1
|
Almehmadi M, Allahyani M, Aljuaid A, Alsuwat MA, Halawi M. Elevated levels of CD56+ T Cells, CD16+ CD56+ T Cells, and CD56dim NK Cells in herpes simplex virus type 1 seropositive healthy individuals. Saudi Med J 2024; 45:1312-1317. [PMID: 39658106 PMCID: PMC11629652 DOI: 10.15537/smj.2024.45.12.20240498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVES To investigate the numbers of natural killer (NK) cells, CD56+ T-cells and CD56- T cells, and the levels ofCD16 in healthy individuals seropositive for herpes simplex virus Type 1 (HSV-1). Specifically, it seeks to measure the levels of these cells to learn about the possible immunological significance during HSV-1 seropositive status. METHODS This study employed a cross-sectional research design to examine the levels of CD56+ T-cells and CD16+ among individuals seropositive for herpes simplex virus type 1 (HSV-1) in Taif city. A total of 112 participants were enrolled, with HSV-1 serostatus determined via ELISA, and cellular evaluation conducted using flow cytometry. The study was performed between January 2023 to July 2023. RESULTS Our study found 36% HSV-1 seropositivity, contrasting with higher rates in Saudi Arabia. No significant age or gender differences were observed. HSV-1 seropositive individuals showed elevated dim CD56 NK cells and CD56+ T-cells, aligning with prior research on lymphocyte infiltration during HSV-1 activation. Further investigation is warranted for CD56- T-cells and bright NK cells. CONCLUSION HSV-1 seropositive individuals showed elevated dim CD56 NK cells and CD56+ T-cells, consistent with lymphocyte activities during viral activation. CD16 expression on CD56+ T-cells suggests their involvement in viral defence, emphasizing the need for further investigation into immune responses against HSV-1.
Collapse
Affiliation(s)
- Mazen Almehmadi
- From the Department of Clinical Laboratory Sciences (Almehmadi, Allahyani, Aljuaid, Alsuwat), College of Applied Medical Sciences, Taif University, Taif; and from the College of Nursing and Health Sciences (Halawi), Jazan University, Jazan, Kingdom of Saudi Arabia.
| | - Mamdouh Allahyani
- From the Department of Clinical Laboratory Sciences (Almehmadi, Allahyani, Aljuaid, Alsuwat), College of Applied Medical Sciences, Taif University, Taif; and from the College of Nursing and Health Sciences (Halawi), Jazan University, Jazan, Kingdom of Saudi Arabia.
| | - Abdulelah Aljuaid
- From the Department of Clinical Laboratory Sciences (Almehmadi, Allahyani, Aljuaid, Alsuwat), College of Applied Medical Sciences, Taif University, Taif; and from the College of Nursing and Health Sciences (Halawi), Jazan University, Jazan, Kingdom of Saudi Arabia.
| | - Meshari A. Alsuwat
- From the Department of Clinical Laboratory Sciences (Almehmadi, Allahyani, Aljuaid, Alsuwat), College of Applied Medical Sciences, Taif University, Taif; and from the College of Nursing and Health Sciences (Halawi), Jazan University, Jazan, Kingdom of Saudi Arabia.
| | - Mustafa Halawi
- From the Department of Clinical Laboratory Sciences (Almehmadi, Allahyani, Aljuaid, Alsuwat), College of Applied Medical Sciences, Taif University, Taif; and from the College of Nursing and Health Sciences (Halawi), Jazan University, Jazan, Kingdom of Saudi Arabia.
| |
Collapse
|
2
|
Yu X, Zheng Y, Huang R, Dai X, Kang G, Wang X, Yan G, Ding B, Zheng M, Xu Y, Zong L. Restoration of CD3 +CD56 + NKT-like cell function by TIGIT blockade in inactive carrier and immune tolerant patients of chronic hepatitis B virus infection. Eur J Immunol 2024; 54:e2451046. [PMID: 38778501 DOI: 10.1002/eji.202451046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Chronic hepatitis B (CHB) virus infection, which can be divided into immune-tolerant (IT), immune-active (IA), inactive carrier (IC) phases, and HBeAg-negative hepatitis (ENEG), can induce liver cirrhosis and eventually hepatocellular carcinoma (HCC). CD3+CD56+ NKT-like cells play an important role in antiviral immune response. However, the mechanism of NKT-like cells to mediate immune tolerance remains largely elusive. In this study, we observed circulating NKT-like cells from IC and IT CHB patients were phenotypically and functionally impaired, manifested by increased expression of inhibitory receptor TIGIT and decreased capacity of secreting antiviral cytokines. Besides, TIGIT+ NKT-like cells of IC and IT CHB patients expressed lower levels of cytotoxic cytokines than the TIGIT- subset. Furthermore, increased expression of CD155, the ligand of TIGIT, on plasmacytoid dendritic cells (pDCs) was detected in IC and IT CHB patients. Importantly, the co-culture of NKT-like cells and pDCs showed that NKT-like cells restored their antiviral ability after TIGIT blockade upon HBV peptide stimulation in IC and IT CHB patients. In conclusion, our findings suggest that the TIGIT pathway may mediate immune tolerance in IT CHB patients and lead to functional impairment in IC patients, indicating that TIGIT may be a potential therapeutic checkpoint for immunotherapy of CHB patients.
Collapse
Affiliation(s)
- Xiaojing Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanling Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruoyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoran Dai
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guijie Kang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Basic and Clinical Pharmacy, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xuefu Wang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Basic and Clinical Pharmacy, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Guoxiu Yan
- Department of Clinical Laboratory, Anhui Provincial Maternity and Child Health Hospital, Hefei, China
| | - Biran Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lu Zong
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Chen DG, Xie J, Choi J, Ng RH, Zhang R, Li S, Edmark R, Zheng H, Solomon B, Campbell KM, Medina E, Ribas A, Khatri P, Lanier LL, Mease PJ, Goldman JD, Su Y, Heath JR. Integrative systems biology reveals NKG2A-biased immune responses correlate with protection in infectious disease, autoimmune disease, and cancer. Cell Rep 2024; 43:113872. [PMID: 38427562 PMCID: PMC10995767 DOI: 10.1016/j.celrep.2024.113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/03/2024] Open
Abstract
Infection, autoimmunity, and cancer are principal human health challenges of the 21st century. Often regarded as distinct ends of the immunological spectrum, recent studies hint at potential overlap between these diseases. For example, inflammation can be pathogenic in infection and autoimmunity. T resident memory (TRM) cells can be beneficial in infection and cancer. However, these findings are limited by size and scope; exact immunological factors shared across diseases remain elusive. Here, we integrate large-scale deeply clinically and biologically phenotyped human cohorts of 526 patients with infection, 162 with lupus, and 11,180 with cancer. We identify an NKG2A+ immune bias as associative with protection against disease severity, mortality, and autoimmune/post-acute chronic disease. We reveal that NKG2A+ CD8+ T cells correlate with reduced inflammation and increased humoral immunity and that they resemble TRM cells. Our results suggest NKG2A+ biases as a cross-disease factor of protection, supporting suggestions of immunological overlap between infection, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Daniel G Chen
- Institute of Systems Biology, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jingyi Xie
- Institute of Systems Biology, Seattle, WA, USA; Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, USA
| | | | - Rachel H Ng
- Institute of Systems Biology, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Rongyu Zhang
- Institute of Systems Biology, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sarah Li
- Institute of Systems Biology, Seattle, WA, USA
| | - Rick Edmark
- Institute of Systems Biology, Seattle, WA, USA
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA; Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ben Solomon
- Department of Pediatrics, Division of Allergy and Immunology, Stanford School of Medicine, Stanford, CA, USA
| | - Katie M Campbell
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Egmidio Medina
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center at the University of California, Los Angeles, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA; Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Philip J Mease
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA, USA; Providence St. Joseph Health, Renton, WA, USA
| | - Jason D Goldman
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA, USA; Providence St. Joseph Health, Renton, WA, USA; Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Yapeng Su
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James R Heath
- Institute of Systems Biology, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
4
|
Vojdani A, Koksoy S, Vojdani E, Engelman M, Benzvi C, Lerner A. Natural Killer Cells and Cytotoxic T Cells: Complementary Partners against Microorganisms and Cancer. Microorganisms 2024; 12:230. [PMID: 38276215 PMCID: PMC10818828 DOI: 10.3390/microorganisms12010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Natural killer (NK) cells and cytotoxic T (CD8+) cells are two of the most important types of immune cells in our body, protecting it from deadly invaders. While the NK cell is part of the innate immune system, the CD8+ cell is one of the major components of adaptive immunity. Still, these two very different types of cells share the most important function of destroying pathogen-infected and tumorous cells by releasing cytotoxic granules that promote proteolytic cleavage of harmful cells, leading to apoptosis. In this review, we look not only at NK and CD8+ T cells but also pay particular attention to their different subpopulations, the immune defenders that include the CD56+CD16dim, CD56dimCD16+, CD57+, and CD57+CD16+ NK cells, the NKT, CD57+CD8+, and KIR+CD8+ T cells, and ILCs. We examine all these cells in relation to their role in the protection of the body against different microorganisms and cancer, with an emphasis on their mechanisms and their clinical importance. Overall, close collaboration between NK cells and CD8+ T cells may play an important role in immune function and disease pathogenesis. The knowledge of how these immune cells interact in defending the body against pathogens and cancers may help us find ways to optimize their defensive and healing capabilities with methods that can be clinically applied.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Laboratory, Inc., Los Angeles, CA 90035, USA
| | - Sadi Koksoy
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | | | - Mark Engelman
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| |
Collapse
|
5
|
Heath J, Chen D, Xie J, Choi J, Ng R, Zhang R, Li S, Edmark R, Zheng H, Solomon B, Campbell K, Medina E, Ribas A, Khatri P, Lanier L, Mease P, Goldman J, Su Y. An NKG2A biased immune response confers protection for infection, autoimmune disease, and cancer. RESEARCH SQUARE 2023:rs.3.rs-3413673. [PMID: 37886475 PMCID: PMC10602172 DOI: 10.21203/rs.3.rs-3413673/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Infection, autoimmunity, and cancer are the principal human health challenges of the 21st century and major contributors to human death and disease. Often regarded as distinct ends of the immunological spectrum, recent studies have hinted there may be more overlap between these diseases than appears. For example, pathogenic inflammation has been demonstrated as conserved between infection and autoimmune settings. T resident memory (TRM) cells have been highlighted as beneficial for infection and cancer. However, these findings are limited by patient number and disease scope; exact immunological factors shared across disease remain elusive. Here, we integrate large-scale deeply clinically and biologically phenotyped human cohorts of 526 patients with infection, 162 with lupus, and 11,180 with cancer. We identify an NKG2A+ immune bias as associative with protection against disease severity, mortality, and autoimmune and post-acute chronic disease. We reveal that NKG2A+ CD8+ T cells correlate with reduced inflammation, increased humoral immunity, and resemble TRM cells. Our results suggest that an NKG2A+ bias is a pan-disease immunological factor of protection and thus supports recent suggestions that there is immunological overlap between infection, autoimmunity, and cancer. Our findings underscore the promotion of an NKG2A+ biased response as a putative therapeutic strategy.
Collapse
|
6
|
Hofstee MI, Cevirgel A, de Zeeuw-Brouwer ML, de Rond L, van der Klis F, Buisman AM. Cytomegalovirus and Epstein-Barr virus co-infected young and middle-aged adults can have an aging-related T-cell phenotype. Sci Rep 2023; 13:10912. [PMID: 37407603 DOI: 10.1038/s41598-023-37502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Cytomegalovirus (CMV) is known to alter circulating effector memory or re-expressing CD45RA+ (TemRA) T-cell numbers, but whether Epstein-Barr virus (EBV) does the same or this is amplified during a CMV and EBV co-infection is unclear. Immune cell numbers in blood of children and young, middle-aged, and senior adults (n = 336) were determined with flow cytometry, and additional multivariate linear regression, intra-group correlation, and cluster analyses were performed. Compared to non-infected controls, CMV-seropositive individuals from all age groups had more immune cell variance, and CMV+ EBV- senior adults had more late-differentiated CD4+ and CD8+ TemRA and CD4+ effector memory T-cells. EBV-seropositive children and young adults had a more equal immune cell composition than non-infected controls, and CMV- EBV+ senior adults had more intermediate/late-differentiated CD4+ TemRA and effector memory T-cells than non-infected controls. CMV and EBV co-infected young and middle-aged adults with an elevated BMI and anti-CMV antibody levels had a similar immune cell composition as senior adults, and CMV+ EBV+ middle-aged adults had more late-differentiated CD8+ TemRA, effector memory, and HLA-DR+ CD38- T-cells than CMV+ EBV- controls. This study identified changes in T-cell numbers in CMV- or EBV-seropositive individuals and that some CMV and EBV co-infected young and middle-aged adults had an aging-related T-cell phenotype.
Collapse
Affiliation(s)
- Marloes I Hofstee
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands.
| | - Alper Cevirgel
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, The Netherlands
| | - Mary-Lène de Zeeuw-Brouwer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Lia de Rond
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Fiona van der Klis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| |
Collapse
|
7
|
Chanswangphuwana C, Wudhikarn K, Watanaboonyongcharoen P, Kansuwan P, Sukperm A, Bunworasate U. Prognostic factors and impact of CMV reactivation on acute myeloid leukemia patients after HLA-matched myeloablative allogeneic stem cell transplantation in a high CMV prevalence country. Hematol Transfus Cell Ther 2023; 45 Suppl 2:S51-S56. [PMID: 35172942 PMCID: PMC10433316 DOI: 10.1016/j.htct.2022.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Relapse of acute myeloid leukemia (AML) after allogeneic stem cell transplantation (allo-SCT) leads to dismal outcomes. This study aimed to identify high-risk patients and explore the effects of cytomegalovirus (CMV) reactivation in a high CMV-seropositive population. METHODS The study involved a single-center retrospective cohort in Thailand, analyzing clinical risk factors and CMV-mediated immune responses, correlated with transplant outcomes in AML patients. RESULTS Eighty-five patients with AML in complete remission (CR) undergoing HLA-matched myeloablative allo-SCT between 2011 and February 2021 were enrolled. The relapse rate was 27.1% with the median time of 7 months after transplantation. The 3-year relapse-free-survival (RFS) and overall-survival (OS) were 72.2% and 80.8%, respectively. The disease status (>CR1) and absence of chronic graft-versus-host disease (cGVHD) were independently significant adverse prognostic factors of RFS and OS. Ninety-two percent of recipient-donor pairs were both CMV seropositive. The CMV reactivation occurred in 54.1% of the patients. The clinically significant CMV infection rate was 49.4%. No CMV syndrome/disease or CMV-related mortality occurred. One-year cumulative incidence of relapse among CMV-reactivation and non-reactivation groups were 14.3% and 25.6%, respectively, without a statistically significant difference. Transplantation-related mortality was 11.1%. CONCLUSIONS The transplantation beyond CR1 and absence of cGVHD are powerful prognostic factors associated with inferior RFS and OS. In a high CMV prevalence country, there appears to be no impact of CMV reactivation on relapse in AML patients undergoing an allo-SCT.
Collapse
Affiliation(s)
- Chantiya Chanswangphuwana
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Research Unit in Translational Hematology, Chulalongkorn University, Bangkok, Thailand.
| | - Kitsada Wudhikarn
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Research Unit in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Phandee Watanaboonyongcharoen
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Transfusion Medicine Unit, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Patsita Kansuwan
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Autcharaporn Sukperm
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Udomsak Bunworasate
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Research Unit in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Vavilova JD, Ustiuzhanina MO, Boyko AA, Streltsova MA, Kust SA, Kanevskiy LM, Iskhakov RN, Sapozhnikov AM, Gubernatorova EO, Drutskaya MS, Bychinin MV, Novikova ON, Sotnikova AG, Yusubalieva GM, Baklaushev VP, Kovalenko EI. Alterations in the CD56 - and CD56 + T Cell Subsets during COVID-19. Int J Mol Sci 2023; 24:ijms24109047. [PMID: 37240393 DOI: 10.3390/ijms24109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The effectiveness of the antiviral immune response largely depends on the activation of cytotoxic T cells. The heterogeneous group of functionally active T cells expressing the CD56 molecule (NKT-like cells), that combines the properties of T lymphocytes and NK cells, is poorly studied in COVID-19. This work aimed to analyze the activation and differentiation of both circulating NKT-like cells and CD56- T cells during COVID-19 among intensive care unit (ICU) patients, moderate severity (MS) patients, and convalescents. A decreased proportion of CD56+ T cells was found in ICU patients with fatal outcome. Severe COVID-19 was accompanied by a decrease in the proportion of CD8+ T cells, mainly due to the CD56- cell death, and a redistribution of the NKT-like cell subset composition with a predominance of more differentiated cytotoxic CD8+ T cells. The differentiation process was accompanied by an increase in the proportions of KIR2DL2/3+ and NKp30+ cells in the CD56+ T cell subset of COVID-19 patients and convalescents. Decreased percentages of NKG2D+ and NKG2A+ cells and increased PD-1 and HLA-DR expression levels were found in both CD56- and CD56+ T cells, and can be considered as indicators of COVID-19 progression. In the CD56- T cell fraction, increased CD16 levels were observed in MS patients and in ICU patients with lethal outcome, suggesting a negative role for CD56-CD16+ T cells in COVID-19. Overall, our findings suggest an antiviral role of CD56+ T cells in COVID-19.
Collapse
Affiliation(s)
- Julia D Vavilova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maria O Ustiuzhanina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Anna A Boyko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maria A Streltsova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sofya A Kust
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Leonid M Kanevskiy
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Rustam N Iskhakov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander M Sapozhnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ekaterina O Gubernatorova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marina S Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Krasnodarsky Krai, 354349 Sochi, Russia
| | - Mikhail V Bychinin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Oksana N Novikova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Anna G Sotnikova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Gaukhar M Yusubalieva
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir P Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena I Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
9
|
Koh JY, Kim DU, Moon BH, Shin EC. Human CD8 + T-Cell Populations That Express Natural Killer Receptors. Immune Netw 2023; 23:e8. [PMID: 36911797 PMCID: PMC9995994 DOI: 10.4110/in.2023.23.e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Genome Insight, Inc., Daejeon 34051, Korea
| | - Dong-Uk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Bae-Hyeon Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
10
|
Meggyes M, Feik T, Nagy DU, Polgar B, Szereday L. CD8 and CD4 Positive NKT Subpopulations and Immune-Checkpoint Pathways in Early-Onset Preeclampsia and Healthy Pregnancy. Int J Mol Sci 2023; 24:ijms24021390. [PMID: 36674905 PMCID: PMC9863229 DOI: 10.3390/ijms24021390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Although many studies have investigated the clinical aspect of early-onset preeclampsia, our knowledge about the immunological consequences of improper placenta development is scarce. The maternal immunotolerance against the fetus is greatly influenced by the Th1 predominance developed by the mother's immune system. Thirty-two early-onset preeclamptic and fifty-one healthy pregnant women with appropriately matched gestational age were involved in our study. Mononuclear cells were separated from peripheral venous blood and the frequency of CD8⁺, CD4⁺, double positive (DP), and double negative (DN) NKT cell subpopulations was determined using multicolor flow cytometry. Following the characterization, the expression levels of different immune checkpoint receptors and ligands were also defined. Soluble CD226 levels were quantified by ELISA. Novel and significant differences were revealed among the ratios of the investigated NKT subsets and in the expression patterns of PD-1, LAG-3, TIGIT and CD226 receptors. Further differences were determined in the expression of CD112, PD-1, LAG-3 and CD226 MFI values between the early-onset preeclamptic and the healthy pregnant groups. Our results suggest that the investigated NKT subpopulations act differently in the altered immune condition characteristic of early-onset preeclampsia and indicate that the different subsets may contribute to the compensation or maintenance of Th1 predominance.
Collapse
Affiliation(s)
- Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
- Correspondence:
| | - Timoteus Feik
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
| | - David U. Nagy
- Institute of Geobotany/Plant Ecology, Martin-Luther-University, Große Steinstraße 79/80, 06108 Halle (Saale), Germany
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
| |
Collapse
|
11
|
Koh JY, Rha MS, Choi SJ, Lee HS, Han JW, Nam H, Kim DU, Lee JG, Kim MS, Park JY, Park SH, Joo DJ, Shin EC. Identification of a distinct NK-like hepatic T-cell population activated by NKG2C in a TCR-independent manner. J Hepatol 2022; 77:1059-1070. [PMID: 35644434 DOI: 10.1016/j.jhep.2022.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS The liver provides a unique niche of lymphocytes enriched with a large proportion of innate-like T cells. However, the heterogeneity and functional characteristics of the hepatic T-cell population remain to be fully elucidated. METHODS We obtained liver sinusoidal mononuclear cells from the liver perfusate of healthy donors and recipients with HBV-associated chronic liver disease (CLD) during liver transplantation. We performed a CITE-seq analysis of liver sinusoidal CD45+ cells in combination with T cell receptor (TCR)-seq and flow cytometry to examine the phenotypes and functions of liver sinusoidal CD8+ T cells. RESULTS We identified a distinct CD56hiCD161-CD8+ T-cell population characterized by natural killer (NK)-related gene expression and a uniquely restricted TCR repertoire. The frequency of these cells among the liver sinusoidal CD8+ T-cell population was significantly increased in patients with HBV-associated CLD. Although CD56hiCD161-CD8+ T cells exhibit weak responsiveness to TCR stimulation, CD56hiCD161-CD8+ T cells highly expressed various NK receptors, including CD94, killer immunoglobulin-like receptors, and NKG2C, and exerted NKG2C-mediated NK-like effector functions even in the absence of TCR stimulation. In addition, CD56hiCD161-CD8+ T cells highly respond to innate cytokines, such as IL-12/18 and IL-15, in the absence of TCR stimulation. We validated the results from liver sinusoidal CD8+ T cells using intrahepatic CD8+ T cells obtained from liver tissues. CONCLUSIONS In summary, the current study found a distinct CD56hiCD161-CD8+ T-cell population characterized by NK-like activation via TCR-independent NKG2C ligation. Further studies are required to elucidate the roles of liver sinusoidal CD56hiCD161-CD8+ T cells in immune responses to microbial pathogens or liver immunopathology. LAY SUMMARY The role of different immune cell populations in the liver is becoming an area of increasing interest. Herein, we identified a distinct T-cell population that had features similar to those of natural killer (NK) cells - a type of innate immune cell. This distinct population was expanded in the livers of patients with chronic liver disease and could thus have pathogenic relevance.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min-Seok Rha
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seong Jin Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ha Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Won Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Heejin Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong-Uk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jae Geun Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Myoung Soo Kim
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jun Yong Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Dong Jin Joo
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| |
Collapse
|
12
|
Zangger N, Oxenius A. T cell immunity to cytomegalovirus infection. Curr Opin Immunol 2022; 77:102185. [DOI: 10.1016/j.coi.2022.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
|
13
|
Halawi M, Al-Hazmi A, Aljuaid A, Allahyani M, Abdulaziz O, A Almalki A, Alqurni E, Althibity N, Kuriri H, Alosimi E, Alsiwiehri N, Almehmadi M. Seroprevalence of Toxoplasma gondii, Rubella, Group A Streptococcus, CMV and HSV-1 in COVID-19 Patients with Vitamin D Deficiency. Pak J Biol Sci 2021; 24:1169-1174. [PMID: 34842389 DOI: 10.3923/pjbs.2021.1169.1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> In recent years, respiratory tract viral infections have caused many pandemics that impact the whole world. To investigate the seropositivity of <i>Toxoplasma gondii</i>, rubella, CMV, HSV-1 and group A <i>Streptococcus</i> in recovered COVID-19 patients and correlate these findings with vitamin D levels. <b>Materials and Methods:</b> A total of 417 COVID-19 patients with diarrhoea were enrolled in this study. Vitamin D and seroprevalence for <i>Toxoplasma gondii</i>, rubella, CMV, HSV-1 and group A <i>Streptococcus</i> were evaluated and correlated. <b>Results:</b> It was found that recent infection in COVID-19 patients with HSV-1, rubella, <i>Toxoplasma</i> and CMV, respectively. IgG was detected indicating the development of adaptive immunity with all microbes. <b>Conclusion:</b> Current study detected a correlation between vitamin D levels and HSV-1 and no correlation between this infection and vitamin D deficiency with the other microbes.
Collapse
|
14
|
Functional Changes of T-Cell Subsets with Age and CMV Infection. Int J Mol Sci 2021; 22:ijms22189973. [PMID: 34576140 PMCID: PMC8465008 DOI: 10.3390/ijms22189973] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
Cytomegalovirus (CMV) latent infection and aging contribute to alterations in the function and phenotype of the T-cell pool. We have demonstrated that CMV-seropositivity is associated with the expansion of polyfunctional CD57+ T-cells in young and middle-aged individuals in response to different stimuli. Here, we expand our results on the effects of age and CMV infection on T-cell functionality in a cohort of healthy middle-aged and older individuals stratified by CMV serostatus. Specifically, we studied the polyfunctional responses (degranulation, IFN-γ and TNF-α production) of CD4+, CD8+, CD8+CD56+ (NKT-like), and CD4−CD8− (DN) T-cells according to CD57 expression in response to Staphylococcal Enterotoxin B (SEB). Our results show that CD57 expression by T-cells is not only a hallmark of CMV infection in young individuals but also at older ages. CD57+ T-cells are more polyfunctional than CD57− T-cells regardless of age. CMV-seronegative individuals have no or a very low percentages of cytotoxic CD4+ T-cells (CD1017a+) and CD4+CD57+ T-cells, supporting the notion that the expansion of these T-cells only occurs in the context of CMV infection. There was a functional shift in T-cells associated with CMV seropositivity, except in the NKT-like subset. Here, we show that the effect of CMV infection and age differ among T-cell subsets and that CMV is the major driving force for the expansion of highly polyfunctional CD57+ T-cells, emphasizing the necessity of considering CMV serology in any study of immunosenescence.
Collapse
|
15
|
Kovalenko EI, Zvyagin IV, Streltsova MA, Mikelov AI, Erokhina SA, Telford WG, Sapozhnikov AM, Lebedev YB. Surface NKG2C Identifies Differentiated αβT-Cell Clones Expanded in Peripheral Blood. Front Immunol 2021; 11:613882. [PMID: 33664730 PMCID: PMC7921799 DOI: 10.3389/fimmu.2020.613882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
T cells that express CD56 in peripheral blood of healthy humans represent a heterogeneous and poorly studied subset. In this work, we analyzed this subset for NKG2C expression. In both CD56+ and CD56- subsets most of the NKG2C+ T cells had a phenotype of highly differentiated CD8+ TEMRA cells. The CD56+NKG2C+ T cells also expressed a number of NK cell receptors, such as NKG2D, CD16, KIR2DL2/DL3, and maturation marker CD57 more often than the CD56-NKG2C+CD3+ cells. TCR β-chain repertoire of the CD3+CD56+NKG2C+ cell fraction was limited by the prevalence of one or several clonotypes which can be found within the most abundant clonotypes in total or CD8+ T cell fraction TCRβ repertoire. Thus, NKG2C expression in highly differentiated CD56+ T cells was associated with the most expanded αβ T cell clones. NKG2C+ T cells produced almost no IFN-γ in response to stimulation with HCMV pp65-derived peptides. This may be partially due to the high content of CD45RA+CD57+ cells in the fraction. CD3+NKG2C+ cells showed signs of activation, and the frequency of this T-cell subset in HCMV-positive individuals was positively correlated with the frequency of NKG2C+ NK cells that may imply a coordinated in a certain extent development of the NKG2C+ T and NK cell subsets under HCMV infection.
Collapse
Affiliation(s)
- Elena I. Kovalenko
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ivan V. Zvyagin
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Maria A. Streltsova
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Artem I. Mikelov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sofya A. Erokhina
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - William G. Telford
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alexander M. Sapozhnikov
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Yury B. Lebedev
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
16
|
Wang D, Uyemura B, Hashemi E, Bjorgaard S, Riese M, Verbsky J, Thakar MS, Malarkannan S. Role of GATA2 in Human NK Cell Development. Crit Rev Immunol 2021; 41:21-33. [PMID: 34348000 PMCID: PMC11536496 DOI: 10.1615/critrevimmunol.2021037643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Natural killer (NK) cells are major innate lymphocytes. NK cells do not require prior antigen exposure to mediate antitumor cytotoxicity or proinflammatory cytokine production. Since they use only nonclonotypic receptors, they possess high clinical value in treatment against a broad spectrum of malignancies. Irrespective of this potential, however, the transcriptional regulation that governs human NK cell development remains far from fully defined. Various environmental cues initiate a complex network of transcription factors (TFs) during their early development, one of which is GATA2, a master regulator that drives the commitment of common lymphoid progenitors (CLPs) into immature NK progenitors (NKPs). GATA2 forms a core heptad complex with six other TFs (TAL1, FLI1, RUNX1, LYL1, LMO2, and ERG) to mediate its transcriptional regulation in various cell types. Patients with GATA2 haploinsufficiency specifically lose CD56bright NK cells, with or without a reduced number of CD56dlm NK cells. Here, we review the recent progress in understanding GATA2 and its role in human NK cell development and functions.
Collapse
Affiliation(s)
- Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee WI
| | - Bradley Uyemura
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee WI
| | - Stacey Bjorgaard
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
| | - Matthew Riese
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - James Verbsky
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI
| | - Monica S. Thakar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and Department of Pediatrics, University of Washington, Seattle, WA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI
| |
Collapse
|
17
|
Romero-Olmedo AJ, Schulz AR, Huber M, Brehm CU, Chang HD, Chiarolla CM, Bopp T, Skevaki C, Berberich-Siebelt F, Radbruch A, Mei HE, Lohoff M. Deep phenotypical characterization of human CD3 + CD56 + T cells by mass cytometry. Eur J Immunol 2020; 51:672-681. [PMID: 33231295 DOI: 10.1002/eji.202048941] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/25/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022]
Abstract
CD56+ T cells are a group of pro-inflammatory CD3+ lymphocytes with characteristics of natural killer cells, being involved in antimicrobial immune defense. Here, we performed deep phenotypic profiling of CD3+ CD56+ cells in peripheral blood of normal human donors and individuals sensitized to birch-pollen or/and house dust mite by high-dimensional mass cytometry combined with manual and computational data analysis. A co-regulation between major conventional T-cell subsets and their respective CD3+ CD56+ cell counterparts appeared restricted to CD8+ , MAIT, and TCRγδ+ T-cell compartments. Interestingly, we find a co-regulation of several CD3+ CD56+ cell subsets in allergic but not in healthy individuals. Moreover, using FlowSOM, we distinguished a variety of CD56+ T-cell phenotypes demonstrating a hitherto underestimated heterogeneity among these cells. The novel CD3+ CD56+ subset description comprises phenotypes superimposed with naive, memory, type 1, 2, and 17 differentiation stages, in part represented by a phenotypical continuum. Frequencies of two out of 19 CD3+ CD56+ FlowSOM clusters were significantly diminished in allergic individuals, demonstrating less frequent presence of cells with cytolytic, presumably protective, capacity in these donors consistent with defective expansion or their recruitment to the affected tissue. Our results contribute to defining specific cell populations to be targeted during therapy for allergic conditions.
Collapse
Affiliation(s)
- Addi J Romero-Olmedo
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | - Axel R Schulz
- German Rheumatism Research Center Berlin (DRFZ), Leibniz Institute, Berlin, Germany
| | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | - Corinna U Brehm
- Comprehensive Biobank Marburg - CBBMR, Member of the DZL, Philipps-University Marburg, Marburg, Germany.,Institute for Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Leibniz Institute, Berlin, Germany
| | - Cristina M Chiarolla
- Institute of Pathology, Julius-Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | | | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Leibniz Institute, Berlin, Germany
| | - Henrik E Mei
- German Rheumatism Research Center Berlin (DRFZ), Leibniz Institute, Berlin, Germany
| | - Michael Lohoff
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| |
Collapse
|
18
|
Delayed NK Cell Reconstitution and Reduced NK Activity Increased the Risks of CMV Disease in Allogeneic-Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2020; 21:ijms21103663. [PMID: 32455959 PMCID: PMC7279475 DOI: 10.3390/ijms21103663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Cytomegalovirus (CMV) infection has a significant impact in patients after allogeneic hematopoietic stem cell transplantation (HSCT). We investigated natural killer (NK) cell reconstitution and cytotoxic/cytokine production in controlling CMV infection, especially severe CMV disease in HSCT patients. Fifty-eight patients with acute myeloid leukemia (AML) who received allo-HSCT were included. We monitored NK reconstitution and NK function at baseline, 30, 60, 90, 120, 150, and 180 days after HSCT, and compared the results in recipients stratified on post-HSCT CMV reactivation (n = 23), non-reactivation (n = 24) versus CMV disease (n = 11) groups. The CMV disease group had a significantly delayed recovery of CD56dim NK cells and expansion of FcRγ-CD3ζ+NK cells started post-HSCT 150 days. Sequential results of NK cytotoxicity, NK cell-mediated antibody-dependent cellular cytotoxicity (NK-ADCC), and NK-Interferon-gamma (NK-IFNγ) production for 180 days demonstrated delayed recovery and decreased levels in the CMV disease group compared with the other groups. The results within 1 month after CMV viremia also showed a significant decrease in NK function in the CMV disease group compared to the CMV reactivation group. It suggests that NK cells' maturation and cytotoxic/IFNγ production contributes to CMV protection, thereby revealing the NK phenotype and functional NK monitoring as a biomarker for CMV risk prediction, especially CMV disease.
Collapse
|
19
|
Borgers JSW, Tobin RP, Vorwald VM, Smith JM, Davis DM, Kimball AK, Clambey ET, Couts KL, McWilliams JA, Jordan KR, Torphy RJ, Schulick R, McCarter MD. High-Dimensional Analysis of Postsplenectomy Peripheral Immune Cell Changes. Immunohorizons 2020; 4:82-92. [PMID: 32071067 PMCID: PMC7476217 DOI: 10.4049/immunohorizons.1900089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Although the consequences of splenectomy are well understood in mice, much less is known about the immunologic changes that occur following splenectomy in humans. We sought to characterize the circulating immune cell populations of patients before and after elective splenectomy to determine if these changes are related to postsplenectomy survival outcomes. Retrospective clinical information was collected from 95 patients undergoing elective splenectomy compared with 91 patients undergoing pancreaticoduodenectomy (Whipple procedure). We further analyzed peripheral blood from five patients in the splenectomy group, collected before and after surgery, using single-cell cytometry by time-of-flight mass spectrometry. We compared pre- and postsplenectomy data to characterize both the major and minor immune cell populations in significantly greater detail. Compared with patients undergoing a Whipple procedure, splenectomized patients had significant and long-lasting elevated counts of lymphocytes, monocytes, and basophils. Cytometry by time-of-flight mass spectroscopy analysis demonstrated that the elevated lymphocytes primarily consisted of naive CD4+ T cells and a population of activated CD25+CD56+CD4+ T cells, whereas the elevated monocyte counts were mainly mature, activated monocytes. We also observed a significant increase in the expression of the chemokine receptors CCR6 and CCR4 on several cellular populations. Taken together, these data indicate that significant immunological changes take place following splenectomy. Whereas other groups have compared splenectomized patients to healthy controls, this study compared patients undergoing elective splenectomy to those undergoing a similar major abdominal surgery. Overall, we found that splenectomy results in significant long-lasting changes in circulating immune cell populations and function.
Collapse
Affiliation(s)
- Jessica S W Borgers
- Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Richard P Tobin
- Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Victoria M Vorwald
- Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Joshua M Smith
- Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dana M Davis
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Abigail K Kimball
- Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Eric T Clambey
- Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kasey L Couts
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Jennifer A McWilliams
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kimberly R Jordan
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Robert J Torphy
- Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Richard Schulick
- Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Martin D McCarter
- Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; .,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
20
|
CMV-Reactive NK Cells in Pediatric Post-Hematopoietic Stem Cell Transplant. Transplant Proc 2020; 52:353-359. [DOI: 10.1016/j.transproceed.2019.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/21/2019] [Accepted: 11/10/2019] [Indexed: 12/19/2022]
|
21
|
Peripheral PD-1+CD56+ T-cell frequencies correlate with outcome in stage IV melanoma under PD-1 blockade. PLoS One 2019; 14:e0221301. [PMID: 31419253 PMCID: PMC6697319 DOI: 10.1371/journal.pone.0221301] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/03/2019] [Indexed: 01/19/2023] Open
Abstract
Immune checkpoint blockade with anti-PD-1 antibodies is showing great promise for patients with metastatic melanoma and other malignancies, but despite good responses by some patients who achieve partial or complete regression, many others still do not respond. Here, we sought peripheral blood T-cell biomarker candidates predicting treatment outcome in 75 stage IV melanoma patients treated with anti-PD-1 antibodies. We investigated associations with clinical response, progression-free survival (PFS) and overall survival (OS). Univariate analysis of potential biological confounders and known biomarkers, and a multivariate model, was used to determine statistical independence of associations between candidate biomarkers and clinical outcomes. We found that a lower than median frequency of peripheral PD-1+CD56+ T-cells was associated with longer OS (p = 0.004), PFS (p = 0.041) and superior clinical benefit (p = 0.009). However, neither frequencies of CD56-CD4+ nor CD56-CD8+ T-cells, nor of the PD-1+ fraction within the CD4 or CD8 subsets was associated with clinical outcome. In a multivariate model with known confounders and biomarkers only the M-category (HR, 3.11; p = 0.007) and the frequency of PD-1+CD56+ T-cells (HR, 2.39; p = 0.028) were identified as independent predictive factors for clinical outcome under PD-1 blockade. Thus, a lower than median frequency of peripheral blood PD-1+CD56+ T-cells prior to starting anti-PD-1 checkpoint blockade is associated with superior clinical response, longer PFS and OS of stage IV melanoma patients.
Collapse
|
22
|
Xie Z, Zheng J, Wang Y, Li D, Maermaer T, Li Y, Tu J, Xu Q, Liang H, Cai W, Shen T. Deficient IL-2 Produced by Activated CD56 + T Cells Contributes to Impaired NK Cell-Mediated ADCC Function in Chronic HIV-1 Infection. Front Immunol 2019; 10:1647. [PMID: 31379845 PMCID: PMC6648879 DOI: 10.3389/fimmu.2019.01647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/02/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Antibody-dependent cellular cytotoxicity (ADCC), which mainly mediated by natural killer (NK) cells, may play a critical role in human immunodeficiency virus type-1 (HIV-1) disease progression. However, the potential mechanisms that affecting NK-mediated ADCC response are still not well-elucidated. Methods: Antigen-antibody complex model of Ab-opsonized P815 cells was adopted to induce a typical non-specific ADCC response. The capacities of HIV-1 specific NK-ADCC were measured by using the combination model of gp120 protein and plasma of HIV-1 elite controllers. The levels of plasma cytokine were measured by ELISA. Anti-IL-2 blocking antibody was used to analyze the impact of activated CD56+ T cells on NK-ADCC response. Results: IL-2, IL-15, IFN-α, and IFN-β could effectively enhance the non-specific and HIV-1-specific NK-ADCC responses. Compared with healthy controls, HIV-1-infected patients showed decreased plasma IL-2 levels, while no differences of plasma IFN-α, IL-15, and IFN-β were presented. IL-2 production was detected from CD56+ T cells activated through antibody-dependent manner. The capability of NK-ADCC could be weakened by blocking IL-2 secretion from activated CD56+ T cells. Although no difference of frequencies of CD56+ T cells was found between HIV-1-infected patients and healthy controls, deficient IL-2 secretion from activated CD56+ T were found in chronic HIV-1 infection. Conclusions: The impaired ability of activated CD56+ T cells to secreting IL-2 might contribute to the attenuated NK cell-mediated ADCC function in HIV-1 infection.
Collapse
Affiliation(s)
- Zhe Xie
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Yuya Wang
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Dan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, China CDC, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Tuohutaerbieke Maermaer
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuantao Li
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jing Tu
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qiang Xu
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hua Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, China CDC, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tao Shen
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
23
|
Subhi Y, Nielsen MK, Molbech CR, Oishi A, Singh A, Nissen MH, Sørensen TL. T-cell differentiation and CD56+ levels in polypoidal choroidal vasculopathy and neovascular age-related macular degeneration. Aging (Albany NY) 2017; 9:2436-2452. [PMID: 29165313 PMCID: PMC5723695 DOI: 10.18632/aging.101329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/11/2017] [Indexed: 04/13/2023]
Abstract
Polypoidal choroidal vasculopathy (PCV) and neovascular age-related macular degeneration (AMD) are prevalent age-related diseases characterized by exudative changes in the macula. Although they share anatomical and clinical similarities, they are also distinctly characterized by their own features, e.g. vascular abnormalities in PCV and drusen-mediated progression in neovascular AMD. PCV remains etiologically uncharacterized, and ongoing discussion is whether PCV and neovascular AMD share the same etiology or constitute two substantially different diseases. In this study, we investigated T-cell differentiation and aging profile in human patients with PCV, patients with neovascular AMD, and age-matched healthy control individuals. Fresh venous blood was prepared for flow cytometry to investigate CD4+ and CD8+ T-cell differentiation (naïve, central memory, effector memory, effector memory CD45ra+), loss of differentiation markers CD27 and CD28, and expression of aging marker CD56. Patients with PCV were similar to the healthy controls in all aspects. In patients with neovascular AMD we found significantly accelerated T-cell differentiation (more CD28-CD27- cells) and aging (more CD56+ cells) in the CD8+ T-cell compartment. These findings suggest that PCV and neovascular AMD are etiologically different in terms of T cell immunity, and that neovascular AMD is associated with T-cell immunosenescence.
Collapse
Affiliation(s)
- Yousif Subhi
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Marie Krogh Nielsen
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Christopher Rue Molbech
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Amardeep Singh
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
- Department of Ophthalmology, Skåne University Hospital Malmö-Lund, Lund, Sweden
| | - Mogens Holst Nissen
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Eye Research Unit, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Torben Lykke Sørensen
- Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Albayati Z, Alyami A, Alomar S, Middleton D, Bonnett L, Aleem S, Flanagan BF, Christmas SE. The Influence of Cytomegalovirus on Expression of HLA-G and its Ligand KIR2DL4 by Human Peripheral Blood Leucocyte Subsets. Scand J Immunol 2017; 86:396-407. [PMID: 28817184 DOI: 10.1111/sji.12594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/11/2017] [Indexed: 01/23/2023]
Abstract
HLA-G is a non-classical class I HLA antigen, normally expressed in high levels only on extravillous cytotrophoblast. It has immunosuppressive properties in pregnancy and has also been found to be upregulated on leucocytes in viral infection. In this study, proportions of all leucocyte subsets expressing HLA-G were found to be low in healthy subjects positive or negative for cytomegalovirus (CMV). Significantly greater proportions of CD4+ CD69+ and CD56+ T cells expressed HLA-G compared to other T cells. However, following stimulation with CMV antigens or intact CMV, proportions of CD4+, CD8+, CD69+ and CD56+ T cells, and also B cells expressing HLA-G, were significantly increased in CMV+ subjects. Despite some subjects having alleles of HLA-G associated with high levels of expression, no relationship was found between HLA-G genotype and expression levels. Purified B cells from CMV+ subjects stimulated in mixed culture with CMV antigens showed significantly increased HLA-G mRNA expression by real-time polymerase chain reaction. Serum levels of soluble HLA-G were similar in CMV- and CMV+ subjects but levels in culture supernatants were significantly higher in cells from CMV+ than from CMV- subjects stimulated with CMV antigens. The HLA-G ligand KIR2DL4 was mainly expressed on NK cells and CD56+ T cells with no differences between CMV+ and CMV- subjects. Following stimulation with IL-2, an increase in the proportion of CD56+ T cells positive for KIR2DL4 was found, together with a significant decrease in CD56dimCD16+ NK cells. The results show that CMV influences HLA-G expression in healthy subjects and may contribute to viral immune evasion.
Collapse
Affiliation(s)
- Z Albayati
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - A Alyami
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| | - S Alomar
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - D Middleton
- Transplant Immunology, Royal Liverpool & Broadgreen University Hospital Trust, Liverpool, UK
| | - L Bonnett
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - S Aleem
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, UK.,Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - B F Flanagan
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - S E Christmas
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
25
|
Broadley I, Pera A, Morrow G, Davies KA, Kern F. Expansions of Cytotoxic CD4 +CD28 - T Cells Drive Excess Cardiovascular Mortality in Rheumatoid Arthritis and Other Chronic Inflammatory Conditions and Are Triggered by CMV Infection. Front Immunol 2017; 8:195. [PMID: 28303136 PMCID: PMC5332470 DOI: 10.3389/fimmu.2017.00195] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022] Open
Abstract
A large proportion of cardiovascular (CV) pathology results from immune-mediated damage, including systemic inflammation and cellular proliferation, which cause a narrowing of the blood vessels. Expansions of cytotoxic CD4+ T cells characterized by loss of CD28 (“CD4+CD28− T cells” or “CD4+CD28null cells”) are closely associated with cardiovascular disease (CVD), in particular coronary artery damage. Direct involvement of these cells in damaging the vasculature has been demonstrated repeatedly. Moreover, CD4+CD28− T cells are significantly increased in rheumatoid arthritis (RA) and other autoimmune conditions. It is striking that expansions of this subset beyond 1–2% occur exclusively in CMV-infected people. CMV infection itself is known to increase the severity of autoimmune diseases, in particular RA and has also been linked to increased vascular pathology. A review of the recent literature on immunological changes in CVD, RA, and CMV infection provides strong evidence that expansions of cytotoxic CD4+CD28− T cells in RA and other chronic inflammatory conditions are limited to CMV-infected patients and driven by CMV infection. They are likely to be responsible for the excess CV mortality observed in these situations. The CD4+CD28− phenotype convincingly links CMV infection to CV mortality based on a direct cellular-pathological mechanism rather than epidemiological association.
Collapse
Affiliation(s)
- Iain Broadley
- Division of Medicine, Brighton and Sussex Medical School , Brighton , UK
| | - Alejandra Pera
- Division of Medicine, Brighton and Sussex Medical School, Brighton, UK; Department of Immunology, Maimonides Institute for Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
| | - George Morrow
- Division of Medicine, Brighton and Sussex Medical School , Brighton , UK
| | - Kevin A Davies
- Division of Medicine, Brighton and Sussex Medical School , Brighton , UK
| | - Florian Kern
- Division of Medicine, Brighton and Sussex Medical School , Brighton , UK
| |
Collapse
|
26
|
Severe Symptomatic Primary Human Cytomegalovirus Infection despite Effective Innate and Adaptive Immune Responses. J Virol 2017; 91:JVI.02245-16. [PMID: 28031361 DOI: 10.1128/jvi.02245-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/13/2016] [Indexed: 11/20/2022] Open
Abstract
Primary human cytomegalovirus (HCMV) infection usually goes unnoticed, causing mild or no symptoms in immunocompetent individuals. However, some rare severe clinical cases have been reported without investigation of host immune responses or viral virulence. In the present study, we investigate for the first time phenotypic and functional features, together with gene expression profiles in immunocompetent adults experiencing a severe primary HCMV infection. Twenty primary HCMV-infected patients (PHIP) were enrolled, as well as 26 HCMV-seronegative and 39 HCMV-seropositive healthy controls. PHIP had extensive lymphocytosis marked by massive expansion of natural killer (NK) and T cell compartments. Interestingly, PHIP mounted efficient innate and adaptive immune responses with a deep HCMV imprint, revealed mainly by the expansion of NKG2C+ NK cells, CD16+ Vδ2(-) γδ T cells, and conventional HCMV-specific CD8+ T cells. The main effector lymphocytes were activated and displayed an early immune phenotype that developed toward a more mature differentiated status. We suggest that both massive lymphocytosis and excessive lymphocyte activation could contribute to massive cytokine production, known to mediate tissue damage observed in PHIP. Taken together, these findings bring new insights into the comprehensive understanding of immune mechanisms involved during primary HCMV infection in immunocompetent individuals.IMPORTANCE HCMV-specific immune responses have been extensively documented in immunocompromised patients and during in utero acquisition. While it usually goes unnoticed, some rare severe clinical cases of primary HCMV infection have been reported in immunocompetent patients. However, host immune responses or HCMV virulence in these patients has not so far been investigated. In the present study, we show massive expansion of NK and T cell compartments during the symptomatic stage of acute HCMV infection. The patients mounted efficient innate and adaptive immune responses with a deep HCMV imprint. The massive lymphocytosis could be the result of nonadapted or uncontrolled immune responses limiting the effectiveness of the specific responses mounted. Both massive lymphocytosis and excessive lymphocyte activation could contribute to massive cytokine production, known to mediate tissue damage. Furthermore, we cannot exclude a delayed immune response caused by immune escape established by HCMV strains.
Collapse
|
27
|
Apoil PA, Puissant-Lubrano B, Congy-Jolivet N, Peres M, Tkaczuk J, Roubinet F, Blancher A. Influence of age, sex and HCMV-serostatus on blood lymphocyte subpopulations in healthy adults. Cell Immunol 2017; 314:42-53. [PMID: 28219652 DOI: 10.1016/j.cellimm.2017.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 12/22/2022]
Abstract
Using a standardized immunophenotyping procedure we studied thirty-eight distinct subpopulations of T, B and NK lymphocytes in 253 healthy blood donors aged from 19 to 67. We analysed the influence of age, sex and HCMV seropositivity on each lymphocyte subpopulations and established reference ranges. We observed that aging influences the largest number of lymphocyte subpopulations with a slow increase of CD8+ EMRA T lymphocytes and of the numbers of circulating Tregs. The proportion of HLA-DR+ cells among Tregs increased with age and was correlated to the proportion of HLA-DR+ cells among effector T CD4+ lymphocytes. Sex had a major impact on absolute counts of CD4+ T cells which were higher in females. HCMV-seropositivity was associated with higher frequencies of CD8+ EMRA memory T lymphocytes while a high frequency of terminally differentiated EMRA CD4+ T cells was observed in 80% of HCMV-positive individuals and in none of the HCMV seronegative individuals.
Collapse
Affiliation(s)
- P A Apoil
- Laboratoire d'Immunogénétique Moléculaire, EA 3034, Université Paul Sabatier, Toulouse 3, France; Laboratoire d'Immunologie, CHU de Toulouse, France
| | - B Puissant-Lubrano
- Laboratoire d'Immunogénétique Moléculaire, EA 3034, Université Paul Sabatier, Toulouse 3, France; Laboratoire d'Immunologie, CHU de Toulouse, France
| | - N Congy-Jolivet
- Laboratoire d'Immunogénétique Moléculaire, EA 3034, Université Paul Sabatier, Toulouse 3, France; Laboratoire d'Immunologie, CHU de Toulouse, France
| | - M Peres
- Laboratoire d'Immunologie, CHU de Toulouse, France
| | - J Tkaczuk
- Laboratoire d'Immunologie, CHU de Toulouse, France
| | - F Roubinet
- EFS Pyrénées-Méditerranée, Toulouse, France
| | - A Blancher
- Laboratoire d'Immunogénétique Moléculaire, EA 3034, Université Paul Sabatier, Toulouse 3, France; Laboratoire d'Immunologie, CHU de Toulouse, France.
| |
Collapse
|
28
|
Bahador M, Gras Navarro A, Rahman M, Dominguez-Valentin M, Sarowar S, Ulvestad E, Njølstad G, Lie S, Kristoffersen E, Bratland E, Chekenya M. Increased infiltration and tolerised antigen-specific CD8 + T EM cells in tumor but not peripheral blood have no impact on survival of HCMV + glioblastoma patients. Oncoimmunology 2017; 6:e1336272. [PMID: 28919997 PMCID: PMC5593710 DOI: 10.1080/2162402x.2017.1336272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/07/2017] [Accepted: 05/24/2017] [Indexed: 12/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) antigens in glioblastoma (GBM) present opportunities for personalised immunotherapy. However, their presence in GBM tissue is still under debate, and evidence of their impact on functional immune responses and prognosis is sparse. Here, we investigated the presence of pp65 (UL83) and immediate early 1 (IE-1) HCMV antigens in a cohort of Norwegian GBM patients (n = 177), using qPCR, immunohistochemistry, and serology. HCMV status was then used to investigate whether viral antigens influenced immune cell phenotype, infiltration, activation and patient survival. Pp65 and IE-1 were detected by qPCR in 23% and 43% of GBM patients, respectively. Furthermore, there was increased seropositivity in GBM patients relative to donors (79% vs. 48%, respectively; Logistic regression, OR = 4.05, 95%CI [1.807-9.114], P = 0.001, also when adjusted for age (OR = 2.84, 95%CI [1.110-7.275], P = 0.029). Tissue IE-1-positivity correlated with increased CD3+CD8+ T-cell infiltration (P < 0.0001), where CD8+ effector memory T (TEM) cells accounted for the majority of CD8+T cells compared with peripheral blood of HCMV+ patients (P < 0.0001), and HCMV+ (P < 0.001) and HCMV- (P < 0.001) donors. HLA-A2/B8-restricted HCMV-specific CD8+ T cells were more frequent in blood and tumor of HCMV+ GBM patients compared with seronegative patients, and donors irrespective of their serostatus. In biopsies, the HCMV-specific CD8+ TEM cells highly expressed CTLA-4 and PD-1 immune checkpoint protein markers compared with populations in peripheral blood (P < 0.001 and P < 0.0001), which expressed 3-fold greater levels of CD28 (P < 0.001 and P < 0.0001). These peripheral blood T cells correspondingly secreted higher levels of IFNγ in response to pp65 and IE-1 peptide stimulation (P < 0.001). Thus, despite apparent increased immunogenicity of HCMV compared with tumor antigens, the T cells were tolerised, and HCMV status did not impact patient survival (Log Rank3.53 HR = 0.85 95%CI [0.564-1.290], P = 0.45). Enhancing immune functionality in the tumor microenvironment thus may improve patient outcome.
Collapse
Affiliation(s)
- M. Bahador
- University of Bergen, Department of Biomedicine, Bergen, Norway
| | - A. Gras Navarro
- University of Bergen, Department of Biomedicine, Bergen, Norway
| | - M.A. Rahman
- University of Bergen, Department of Biomedicine, Bergen, Norway
| | | | - S. Sarowar
- University of Bergen, Department of Biomedicine, Bergen, Norway
| | - E. Ulvestad
- University of Bergen, Department of Clinical Science, Bergen, Norway
- Haukeland University Hospital, Department of Microbiology, Bergen, Norway
| | - G. Njølstad
- Haukeland University Hospital, Department of Microbiology, Bergen, Norway
| | - S.A. Lie
- University of Bergen, Department of Clinical Dentistry, Bergen, Norway
| | - E.K. Kristoffersen
- University of Bergen, Department of Clinical Science, Bergen, Norway
- Haukeland University Hospital, Department of Immunology and Transfusion Medicine, Bergen, Norway
| | - E. Bratland
- University of Bergen, Department of Clinical Science, Bergen, Norway
- Eirik Bratland, PhD University of Bergen, Department of clinical science, Jonas Lies vei 91, 5020, Bergen
| | - M. Chekenya
- University of Bergen, Department of Biomedicine, Bergen, Norway
- CONTACT Professor Martha Chekenya, PhD, Dr Philos University of Bergen, Department of Biomedicine, Jonas Lies vei 91, 5020, Bergen
| |
Collapse
|
29
|
Pita-López ML, Pera A, Solana R. Adaptive Memory of Human NK-like CD8 + T-Cells to Aging, and Viral and Tumor Antigens. Front Immunol 2016; 7:616. [PMID: 28066426 PMCID: PMC5165258 DOI: 10.3389/fimmu.2016.00616] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022] Open
Abstract
Human natural killer (NK)-like CD8+ T-cells are singular T-cells that express both T and NK cell markers such as CD56; their frequencies depend on their differentiation and activation during their lifetime. There is evidence of the presence of these innate CD8+ T-cells in the human umbilical cord, highlighting the necessity of investigating whether the NK-like CD8+ T-cells arise in the early stages of life (gestation). Based on the presence of cell surface markers, these cells have also been referred to as CD8+KIR+ T-cells, innate CD8+ T-cells, CD8+CD28−KIR+ T-cells or NKT-like CD8+CD56+ cells. However, the functional and co-signaling significance of these NK cell receptors on NK-like CD8+ T-cells is less clear. Also, the diverse array of costimulatory and co-inhibitory receptors are spatially and temporally regulated and may have distinct overlapping functions on NK-like CD8+ T-cell priming, activation, differentiation, and memory responses associated with different cell phenotypes. Currently, there is no consensus regarding the functional properties and phenotypic characterization of human NK-like CD8+ T-cells. Environmental factors, such as aging, autoimmunity, inflammation, viral antigen re-exposure, or the presence of persistent tumor antigens have been shown to allow differentiation (“adaptation”) of the NK-like CD8+ T-cells; the elucidation of this differentiation process and a greater understanding of the characteristics of these cells could be important for their eventual in potential therapeutic applications aimed at improving protective immunity. This review will attempt to elucidate an understanding of the characteristics of these cells with the goal toward their eventual use in potential therapeutic applications aimed at improving protective immunity.
Collapse
Affiliation(s)
- María Luisa Pita-López
- Research Center in Molecular Biology of Chronic Diseases (CIBIMEC), CUSUR University of Guadalajara , Guzmán , Mexico
| | - Alejandra Pera
- Clinical Division, Brighton and Sussex Medical School, University of Sussex, Brighton, UK; Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Córdoba, Córdoba, Spain
| | - Rafael Solana
- Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Córdoba , Córdoba , Spain
| |
Collapse
|
30
|
Michel JJ, Griffin P, Vallejo AN. Functionally Diverse NK-Like T Cells Are Effectors and Predictors of Successful Aging. Front Immunol 2016; 7:530. [PMID: 27933066 PMCID: PMC5121286 DOI: 10.3389/fimmu.2016.00530] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
The fundamental challenge of aging and long-term survivorship is maintenance of functional independence and compression of morbidity despite a life history of disease. Inasmuch as immunity is a determinant of individual health and fitness, unraveling novel mechanisms of immune homeostasis in late life is of paramount interest. Comparative studies of young and old persons have documented age-related atrophy of the thymus, the contraction of diversity of the T cell receptor (TCR) repertoire, and the intrinsic inefficiency of classical TCR signaling in aged T cells. However, the elderly have highly heterogeneous health phenotypes. Studies of defined populations of persons aged 75 and older have led to the recognition of successful aging, a distinct physiologic construct characterized by high physical and cognitive functioning without measurable disability. Significantly, successful agers have a unique T cell repertoire; namely, the dominance of highly oligoclonal αβT cells expressing a diverse array of receptors normally expressed by NK cells. Despite their properties of cell senescence, these unusual NK-like T cells are functionally active effectors that do not require engagement of their clonotypic TCR. Thus, NK-like T cells represent a beneficial remodeling of the immune repertoire with advancing age, consistent with the concept of immune plasticity. Significantly, certain subsets are predictors of physical/cognitive performance among older adults. Further understanding of the roles of these NK-like T cells to host defense, and how they integrate with other physiologic domains of function are new frontiers for investigation in Aging Biology. Such pursuits will require a research paradigm shift from the usual young-versus-old comparison to the analysis of defined elderly populations. These endeavors may also pave way to age-appropriate, group-targeted immune interventions for the growing elderly population.
Collapse
Affiliation(s)
- Joshua J Michel
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patricia Griffin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Abbe N Vallejo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Claude Pepper Older Americans Independence Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Lopez-Sejas N, Campos C, Hassouneh F, Sanchez-Correa B, Tarazona R, Pera A, Solana R. Effect of CMV and Aging on the Differential Expression of CD300a, CD161, T-bet, and Eomes on NK Cell Subsets. Front Immunol 2016; 7:476. [PMID: 27872625 PMCID: PMC5097920 DOI: 10.3389/fimmu.2016.00476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/19/2016] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells involved in the defense against virus-infected cells and tumor cells. NK cell phenotype and function is affected with age and cytomegalovirus (CMV) latent infection. Aging affects the frequency and phenotype of NK cells, and CMV infection also contributes to these alterations. Thus, a reduction of CD56bright NK cell subpopulation associated with age and an expansion of memory-like NK cells CD56dimCD57+NKG2C+ probably related to CMV seropositivity have been described. NK cells express T-bet and Eomes transcription factors that are necessary for the development of NK cells. Here, we analyze the effect of age and CMV seropositivity on the expression of CD300a and CD161 inhibitory receptors, and T-bet and Eomes transcription factors in NK cell subsets defined by the expression of CD56 and CD57. CD300a is expressed by the majority of NK cells. CD56bright NK cells express higher levels of CD300a than CD56dim NK cells. An increase in the expression of CD300a was associated with age, whereas a decreased expression of CD161 in CD56dim NK cells was associated with CMV seropositivity. In CD56dim NK cells, an increased percentage of CD57+CD300a+ and a reduction in the percentage of CD161+CD300a+ cells were found to be associated with CMV seropositivity. Regarding T-bet and Eomes transcription factors, CMV seropositivity was associated with a decrease of T-bethi in CD56dimCD57+ NK cells from young individuals, whereas Eomes expression was increased with CMV seropositivity in both CD56bright and CD56dimCD57+/− (from middle age and young individuals, respectively) and was decreased with aging in all NK subsets from the three group of age. In conclusion, CMV infection and age induce significant changes in the expression of CD300a and CD161 in NK cell subsets defined by the expression of CD56 and CD57. T-bet and Eomes are differentially expressed on NK cell subsets, and their expression is affected by CMV latent infection and aging.
Collapse
Affiliation(s)
- Nelson Lopez-Sejas
- Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Cordoba , Cordoba , Spain
| | - Carmen Campos
- Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Cordoba , Cordoba , Spain
| | - Fakhri Hassouneh
- Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Cordoba , Cordoba , Spain
| | | | - Raquel Tarazona
- Immunology Unit, Department of Physiology, University of Extremadura , Cáceres , Spain
| | - Alejandra Pera
- Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Cordoba , Cordoba , Spain
| | - Rafael Solana
- Maimonides Biomedicine Institute of Cordoba (IMIBIC), Reina Sofia Hospital, University of Cordoba , Cordoba , Spain
| |
Collapse
|
32
|
Altered T cell phenotypes associated with clinical relapse of multiple sclerosis patients receiving fingolimod therapy. Sci Rep 2016; 6:35314. [PMID: 27752051 PMCID: PMC5082790 DOI: 10.1038/srep35314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a T cell-mediated autoimmune disease. Fingolimod, a highly effective disease-modifying drug for MS, retains CCR7+ central memory T cells in which autoaggressive T cells putatively exist, in secondary lymphoid organs, although relapse may still occur in some patients. Here, we analyzed the T cell phenotypes of fingolimod-treated, fingolimod-untreated patients, and healthy subjects. The frequency of CD56+ T cells and granzyme B-, perforin-, and Fas ligand-positive T cells significantly increased during fingolimod treatment. Each T cell subpopulation further increased during relapse. Interestingly, T cells from fingolimod-treated patients exhibited interferon-γ biased production, and more myelin basic protein-reactive cells was noted in CD56+ than in CD56− T cells. It is likely that the altered T cell phenotypes play a role in MS relapse in fingolimod-treated patients. Further clinical studies are necessary to investigate whether altered T cell phenotypes are a biomarker for relapse under fingolimod therapy.
Collapse
|
33
|
Hassouneh F, Campos C, López-Sejas N, Alonso C, Tarazona R, Solana R, Pera A. Effect of age and latent CMV infection on CD8+ CD56+ T cells (NKT-like) frequency and functionality. Mech Ageing Dev 2016; 158:38-45. [DOI: 10.1016/j.mad.2015.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/19/2015] [Accepted: 12/23/2015] [Indexed: 12/31/2022]
|
34
|
Rothe K, Quandt D, Schubert K, Rossol M, Klingner M, Jasinski-Bergner S, Scholz R, Seliger B, Pierer M, Baerwald C, Wagner U. Latent Cytomegalovirus Infection in Rheumatoid Arthritis and Increased Frequencies of Cytolytic LIR-1+CD8+ T Cells. Arthritis Rheumatol 2016; 68:337-46. [PMID: 26314621 PMCID: PMC5066744 DOI: 10.1002/art.39331] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
Abstract
Objective Leukocyte immunoglobulin‐like receptor 1 (LIR‐1) is up‐regulated by cytomegalovirus (CMV), which in turn, has been associated with premature aging and more severe joint disease in patients with rheumatoid arthritis (RA). The aim of this study was to investigate the expression and functional significance of LIR‐1 in CMV‐positive RA patients. Methods We determined the phenotype, cytolytic potential, CMV‐specific proliferation, and HLA–G–triggered, LIR‐1–mediated inhibition of interferon‐γ secretion of LIR‐1+ T cells in RA patients and healthy controls. Results We found increased frequencies of CD8+ T cells with CMV pp65–specific T cell receptors in CMV‐positive RA patients as compared to CMV‐positive healthy controls. CMV‐specific CD8+ T cells in these patients were preferentially LIR‐1+ and exhibited a terminally differentiated polyfunctional phenotype. The numbers of LIR‐1+CD8+ T cells increased with age and disease activity, and showed high levels of reactivity to CMV antigens. Ligation of LIR‐1 with soluble HLA–G molecules in vitro confirmed an inhibitory role of the molecule when expressed on CD8+ T cells in RA patients. Conclusion We propose that latent CMV infection in the context of a chronic autoimmune response induces the recently described “chronic infection phenotype” in CD8+ T cells, which retains anti‐infectious effector features while exhibiting autoreactive cytolytic potential. This response is likely dampened by LIR‐1 to avoid overwhelming immunopathologic changes in the setting of the autoimmune disease RA. The known deficiency of soluble HLA–G in RA and the observed association of LIR‐1 expression with disease activity suggest, however, that LIR‐1+ T cells are insufficiently controlled in RA and are still likely to be involved in the pathogenesis of the disease.
Collapse
|
35
|
Guo C, Shen X, Fu B, Liu Y, Chen Y, Ni F, Ye Y, Sun R, Li J, Tian Z, Wei H. CD3(bright)CD56(+) T cells associate with pegylated interferon-alpha treatment nonresponse in chronic hepatitis B patients. Sci Rep 2016; 6:25567. [PMID: 27174425 PMCID: PMC4865958 DOI: 10.1038/srep25567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/19/2016] [Indexed: 12/26/2022] Open
Abstract
Chronic hepatitis B (CHB) infection is a serious and prevalent health concern worldwide, and the development of effective drugs and strategies to combat this disease is urgently needed. Currently, pegylated interferon-alpha (peg-IFNα) and nucleoside/nucleotide analogues (NA) are the most commonly prescribed treatments. However, sustained response rates in patients remain low, and the reasons are not well understood. Here, we observed that CHB patients preferentially harbored CD3brightCD56+ T cells, a newly identified CD56+ T cell population. Patients with this unique T cell population exhibited relatively poor responses to peg-IFNα treatment. CD3brightCD56+ T cells expressed remarkably high levels of the inhibitory molecule NKG2A as well as low levels of CD8. Even if patients were systematically treated with peg-IFNα, CD3brightCD56+ T cells remained in an inhibitory state throughout treatment and exhibited suppressed antiviral function. Furthermore, peg-IFNα treatment rapidly increased inhibitory TIM-3 expression on CD3brightCD56+ T cells, which negatively correlated with IFNγ production and might have led to their dysfunction. This study identified a novel CD3brightCD56+ T cell population preferentially shown in CHB patients, and indicated that the presence of CD3brightCD56+ T cells in CHB patients may be useful as a new indicator associated with poor therapeutic responses to peg-IFNα treatment.
Collapse
Affiliation(s)
- Chuang Guo
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Xiaokun Shen
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Binqing Fu
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230027, People's Republic of China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Yanyan Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yongyan Chen
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Fang Ni
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Ying Ye
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Rui Sun
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230027, People's Republic of China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Jiabin Li
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zhigang Tian
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230027, People's Republic of China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Haiming Wei
- Institute of Immunology and The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei 230027, People's Republic of China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| |
Collapse
|
36
|
Davis ZB, Cooley SA, Cichocki F, Felices M, Wangen R, Luo X, DeFor TE, Bryceson YT, Diamond DJ, Brunstein C, Blazar BR, Wagner JE, Weisdorf DJ, Horowitz A, Guethlein LA, Parham P, Verneris MR, Miller JS. Adaptive Natural Killer Cell and Killer Cell Immunoglobulin-Like Receptor-Expressing T Cell Responses are Induced by Cytomegalovirus and Are Associated with Protection against Cytomegalovirus Reactivation after Allogeneic Donor Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2015; 21:1653-62. [PMID: 26055301 PMCID: PMC4557961 DOI: 10.1016/j.bbmt.2015.05.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/27/2015] [Indexed: 11/26/2022]
Abstract
Cytomegalovirus (CMV) reactivates in >30% of CMV-seropositive patients after allogeneic hematopoietic cell transplantation (HCT). Previously, we reported an increase of natural killer (NK) cells expressing NKG2C, CD57, and inhibitory killer cell immunoglobulin-like receptors (KIRs) in response to CMV reactivation after HCT. These NK cells persist after the resolution of infection and display "adaptive" or memory properties. Despite these findings, the differential impact of persistent/inactive versus reactivated CMV on NK versus T cell maturation after HCT from different graft sources has not been defined. We compared the phenotype of NK and T cells from 292 recipients of allogeneic sibling (n = 118) or umbilical cord blood (UCB; n = 174) grafts based on recipient pretransplantation CMV serostatus and post-HCT CMV reactivation. This cohort was utilized to evaluate CMV-dependent increases in KIR-expressing NK cells exhibiting an adaptive phenotype (NKG2C(+)CD57(+)). Compared with CMV-seronegative recipients, those who reactivated CMV had the highest adaptive cell frequencies, whereas intermediate frequencies were observed in CMV-seropositive recipients harboring persistent/nonreplicating CMV. The same effect was observed in T cells and CD56(+) T cells. These adaptive lymphocyte subsets were increased in CMV-seropositive recipients of sibling but not UCB grafts and were correlated with lower rates of CMV reactivation (sibling 33% versus UCB 51%; P < .01). These data suggest that persistent/nonreplicating recipient CMV induces rapid production of adaptive NK and T cells from mature cells from sibling but not UCB grafts. These adaptive lymphocytes are associated with protection from CMV reactivation.
Collapse
Affiliation(s)
- Zachary B Davis
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Sarah A Cooley
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Frank Cichocki
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Martin Felices
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Rose Wangen
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Xianghua Luo
- Division of Biostatistics, School of Public Health and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Todd E DeFor
- Blood and Marrow Transplant Program, Departments of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Yenan T Bryceson
- Centre for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Don J Diamond
- Division of Translational Vaccine Research, Beckman Research Institute of the City of Hope, Duarte, California
| | - Claudio Brunstein
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Bruce R Blazar
- Blood and Marrow Transplant Program, Department of Pediatric, University of Minnesota, Minneapolis, Minnesota
| | - John E Wagner
- Blood and Marrow Transplant Program, Department of Pediatric, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J Weisdorf
- Blood and Marrow Transplant Program, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Amir Horowitz
- Structural Biology and Microbiology and Immunology, Stanford University, Stanford, California
| | - Lisbeth A Guethlein
- Structural Biology and Microbiology and Immunology, Stanford University, Stanford, California
| | - Peter Parham
- Structural Biology and Microbiology and Immunology, Stanford University, Stanford, California
| | - Michael R Verneris
- Blood and Marrow Transplant Program, Department of Pediatric, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S Miller
- Centre for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
37
|
Almehmadi M, Hammad A, Heyworth S, Moberly J, Middleton D, Hopkins MJ, Hart IJ, Christmas SE. CD56+ T cells are increased in kidney transplant patients following cytomegalovirus infection. Transpl Infect Dis 2015; 17:518-26. [PMID: 26039898 DOI: 10.1111/tid.12405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND CD56+ T cells previously have been identified as potentially cytotoxic lymphocytes, and relative numbers are increased in some infectious diseases. PATIENTS AND METHODS Relative proportions of CD56+ T cells were measured by flow cytometry in groups of renal transplant patients differing in cytomegalovirus (CMV) status of donor (D) and recipient (R). These measurements were related to episodes of CMV viremia. RESULTS Patient groups in which recipients (R+) or donors (D+/R-) were CMV+ had significantly higher proportions of CD56+ T cells (5.11 ± 0.69% and 5.42 ± 1.01%, respectively) than the D-/R- group (1.9 ± 0.35%; P = 0.0018 and 0.017, respectively). In the high-risk D+/R- group, it was found that patients who had post-transplant CMV viremia had higher levels than those who remained CMV negative (9.09 ± 2.34% vs. 3.16 ± 1.22%; P = 0.01). CD56+ T cells from R+ and D+/R- groups had higher proportions of both CD4+ and CD8+ cells than the D-/R- group. When activation markers were examined, some CD56+ T cells from both CMV+ groups had a TEM phenotype, with significantly more expressing CD45RO and NKG2C, and less expressing CD28, CD62L, CD127, and CD161 compared to the D-/R- group. Some CD56+ T cells showed specificity for CMV antigens and similar proportions of CD8+ cells were positive for class I HLA-CMV tetramers containing immunodominant CMV peptides compared to the majority CD56- T cells. CONCLUSION The results show significant increases in proportions of CD56+ T cells in relation to CMV infection in renal transplant patients and suggest that these cells have a cytotoxic function against CMV-infected cells.
Collapse
Affiliation(s)
- M Almehmadi
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, UK.,Applied Medical Sciences College Al-hada, Taif University, Taif, Kingdom of Saudi Arabia
| | - A Hammad
- Transplant Unit, Royal Liverpool and Broadgreen University Hospital Trust, Liverpool, UK
| | - S Heyworth
- Transplant Unit, Royal Liverpool and Broadgreen University Hospital Trust, Liverpool, UK
| | - J Moberly
- Transplant Unit, Royal Liverpool and Broadgreen University Hospital Trust, Liverpool, UK
| | - D Middleton
- Transplant Immunology, Royal Liverpool and Broadgreen University Hospital Trust, Liverpool, UK
| | - M J Hopkins
- Liverpool Specialist Virology Centre, Royal Liverpool and Broadgreen University Hospital Trust, Liverpool, UK
| | - I J Hart
- Liverpool Specialist Virology Centre, Royal Liverpool and Broadgreen University Hospital Trust, Liverpool, UK
| | - S E Christmas
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
38
|
Pfirrmann V, Oelsner S, Rettinger E, Huenecke S, Bonig H, Merker M, Wels WS, Cinatl J, Schubert R, Klingebiel T, Bader P. Cytomegalovirus-specific cytokine-induced killer cells: concurrent targeting of leukemia and cytomegalovirus. Cytotherapy 2015; 17:1139-51. [PMID: 26072027 DOI: 10.1016/j.jcyt.2015.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND AIMS Human cytomegalovirus (CMV) infection and reactivation is a leading complication of allogeneic hematopoietic stem cell transplantation (HSCT). In addition to drug treatment, the adoptive transfer of virus-specific T cells to restore cellular immunity has become a standard therapy after allogeneic HSCT. We recently demonstrated potent anti-leukemic activity of interleukin (IL)-15-activated cytokine-induced killer (CIK) cells. With the use of the same expansion protocol, we asked whether concurrent CMV antigen-pulsing might generate CIK cells with anti-leukemic and anti-CMV activity. METHODS CIK cells expanded in the presence of interferon-γ, IL-2, IL-15 and anti-CD3 antibody were pulsed once with CMV(pp65) peptide pool. CMV-specific CIK (CIK(pp65)) and conventional CIK cells were phenotypically and functionally characterized according to their cytokine secretion pattern, degranulation capacity and T-cell receptor (TCR)-mediated and NKG2D-mediated cytotoxicity. RESULTS We demonstrated that among CIK cells generated from CMV-seropositive donors, a single stimulation with CMV(pp65) protein co-expanded cytotoxic CMV-specific cells without sacrificing anti-tumor reactivity. Cells generated in this fashion lysed CMV(pp65)-loaded target cells and CMV-infected fibroblasts but also leukemic cells. Meanwhile, the alloreactive potential of CIK(pp65) cells remained low. Interestingly, CMV reactivity was TCR-mediated and CMV-specific cells could be found in CD3(+)CD8(+)CD56(+/-) cytotoxic T-cell subpopulations. CONCLUSIONS We provide an efficient method to generate CIK(pp65) cells that may represent a useful cell therapy approach for preemptive immunotherapy in patients who have both an apparent risk of CMV and impending leukemic relapse after allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Verena Pfirrmann
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany.
| | - Sarah Oelsner
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany; Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
| | - Eva Rettinger
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Sabine Huenecke
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology and German Red Cross Blood Donor Service, University Hospital Frankfurt, Goethe University, Baden-Wuerttemberg-Hessen, Frankfurt/Main, Germany
| | - Michael Merker
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt/Main, Germany
| | - Jindrich Cinatl
- Institute for Experimental Cancer Research in Pediatrics, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Ralf Schubert
- Division of Allergology, Pneumology and Cystic Fibrosis, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Thomas Klingebiel
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Peter Bader
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany.
| |
Collapse
|
39
|
Heiberg IL, Pallett LJ, Winther TN, Høgh B, Maini MK, Peppa D. Defective natural killer cell anti-viral capacity in paediatric HBV infection. Clin Exp Immunol 2015; 179:466-76. [PMID: 25311087 PMCID: PMC4337679 DOI: 10.1111/cei.12470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells exhibit dysregulated effector function in adult chronic hepatitis B virus (HBV) infection (CHB), which may contribute to virus persistence. The role of NK cells in children infected perinatally with HBV is less studied. Access to a unique cohort enabled the cross-sectional evaluation of NK cell frequency, phenotype and function in HBV-infected children relative to uninfected children. We observed a selective defect in NK cell interferon (IFN)-γ production, with conserved cytolytic function, mirroring the functional dichotomy observed in adult infection. Reduced expression of NKp30 on NK cells suggests a role of impaired NK-dendritic cell (DC) cellular interactions as a potential mechanism leading to reduced IFN-γ production. The finding that NK cells are already defective in paediatric CHB, albeit less extensively than in adult CHB, has potential implications for the timing of anti-viral therapy aiming to restore immune control.
Collapse
Affiliation(s)
- I L Heiberg
- Department of Paediatrics, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
40
|
Nogales-Gadea G, Ramos-Fransi A, Suárez-Calvet X, Navas M, Rojas-García R, Mosquera JL, Díaz-Manera J, Querol L, Gallardo E, Illa I. Analysis of serum miRNA profiles of myasthenia gravis patients. PLoS One 2014; 9:e91927. [PMID: 24637658 PMCID: PMC3956820 DOI: 10.1371/journal.pone.0091927] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/17/2014] [Indexed: 12/14/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by the presence of autoantibodies, mainly against the acetylcholine receptor (AChR). The mechanisms triggering and maintaining this chronic disease are unknown. MiRNAs are regulatory molecules that play a key role in the immune system and are altered in many autoimmune diseases. The aim of this study was to evaluate miRNA profiles in serum of 61 AChR MG patients. We studied serum from patients with early onset MG (n = 22), late onset MG (n = 27) and thymoma (n = 12), to identify alterations in the specific subgroups. In a discovery cohort, we analysed 381 miRNA arrays from 5 patients from each subgroup, and 5 healthy controls. The 15 patients had not received any treatment. We found 32 miRNAs in different levels in MG and analysed 8 of these in a validation cohort that included 46 of the MG patients. MiR15b, miR122, miR-140-3p, miR185, miR192, miR20b and miR-885-5p were in lower levels in MG patients than in controls. Our study suggests that different clinical phenotypes in MG share common altered mechanisms in circulating miRNAs, with no additional contribution of the thymoma. MG treatment intervention does not modify the profile of these miRNAs. Novel insights into the pathogenesis of MG can be reached by the analysis of circulating miRNAs since some of these miRNAs have also been found low in MG peripheral mononuclear cells, and have targets with important roles in B cell survival and antibody production.
Collapse
Affiliation(s)
- Gisela Nogales-Gadea
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER de enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Ramos-Fransi
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER de enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER de enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Miquel Navas
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER de enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricard Rojas-García
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER de enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER de enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Querol
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER de enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER de enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Illa
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER de enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|