroctonus ponderosae) CYP4Gs convert long and short chain alcohols and aldehydes to hydrocarbons. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 102:11-20. [PMID: 30243802 DOI: 10.1016/j.ibmb.2018.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/03/2018] [Accepted: 09/16/2018] [Indexed: 05/23/2023]
Abstract
Hydrocarbon biosynthesis in insects involves the elongation of fatty acyl-CoAs to very-long chain fatty acyl-CoAs that are then reduced and converted to hydrocarbon, with the last step involving the oxidative decarbonylation of an aldehyde to hydrocarbon and carbon dioxide. Cytochromes P450 in the 4G family decarbonylate aldehydes to hydrocarbon. All insect acyl-CoA reductases studied to date reduce fatty acyl-CoAs to alcohols. The results of the work reported herein demonstrate that CYP4G55 and CYP4G56 from the mountain pine beetle, Dendroctonus ponderosae, expressed as fusion proteins with house fly cytochrome P450 reductase (CPR), convert both long chain aldehydes and long chain alcohols to hydrocarbons. CYP4G55 and CYP4G56 appear to prefer primary alcohols to aldehydes as substrates. These data strongly suggest that hydrocarbon biosynthesis in insects occurs by the two-step reduction of very long chain fatty acyl-CoAs to alcohols, which are then oxidized to aldehydes and then oxidatively decarbonylated to hydrocarbon by CYP4G enzymes. In addition, both CYP4G55 and CYP4G56 fusion proteins convert C10 alcohols and aldehydes to hydrocarbons, including the conversion of (Z)-7-decenal, a putative intermediate in the exo-brevicomin pheromone biosynthetic pathway, to (Z)-3-nonene. These data demonstrate that the highly conserved CYP4G enzymes accept a broad range of carbon chain lengths, including C10 and C18, and have evolved to function in cuticular hydrocarbon biosynthesis and pheromone production.
Collapse
Affiliation(s)
- Marina MacLean
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, United States.
| | - Jeffrey Nadeau
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, United States.
| | - Taylor Gurnea
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, United States.
| | - Claus Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, United States.
| | - Gary J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, United States.
| |
Collapse
|