1
|
Duczmal D, Bazan-Wozniak A, Niedzielska K, Pietrzak R. Cannabinoids-Multifunctional Compounds, Applications and Challenges-Mini Review. Molecules 2024; 29:4923. [PMID: 39459291 PMCID: PMC11510081 DOI: 10.3390/molecules29204923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabinoids represent a highly researched group of plant-derived ingredients. The substantial investment of funds from state and commercial sources has facilitated a significant increase in knowledge about these ingredients. Cannabinoids can be classified into three principal categories: plant-derived phytocannabinoids, synthetic cannabinoids and endogenous cannabinoids, along with the enzymes responsible for their synthesis and degradation. All of these compounds interact biologically with type 1 (CB1) and/or type 2 (CB2) cannabinoid receptors. A substantial body of evidence from in vitro and in vivo studies has demonstrated that cannabinoids and inhibitors of endocannabinoid degradation possess anti-inflammatory, antioxidant, antitumour and antifibrotic properties with beneficial effects. This review, which spans the period from 1940 to 2024, offers an overview of the potential therapeutic applications of natural and synthetic cannabinoids. The development of these substances is essential for the global market of do-it-yourself drugs to fully exploit the promising therapeutic properties of cannabinoids.
Collapse
Affiliation(s)
- Dominik Duczmal
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Polygen Sp. z o.o., Górnych Wałów 46/1, 44-100 Gliwice, Poland;
| | - Aleksandra Bazan-Wozniak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | | | - Robert Pietrzak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
2
|
Zhang X, Chen Y, Yang H, Ding H, Cai P, Ge Y, Zheng H, Sun X, Yang Y, Li X, Lin T. Plasma Metabolomics Indicates Potential Biomarkers and Abnormal Metabolic Pathways in Female Melasma Patients. Ann Dermatol 2024; 36:300-309. [PMID: 39343757 PMCID: PMC11439978 DOI: 10.5021/ad.23.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Melasma is a common and chronic pigmentary disorder with complex pathogenesis, and the relationship between melasma and metabolic syndrome remains elusive. Thus, metabolomics might contribute to the early detection of potential metabolic abnormalities in individuals with melasma. OBJECTIVE The present study aims to analyze changes in plasma metabolites of female melasma patients and identify disease markers as well as explore potential therapeutic targets. METHODS Plasma samples from 20 female patients with melasma and 21 healthy female controls that were comparable in terms of age and body mass index were collected for untargeted metabolomics investigations. Ultra-high performance liquid chromatography-mass spectrometry was used to analyze metabolites in the plasma. Metabolic pathway analyses were employed to identify significantly differentially expressed metabolites in melasma patients. Receiver operating characteristic curves were constructed, and correlation analyses were performed using the modified Melasma Area and Severity Index and oxidative stress levels. RESULTS In contrast to healthy subjects, melasma patients showed significant alterations in 125 plasma metabolites, including amino acids, lipids, and carbohydrate-related metabolites. KEGG pathway analysis suggested that primary pathways associated with the development of melasma include tryptophan metabolism, as well as the biosynthesis of phenylalanine, tyrosine, and tryptophan. Importantly, based on receiver operating characteristic curves and correlation analyses, several metabolites were identified as robust biomarkers for melasma. CONCLUSION Collectively, this study identified significant changes in plasma metabolites in melasma patients, providing new insights into the pathogenesis of melasma and opening novel therapeutic avenues.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Cosmetic Laser Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yi Chen
- Pharmacal Research Laboratory, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Hedan Yang
- Department of Cosmetic Laser Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Hui Ding
- Department of Cosmetic Laser Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Pingping Cai
- Department of Cosmetic Laser Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yiping Ge
- Department of Cosmetic Laser Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Huiying Zheng
- Department of Cosmetic Laser Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xiaojie Sun
- Department of Cosmetic Laser Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Yin Yang
- Department of Cosmetic Laser Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| | - Xinyu Li
- Pharmacal Research Laboratory, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| | - Tong Lin
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.
| |
Collapse
|
3
|
Nasr S, Dawood AS, Ibrahim AM, Abdel-Aziz MS, Fayad W, Abdelnaser A, El-Hady FKA. Anti-inflammatory potential of aspergillus unguis SP51-EGY: TLR4-dependent effects & chemical diversity via Q-TOF LC-HRMS. BMC Biotechnol 2024; 24:62. [PMID: 39294631 PMCID: PMC11411751 DOI: 10.1186/s12896-024-00890-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Inflammation serves as an intricate defense mechanism for tissue repair. However, overactivation of TLR4-mediated inflammation by lipopolysaccharide (LPS) can lead to detrimental outcomes such as sepsis, acute lung injury, and chronic inflammation, often associated with cancer and autoimmune diseases. This study delves into the anti-inflammatory properties of "Aspergillus unguis isolate SP51-EGY" on LPS-stimulated RAW 264.7 macrophages. Through real-time qPCR, we assessed the expression levels of pivotal inflammatory genes, including iNOS, COX-2, TNF-α, and IL-6. Remarkably, our fungal extracts significantly diminished NO production and showed noteworthy reductions in the mRNA expression levels of the aforementioned genes. Furthermore, while Nrf2 is typically associated with modulating inflammatory responses, our findings indicate that the anti-inflammatory effects of our extracts are not Nrf2-dependent. Moreover, the chemical diversity of the potent extract (B Sh F) was elucidated using Q-TOF LC-HRMS, identifying 54 compounds, some of which played vital roles in suppressing inflammation. Most notably, compounds like granisetron, fenofibrate, and umbelliprenin were found to downregulate TNF-α, IL-1β, and IL-6 through the NF-κB signaling pathway. In conclusion, "Aspergillus unguis isolate SP51-EGY", isolated from the Red Sea, Egypt, has been unveiled as a promising TLR4 inhibitor with significant anti-inflammatory potentials, presenting novel insights for their potential therapeutic use in inflammation.
Collapse
Affiliation(s)
- Soad Nasr
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo (AUC), P.O. Box: 74, Cairo, 11835, Egypt
- Biochemical Engineering Department, Faculty of Energy and Environmental Engineering, The British University in Egypt, Suez Desert Road, P.O. Box: 43, El-Shorouk City, Cairo, 11837, Egypt
| | - Abdelhameed S Dawood
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo (AUC), P.O. Box: 74, Cairo, 11835, Egypt
| | - Amal Mosad Ibrahim
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, 12622, Egypt
| | | | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Giza, 12622, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo (AUC), P.O. Box: 74, Cairo, 11835, Egypt.
| | - Faten K Abd El-Hady
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|
4
|
Zhou L, Yan Z, Yang S, Lu G, Nie Y, Ren Y, Xue Y, Shi JS, Xu ZH, Geng Y. High methionine intake alters gut microbiota and lipid profile and leads to liver steatosis in mice. Food Funct 2024; 15:8053-8069. [PMID: 38989659 DOI: 10.1039/d4fo01613k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Methionine is an important sulfur-containing amino acid. Health effects of both methionine restriction (MR) and methionine supplementation (MS) have been studied. This study aimed to investigate the impact of a high-methionine diet (HMD) (1.64% methionine) on both the gut and liver functions in mice through multi-omic analyses. Hepatic steatosis and compromised gut barrier function were observed in mice fed the HMD. RNA-sequencing (RNA-seq) analysis of liver gene expression patterns revealed the upregulation of lipid synthesis and degradation pathways, cholesterol metabolism and inflammation-related nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway. Metagenomic sequencing of cecal content demonstrated a shift in gut microbial composition with an increased abundance of opportunistic pathogens and gut microbial functions with up-regulated lipopolysaccharide (LPS) biosynthesis in mice fed HMD. Metabolomic study of cecal content showed an altered gut lipid profile and the level of bioactive lipids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), palmitoylethanolamide (PEA), linoleoyl ethanolamide (LEA) and arachidonoyl ethanolamide (AEA), that carry anti-inflammatory effects significantly reduced in the gut of mice fed the HMD. Correlation analysis demonstrated that gut microbiota was highly associated with liver and gut functions and gut bioactive lipid content. In conclusion, this study suggested that the HMD exerted negative impacts on both the gut and liver, and an adequate amount of methionine intake should be carefully determined to ensure normal physiological function without causing adverse effects.
Collapse
Affiliation(s)
- Lingxi Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhen Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Songfan Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Gexue Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Yawen Nie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
| | - Zheng-Hong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Innovation Center for Advanced Brewing Science and Technology, Sichuan University, Chengdu, China.
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China.
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Wiącek J, Podgórski T, Kusy K, Łoniewski I, Skonieczna-Żydecka K, Karolkiewicz J. Evaluating the Impact of Probiotic Therapy on the Endocannabinoid System, Pain, Sleep and Fatigue: A Randomized, Double-Blind, Placebo-Controlled Trial in Dancers. Int J Mol Sci 2024; 25:5611. [PMID: 38891799 PMCID: PMC11171887 DOI: 10.3390/ijms25115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Emerging research links the endocannabinoid system to gut microbiota, influencing nociception, mood, and immunity, yet the molecular interactions remain unclear. This study focused on the effects of probiotics on ECS markers-cannabinoid receptor type 2 (CB2) and fatty acid amide hydrolase (FAAH)-in dancers, a group selected due to their high exposure to physical and psychological stress. In a double-blind, placebo-controlled trial (ClinicalTrials.gov NCT05567653), 15 dancers were assigned to receive either a 12-week regimen of Lactobacillus helveticus Rosell-52 and Bifidobacterium longum Rosell-17 or a placebo (PLA: n = 10, PRO: n = 5). There were no significant changes in CB2 (probiotic: 0.55 to 0.29 ng/mL; placebo: 0.86 to 0.72 ng/mL) or FAAH levels (probiotic: 5.93 to 6.02 ng/mL; placebo: 6.46 to 6.94 ng/mL; p > 0.05). A trend toward improved sleep quality was observed in the probiotic group, while the placebo group showed a decline (PRO: from 1.4 to 1.0; PLA: from 0.8 to 1.2; p = 0.07841). No other differences were noted in assessed outcomes (pain and fatigue). Probiotic supplementation showed no significant impact on CB2 or FAAH levels, pain, or fatigue but suggested potential benefits for sleep quality, suggesting an area for further research.
Collapse
Affiliation(s)
- Jakub Wiącek
- Department of Food and Nutrition, Poznan University of Physical Education, 61-871 Poznan, Poland
| | - Tomasz Podgórski
- Department of Biochemistry and Physiology, Poznan University of Physical Education, 61-871 Poznan, Poland;
| | - Krzysztof Kusy
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, 61-871 Poznan, Poland;
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (I.Ł.); (K.S.-Ż.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (I.Ł.); (K.S.-Ż.)
| | - Joanna Karolkiewicz
- Department of Food and Nutrition, Poznan University of Physical Education, 61-871 Poznan, Poland
| |
Collapse
|
6
|
Nagaoka M, Sakai Y, Nakajima M, Fukami T. Role of carboxylesterase and arylacetamide deacetylase in drug metabolism, physiology, and pathology. Biochem Pharmacol 2024; 223:116128. [PMID: 38492781 DOI: 10.1016/j.bcp.2024.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC), which are expressed primarily in the liver and/or gastrointestinal tract, hydrolyze drugs containing ester and amide bonds in their chemical structure. These enzymes often catalyze the conversion of prodrugs, including the COVID-19 drugs remdesivir and molnupiravir, to their pharmacologically active forms. Information on the substrate specificity and inhibitory properties of these enzymes, which would be useful for drug development and toxicity avoidance, has accumulated. Recently,in vitroandin vivostudies have shown that these enzymes are involved not only in drug hydrolysis but also in lipid metabolism. CES1 and CES2 are capable of hydrolyzing triacylglycerol, and the deletion of their orthologous genes in mice has been associated with impaired lipid metabolism and hepatic steatosis. Adeno-associated virus-mediated human CES overexpression decreases hepatic triacylglycerol levels and increases fatty acid oxidation in mice. It has also been shown that overexpression of CES enzymes or AADAC in cultured cells suppresses the intracellular accumulation of triacylglycerol. Recent reports indicate that AADAC can be up- or downregulated in tumors of various organs, and its varied expression is associated with poor prognosis in patients with cancer. Thus, CES and AADAC not only determine drug efficacy and toxicity but are also involved in pathophysiology. This review summarizes recent findings on the roles of CES and AADAC in drug metabolism, physiology, and pathology.
Collapse
Affiliation(s)
- Mai Nagaoka
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshiyuki Sakai
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
7
|
Chen Z, Bai Y, Lou C, Wu B. Serum metabolome responses induced by long-term inoculation of suspended PM2.5 in chicken. Poult Sci 2024; 103:103283. [PMID: 38086244 PMCID: PMC10733702 DOI: 10.1016/j.psj.2023.103283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023] Open
Abstract
The adverse effects of exposure to fine particulate matter (PM2.5) on body health have attracted global public attention. However, there is limited research on PM2.5 in animal houses. Numerous studies have indicated that long-term exposure to high levels of PM2.5 can cause damage to multiple systems in animals. Poultry houses are one of the primary sources of PM2.5 emissions. However, there is limited research on the effects of PM2.5 exposure on poultry organisms. This study analyzed the histopathological changes in the lung tissue of poultry under PM2.5 exposure conditions. It used the LC-MS method to analyze the alterations in the serum metabolomic profile of poultry. This study confirmed that long-term exposure to high levels of PM2.5 had significantly reduced the growth performance of poultry. Histopathological slides of the lung tissue in chickens exposed to long-term retention of PM2.5 clearly showed significant damage. Furthermore, the serum metabolome analysis revealed significant changes in the serum metabolic profile of chickens exposed to long-term PM2.5 exposure. Specifically, there were notable alterations in the Glycerophospholipid metabolism, Steroid hormone biosynthesis, and Phenylalanine, tyrosine, and tryptophan biosynthesis pathways.
Collapse
Affiliation(s)
- Zhuo Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Cheng Lou
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| |
Collapse
|
8
|
Al-Khazaleh AK, Zhou X, Bhuyan DJ, Münch GW, Al-Dalabeeh EA, Jaye K, Chang D. The Neurotherapeutic Arsenal in Cannabis sativa: Insights into Anti-Neuroinflammatory and Neuroprotective Activity and Potential Entourage Effects. Molecules 2024; 29:410. [PMID: 38257323 PMCID: PMC10821245 DOI: 10.3390/molecules29020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Cannabis, renowned for its historical medicinal use, harbours various bioactive compounds-cannabinoids, terpenes, and flavonoids. While major cannabinoids like delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have received extensive scrutiny for their pharmacological properties, emerging evidence underscores the collaborative interactions among these constituents, suggesting a collective therapeutic potential. This comprehensive review explores the intricate relationships and synergies between cannabinoids, terpenes, and flavonoids in cannabis. Cannabinoids, pivotal in cannabis's bioactivity, exhibit well-documented analgesic, anti-inflammatory, and neuroprotective effects. Terpenes, aromatic compounds imbuing distinct flavours, not only contribute to cannabis's sensory profile but also modulate cannabinoid effects through diverse molecular mechanisms. Flavonoids, another cannabis component, demonstrate anti-inflammatory, antioxidant, and neuroprotective properties, particularly relevant to neuroinflammation. The entourage hypothesis posits that combined cannabinoid, terpene, and flavonoid action yields synergistic or additive effects, surpassing individual compound efficacy. Recognizing the nuanced interactions is crucial for unravelling cannabis's complete therapeutic potential. Tailoring treatments based on the holistic composition of cannabis strains allows optimization of therapeutic outcomes while minimizing potential side effects. This review underscores the imperative to delve into the intricate roles of cannabinoids, terpenes, and flavonoids, offering promising prospects for innovative therapeutic interventions and advocating continued research to unlock cannabis's full therapeutic potential within the realm of natural plant-based medicine.
Collapse
Affiliation(s)
- Ahmad K. Al-Khazaleh
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| | - Elaf Adel Al-Dalabeeh
- Department of Biological Sciences, School of Science, University of Jordan, Amman 11942, Jordan;
| | - Kayla Jaye
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; (X.Z.); (D.J.B.); (G.W.M.); (K.J.)
| |
Collapse
|
9
|
Cretu B, Zamfir A, Bucurica S, Scheau AE, Savulescu Fiedler I, Caruntu C, Caruntu A, Scheau C. Role of Cannabinoids in Oral Cancer. Int J Mol Sci 2024; 25:969. [PMID: 38256042 PMCID: PMC10815457 DOI: 10.3390/ijms25020969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Cannabinoids have incited scientific interest in different conditions, including malignancy, due to increased exposure to cannabis. Furthermore, cannabinoids are increasingly used to alleviate cancer-related symptoms. This review paper aims to clarify the recent findings on the relationship between cannabinoids and oral cancer, focusing on the molecular mechanisms that could link cannabinoids with oral cancer pathogenesis. In addition, we provide an overview of the current and future perspectives on the management of oral cancer patients using cannabinoid compounds. Epidemiological data on cannabis use and oral cancer development are conflicting. However, in vitro studies assessing the effects of cannabinoids on oral cancer cells have unveiled promising anti-cancer features, including apoptosis and inhibition of cell proliferation. Downregulation of various signaling pathways with anti-cancer effects has been identified in experimental models of oral cancer cells exposed to cannabinoids. Furthermore, in some countries, several synthetic or phytocannabinoids have been approved as medical adjuvants for the management of cancer patients undergoing chemoradiotherapy. Cannabinoids may improve overall well-being by relieving anxiety, depression, pain, and nausea. In conclusion, the link between cannabinoid compounds and oral cancer is complex, and further research is necessary to elucidate the potential risks or their protective impact on oral cancer.
Collapse
Affiliation(s)
- Brigitte Cretu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; (B.C.); (A.Z.)
| | - Alexandra Zamfir
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; (B.C.); (A.Z.)
| | - Sandica Bucurica
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Gastroenterology, “Carol Davila” University Central Emergency Military Hospital, 010825 Bucharest, Romania
| | - Andreea Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Ilinca Savulescu Fiedler
- Department of Internal Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.C.); (C.S.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania; (B.C.); (A.Z.)
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.C.); (C.S.)
| |
Collapse
|
10
|
Bietar B, Tanner S, Lehmann C. Neuroprotection and Beyond: The Central Role of CB1 and CB2 Receptors in Stroke Recovery. Int J Mol Sci 2023; 24:16728. [PMID: 38069049 PMCID: PMC10705908 DOI: 10.3390/ijms242316728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The endocannabinoid system, with its intricate presence in numerous cells, tissues, and organs, offers a compelling avenue for therapeutic interventions. Central to this system are the cannabinoid receptors 1 and 2 (CB1R and CB2R), whose ubiquity can introduce complexities in targeted treatments due to their wide-ranging physiological influence. Injuries to the central nervous system (CNS), including strokes and traumatic brain injuries, induce localized pro-inflammatory immune responses, termed neuroinflammation. Research has shown that compensatory immunodepression usually follows, and these mechanisms might influence immunity, potentially affecting infection risks in patients. As traditional preventive treatments like antibiotics face challenges, the exploration of immunomodulatory therapies offers a promising alternative. This review delves into the potential neuroprotective roles of the cannabinoid receptors: CB1R's involvement in mitigating excitotoxicity and CB2R's dual role in promoting cell survival and anti-inflammatory responses. However, the potential of cannabinoids to reduce neuroinflammation must be weighed against the risk of exacerbating immunodepression. Though the endocannabinoid system promises numerous therapeutic benefits, understanding its multifaceted signaling mechanisms and outcomes remains a challenge.
Collapse
Affiliation(s)
- Bashir Bietar
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Sophie Tanner
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Christian Lehmann
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
11
|
Haller J. Anxiety Modulation by Cannabinoids-The Role of Stress Responses and Coping. Int J Mol Sci 2023; 24:15777. [PMID: 37958761 PMCID: PMC10650718 DOI: 10.3390/ijms242115777] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Endocannabinoids were implicated in a variety of pathological conditions including anxiety and are considered promising new targets for anxiolytic drug development. The optimism concerning the potentials of this system for anxiolysis is probably justified. However, the complexity of the mechanisms affected by endocannabinoids, and discrepant findings obtained with various experimental approaches makes the interpretation of research results difficult. Here, we review the anxiety-related effects of the three main interventions used to study the endocannabinoid system: pharmacological agents active at endocannabinoid-binding sites present on both the cell membrane and in the cytoplasm, genetic manipulations targeting cannabinoid receptors, and function-enhancers represented by inhibitors of endocannabinoid degradation and transport. Binding-site ligands provide inconsistent findings probably because they activate a multitude of mechanisms concomitantly. More robust findings were obtained with genetic manipulations and particularly with function enhancers, which heighten ongoing endocannabinoid activation rather than affecting all mechanisms indiscriminately. The enhancement of ongoing activity appears to ameliorate stress-induced anxiety without consistent effects on anxiety in general. Limited evidence suggests that this effect is achieved by promoting active coping styles in critical situations. These findings suggest that the functional enhancement of endocannabinoid signaling is a promising drug development target for stress-related anxiety disorders.
Collapse
Affiliation(s)
- József Haller
- Drug Research Institute, 1137 Budapest, Hungary;
- Department of Criminal Psychology, University of Public Service, 1082 Budapest, Hungary
| |
Collapse
|
12
|
Belali R, Mard SA, Khoshnam SE, Bavarsad K, Sarkaki A, Farbood Y. Anandamide improves food intake and orexinergic neuronal activity in the chronic sleep deprivation induction model in rats by modulating the expression of the CB1 receptor in the lateral hypothalamus. Neuropeptides 2023; 101:102336. [PMID: 37290176 DOI: 10.1016/j.npep.2023.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 06/10/2023]
Abstract
Sleep deprivation alters orexinergic neuronal activity in the lateral hypothalamus (LH), which is the main regulator of sleep-wake, arousal, appetite, and energy regulation processes. Cannabinoid receptor (CBR) expression in this area is involved in modulating the function of orexin neurons. In this study, we investigated the effects of endocannabinoid anandamide (AEA) administration on improving food intake and appetite by modulating the activity of orexin neurons and CB1R expression after chronic sleep deprivation. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation +20 mg/kg AEA (SD + A). For SD induction, the rats were kept in a sleep deprivation device for 18 h (7 a.m. to 1 a.m.) daily for 21 days. Weight gain, food intake, the electrical power of orexin neurons, CB1R mRNA expression in hypothalamus, CB1R protein expression in the LH, TNF-α, IL-6, IL-4 levels and antioxidant activity in hypothalamus were measured after SD induction. Our results showed that AEA administration significantly improved food intake (p < 0.01), Electrical activity of orexin neurons (p < 0.05), CB1R expression in the hypothalamus (p < 0.05), and IL-4 levels (p < 0.05). AEA also reduced mRNA expression of OX1R and OX2R (p < 0.01 and p < 0.05 respectively), also IL-6 and TNF-α (p < 0.01) and MDA level (p < 0.05) in hypothalamic tissue. As a consequence, AEA modulates orexinergic system function and improves food intake by regulating the expression of the CB1 receptor in the LH in sleep deprived rats.
Collapse
Affiliation(s)
- Rafie Belali
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoob Farbood
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
13
|
Kogan NM, Begmatova D, Vinnikova L, Malitsky S, Itkin M, Sharon E, Klinov A, Gorelick J, Koman I, Vogel Z, Mechoulam R, Pinhasov A. Endocannabinoid basis of personality-Insights from animal model of social behavior. Front Pharmacol 2023; 14:1234332. [PMID: 37663250 PMCID: PMC10468576 DOI: 10.3389/fphar.2023.1234332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Rationale: The endocannabinoid system is known to be involved in learning, memory, emotional processing and regulation of personality patterns. Here we assessed the endocannabinoid profile in the brains of mice with strong characteristics of social dominance and submissiveness. Methods: A lipidomics approach was employed to assess the endocannabinoidome in the brains of Dominant (Dom) and Submissive (Sub) mice. The endocannabinoid showing the greatest difference in concentration in the brain between the groups, docosatetraenoyl ethanolamine (DEA), was synthesized, and its effects on the physiological and behavioral responses of Dom and Sub mice were evaluated. mRNA expression of the endocannabinoid receptors and enzymes involved in PUFA biosynthesis was assessed using qRT-PCR. Results: Targeted LC/MS analysis revealed that long-chain polyunsaturated ethanolamides including arachidonoyl ethanolamide (AEA), DEA, docosatrienoyl ethanolamide (DTEA), eicosatrienoyl ethanolamide (ETEA), eicosapentaenoyl ethanolamide (EPEA) and docosahexaenoyl ethanolamide (DHEA) were higher in the Sub compared with the Dom mice. Untargeted LC/MS analysis showed that the parent fatty acids, docosatetraenoic (DA) and eicosapentaenoic (EPA), were higher in Sub vs. Dom. Gene expression analysis revealed increased mRNA expression of genes encoding the desaturase FADS2 and the elongase ELOVL5 in Sub mice compared with Dom mice. Acute DEA administration at the dose of 15 mg/kg produced antinociceptive and locomotion-inducing effects in Sub mice, but not in Dom mice. Subchronic treatment with DEA at the dose of 5 mg/kg augmented dominant behavior in wild-type ICR and Dom mice but not in Sub mice. Conclusion: This study suggests that the endocannabinoid system may play a role in the regulation of dominance and submissiveness, functional elements of social behavior and personality. While currently we have only scratched the surface, understanding the role of the endocannabinoid system in personality may help in revealing the mechanisms underlying the etiopathology of psychiatric disorders.
Collapse
Affiliation(s)
- Natalya M. Kogan
- Department of Molecular Biology, Ariel University, Ariel, Israel
- The Institute of Personalized and Translational Medicine, Ariel University, Ariel, Israel
- Institute of Drug Research, Hebrew University, Jerusalem, Israel
| | | | | | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Sharon
- The Institute of Personalized and Translational Medicine, Ariel University, Ariel, Israel
| | - Artem Klinov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Igor Koman
- Department of Molecular Biology, Ariel University, Ariel, Israel
- The Institute of Personalized and Translational Medicine, Ariel University, Ariel, Israel
| | - Zvi Vogel
- Department of Neurbiology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
14
|
Meccariello R. Molecular Advances on Cannabinoid and Endocannabinoid Research. Int J Mol Sci 2023; 24:12760. [PMID: 37628940 PMCID: PMC10454180 DOI: 10.3390/ijms241612760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Since ancient times, cannabis has been used for recreational and medical purposes [...].
Collapse
Affiliation(s)
- Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, 80133 Naples, Italy
| |
Collapse
|
15
|
Osorio-Perez RM, Rodríguez-Manzo G, Espinosa-Riquer ZP, Cruz SL, González-Espinosa C. Endocannabinoid modulation of allergic responses: Focus on the control of FcεRI-mediated mast cell activation. Eur J Cell Biol 2023; 102:151324. [PMID: 37236045 DOI: 10.1016/j.ejcb.2023.151324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Allergic reactions are highly prevalent pathologies initiated by the production of IgE antibodies against harmless antigens (allergens) and the activation of the high-affinity IgE receptor (FcεRI) expressed in the surface of basophils and mast cells (MCs). Research on the mechanisms of negative control of those exacerbated inflammatory reactions has been intense in recent years. Endocannabinoids (eCBs) show important regulatory effects on MC-mediated immune responses, mainly inhibiting the production of pro-inflammatory mediators. However, the description of the molecular mechanisms involved in eCB control of MC activation is far from complete. In this review, we aim to summarize the available information regarding the role of eCBs in the modulation of FcεRI-dependent activation of that cell type, emphasizing the description of the eCB system and the existence of some of its elements in MCs. Unique characteristics of the eCB system and cannabinoid receptors (CBRs) localization and signaling in MCs are mentioned. The described and putative points of cross-talk between CBRs and FcεRI signaling cascades are also presented. Finally, we discuss some important considerations in the study of the effects of eCBs in MCs and the perspectives in the field.
Collapse
Affiliation(s)
- Rubi Monserrat Osorio-Perez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Zyanya P Espinosa-Riquer
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Silvia L Cruz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico.
| |
Collapse
|
16
|
Rossi G, Di Nisio V, Chiominto A, Cecconi S, Maccarrone M. Endocannabinoid System Components of the Female Mouse Reproductive Tract Are Modulated during Reproductive Aging. Int J Mol Sci 2023; 24:ijms24087542. [PMID: 37108704 PMCID: PMC10144466 DOI: 10.3390/ijms24087542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The endocannabinoid (eCB) system has gained ground as a key modulator of several female fertility-related processes, under physiological/pathological conditions. Nevertheless, its modulation during reproductive aging remains unclear. This study aimed to investigate the expression levels of the main receptors (cannabinoid receptor 1,CB1; cannabinoid receptor 2, CB2; G-protein coupled receptor, GPR55; and transient receptor potential vanilloid type 1 channel, TRPV1) and metabolic enzymes (N-acylphosphatidylethanolamine phospholipase D, NAPE-PLD; fatty acid amide hydrolase, FAAH; monoacylglycerol lipase, MAGL; and diacylglycerol lipase, DAGL-α and -β) of this system in the ovaries, oviducts, and uteri of mice at prepubertal, adult, late reproductive, and post-reproductive stages through quantitative ELISA and immunohistochemistry. The ELISA showed that among the receptors, TRPV1 had the highest expression and significantly increased during aging. Among the enzymes, NAPE-PLD, FAAH, and DAGL-β were the most expressed in these organs at all ages, and increased age-dependently. Immunohistochemistry revealed that, regardless of age, NAPE-PLD and FAAH were mainly found in the epithelial cells facing the lumen of the oviduct and uteri. Moreover, in ovaries, NAPE-PLD was predominant in the granulosa cells, while FAAH was sparse in the stromal compartment. Of note, the age-dependent increase in TRPV1 and DAGL-β could be indicative of increased inflammation, while that of NAPE-PLD and FAAH could suggest the need to tightly control the levels of the eCB anandamide at late reproductive age. These findings offer new insights into the role of the eCB system in female reproduction, with potential for therapeutic exploitation.
Collapse
Affiliation(s)
- Gianna Rossi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186 Stockholm, Sweden
| | | | - Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
- European Center of Brain Research, Santa Lucia Foundation IRCCS, 00164 Rome, Italy
| |
Collapse
|
17
|
The Endocannabinoid System and Physical Exercise. Int J Mol Sci 2023; 24:ijms24031989. [PMID: 36768332 PMCID: PMC9916354 DOI: 10.3390/ijms24031989] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The endocannabinoid system (ECS) is involved in various processes, including brain plasticity, learning and memory, neuronal development, nociception, inflammation, appetite regulation, digestion, metabolism, energy balance, motility, and regulation of stress and emotions. Physical exercise (PE) is considered a valuable non-pharmacological therapy that is an immediately available and cost-effective method with a lot of health benefits, one of them being the activation of the endogenous cannabinoids. Endocannabinoids (eCBs) are generated as a response to high-intensity activities and can act as short-term circuit breakers, generating antinociceptive responses for a short and variable period of time. A runner's high is an ephemeral feeling some sport practitioners experience during endurance activities, such as running. The release of eCBs during sustained physical exercise appears to be involved in triggering this phenomenon. The last decades have been characterized by an increased interest in this emotional state induced by exercise, as it is believed to alleviate pain, induce mild sedation, increase euphoric levels, and have anxiolytic effects. This review provides information about the current state of knowledge about endocannabinoids and physical effort and also an overview of the studies published in the specialized literature about this subject.
Collapse
|
18
|
Liu T, Gu J, Yuan Y, Yang Q, Zheng PF, Shan C, Wang F, Li H, Xie XQ, Chen XH, Ouyang Q. Discovery of a pyrano[2,3-b]pyridine derivative YX-2102 as a cannabinoid receptor 2 agonist for alleviating lung fibrosis. J Transl Med 2022; 20:565. [PMID: 36474298 PMCID: PMC9724349 DOI: 10.1186/s12967-022-03773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pharmacological modulation of cannabinoid 2 receptor (CB2R) is a promising therapeutic strategy for pulmonary fibrosis (PF). Thus, to develop CB2R selective ligands with new chemical space has attracted much research interests. This work aims to discover a novel CB2R agonist from an in-house library, and to evaluate its therapeutic effects on PF model, as well as to disclose the pharmacological mechanism. METHODS Virtual screening was used to identify the candidate ligand for CB2R from a newly established in-house library. Both in vivo experiments on PF rat model and in vitro experiments on cells were performed to investigate the therapeutic effects of the lead compound and underlying mechanism. RESULTS A "natural product-like" pyrano[2,3-b]pyridine derivative, YX-2102 was identified that bound to CB2R with high affinity. Intraperitoneal YX-2102 injections significantly ameliorated lung injury, inflammation and fibrosis in a rat model of PF induced by bleomycin (BLM). On one hand, YX-2102 inhibited inflammatory response at least partially through modulating macrophages polarization thereby exerting protective effects. Whereas, on the other hand, YX-2102 significantly upregulated CB2R expression in alveolar epithelial cells in vivo. Its pretreatment inhibited lung alveolar epithelial-to-mesenchymal transition (EMT) in vitro and PF model induced by transforming growth factor beta-1 (TGF-β1) via a CB2 receptor-dependent pathway. Further studies suggested that the Nrf2-Smad7 pathway might be involved in. CONCLUSION These findings suggest that CB2R is a potential target for PF treatment and YX-2102 is a promising CB2R agonist with new chemical space.
Collapse
Affiliation(s)
- Tao Liu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Jing Gu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yi Yuan
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Qunfang Yang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Peng-Fei Zheng
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Changyu Shan
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Fangqin Wang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hongwei Li
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xiao-Hong Chen
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
19
|
Guo Y, Yan M, Li L, Zhao L, Li Y. Treadmill Exercise Prevents Cognitive Impairments in Adolescent Intermittent Ethanol Rats by Reducing the Excessive Activation of Microglia Cell in the Hippocampus. Int J Mol Sci 2022; 23:ijms232314701. [PMID: 36499029 PMCID: PMC9740642 DOI: 10.3390/ijms232314701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
The excessive activation of microglia cell induced by adolescent intermittent ethanol (AIE) leads to neuroinflammation in the hippocampus. The endocannabinoid system plays a key role in the modulation of microglia activation. Accumulating evidence suggests that regular exercise improves learning and memory deficits in AIE models. The purpose of this study was to explore the effects of treadmill exercise intervention on the cognitive performance, activation of microglia cells and the expression of monoacylglycerol lipase (MAGL), cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 (CB2R) in the hippocampus of AIE rats. Here, we show that AIE rats exhibited cognitive impairments, whereas the treadmill exercise improves the cognitive performance in AIE rats. In order to explore the possible mechanisms for the exercise-induced attenuation of cognitive disorder, we examined the neuroinflammation in the hippocampus. We found that treadmill exercise led to the decrease in the level of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) and the increase in the level of anti-inflammatory cytokine (IL-10). In addition, we found that treadmill exercise reduced the excessive activation of the microglia cell in the hippocampus of AIE rats. Finally, we found that AIE led to a decrease in the expression of CB1R and CB2R in the hippocampus; however, the treadmill exercise further decreased the expression of CB2R in the hippocampus of AIE rats. Our results suggest that treadmill exercise attenuates AIE-induced neuroinflammation and the excessive activation of hippocampus microglial cells, which may contribute to the exercise-induced improvement of cognitive performance in AIE rats.
Collapse
Affiliation(s)
- Yanxia Guo
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Min Yan
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Li Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Yan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
20
|
Cherkasova V, Wang B, Gerasymchuk M, Fiselier A, Kovalchuk O, Kovalchuk I. Use of Cannabis and Cannabinoids for Treatment of Cancer. Cancers (Basel) 2022; 14:5142. [PMID: 36291926 PMCID: PMC9600568 DOI: 10.3390/cancers14205142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
The endocannabinoid system (ECS) is an ancient homeostasis mechanism operating from embryonic stages to adulthood. It controls the growth and development of many cells and cell lineages. Dysregulation of the components of the ECS may result in uncontrolled proliferation, adhesion, invasion, inhibition of apoptosis and increased vascularization, leading to the development of various malignancies. Cancer is the disease of uncontrolled cell division. In this review, we will discuss whether the changes to the ECS are a cause or a consequence of malignization and whether different tissues react differently to changes in the ECS. We will discuss the potential use of cannabinoids for treatment of cancer, focusing on primary outcome/care-tumor shrinkage and eradication, as well as secondary outcome/palliative care-improvement of life quality, including pain, appetite, sleep, and many more factors. Finally, we will complete this review with the chapter on sex- and gender-specific differences in ECS and response to cannabinoids, and equality of the access to treatments with cannabinoids.
Collapse
Affiliation(s)
- Viktoriia Cherkasova
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marta Gerasymchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Anna Fiselier
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
21
|
Walker CCF, Sordillo LM, Contreras GA. Anandamide Alters Barrier Integrity of Bovine Vascular Endothelial Cells during Endotoxin Challenge. Antioxidants (Basel) 2022; 11:antiox11081461. [PMID: 36009180 PMCID: PMC9405077 DOI: 10.3390/antiox11081461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/27/2023] Open
Abstract
Vascular endothelial cells are crucial mediators of inflammation during infectious diseases, due to their ability to produce lipid-based inflammatory mediators and facilitate leukocyte migration and translocation to infected tissues. Mastitis is the costliest infectious disease in North America, with over two billion dollars in annual costs due to loss of milk production, medical treatment, and potential loss of the animal. Infections caused by coliform bacteria are particularly deleterious, causing a negative impact on cow well-being and a high mortality rate. Dysfunction and breakdown of the endothelial barrier is a key part of the pathology of coliform mastitis. The endocannabinoid system (ECS), shown to modulate inflammatory responses of vascular endothelial cells in humans and rodents, may be a novel target for inflammatory modulation in dairy cows. The endocannabinoid (EC) arachidonoylethanolamide (AEA) is a potent anti- or pro-inflammatory mediator in endothelial cells, depending on location, timing, and concentration. We hypothesized that elevated AEA during LPS challenge will impair endothelial barrier integrity via increased production of reactive oxygen species (ROS) and activation of apoptotic pathways. Challenge of bovine aortic endothelial cells (BAEC) with 25 ng/mL lipopolysaccharide (LPS) for 8 h induced AEA synthesis, increased expression of cannabinoid receptor 1 and 2 (CB1/2) and the AEA synthesizing enzyme N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD), while decreasing gene expression of the AEA degradation enzyme fatty acid amide hydrolase (FAAH). Trans endothelial resistance (TER), measured through electrical resistance across the monolayer, increased 2 h after 0.5 µM AEA treatment and decreased with 5 µM AEA, compared to LPS alone. Addition of AEA to BAEC challenged with LPS induced mitochondrial dysfunction via increased ROS production, cytochrome-C release, and activation of caspase 3/7. Antagonism of CB1 by 1 µM AM251 ameliorated AEA induced ROS production and cytochrome-C release. Addition of AM251 also eliminated 2 h TER increase and improved TER following 5 µM AEA. Doses of 0.5, 1, and 5 µM AEA delayed endothelial barrier recovery, which was eliminated by the addition of AM251. Mitochondrial dysfunction and activation of apoptotic pathways in response to AEA treatment during LPS challenge of BAEC may act to delay inflammatory resolution and contribute to endothelial dysfunction.
Collapse
|
22
|
Plasma Oxylipins and Their Precursors Are Strongly Associated with COVID-19 Severity and with Immune Response Markers. Metabolites 2022; 12:metabo12070619. [PMID: 35888743 PMCID: PMC9319897 DOI: 10.3390/metabo12070619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is characterised by a dysregulated immune response, that involves signalling lipids acting as mediators of the inflammatory process along the innate and adaptive phases. To promote understanding of the disease biochemistry and provide targets for intervention, we applied a range of LC-MS platforms to analyse over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (>30 immune markers). The second publication in a series reports the results of quantitative LC-MS/MS profiling of 63 small lipids including oxylipins, free fatty acids, and endocannabinoids. Compared to samples taken from ward patients, intensive care unit (ICU) patients had 2−4-fold lower levels of arachidonic acid (AA) and its cyclooxygenase-derived prostanoids, as well as lipoxygenase derivatives, exhibiting negative correlations with inflammation markers. The same derivatives showed 2−5-fold increases in recovering ward patients, in paired comparison to early hospitalisation. In contrast, ICU patients showed elevated levels of oxylipins derived from poly-unsaturated fatty acids (PUFA) by non-enzymatic peroxidation or activity of soluble epoxide hydrolase (sEH), and these oxylipins positively correlated with markers of macrophage activation. The deficiency in AA enzymatic products and the lack of elevated intermediates of pro-resolving mediating lipids may result from the preference of alternative metabolic conversions rather than diminished stores of PUFA precursors. Supporting this, ICU patients showed 2-to-11-fold higher levels of linoleic acid (LA) and the corresponding fatty acyl glycerols of AA and LA, all strongly correlated with multiple markers of excessive immune response. Our results suggest that the altered oxylipin metabolism disrupts the expected shift from innate immune response to resolution of inflammation.
Collapse
|
23
|
Cuddihey H, MacNaughton WK, Sharkey KA. Role of the Endocannabinoid System in the Regulation of Intestinal Homeostasis. Cell Mol Gastroenterol Hepatol 2022; 14:947-963. [PMID: 35750314 PMCID: PMC9500439 DOI: 10.1016/j.jcmgh.2022.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
The maintenance of intestinal homeostasis is fundamentally important to health. Intestinal barrier function and immune regulation are key determinants of intestinal homeostasis and are therefore tightly regulated by a variety of signaling mechanisms. The endocannabinoid system is a lipid mediator signaling system widely expressed in the gastrointestinal tract. Accumulating evidence suggests the endocannabinoid system is a critical nexus involved in the physiological processes that underlie the control of intestinal homeostasis. In this review we will illustrate how the endocannabinoid system is involved in regulation of intestinal permeability, fluid secretion, and immune regulation. We will also demonstrate a reciprocal regulation between the endocannabinoid system and the gut microbiome. The role of the endocannabinoid system is complex and multifaceted, responding to both internal and external factors while also serving as an effector system for the maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Hailey Cuddihey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K. MacNaughton
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Correspondence Address correspondence to: Keith Sharkey, PhD, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
24
|
Behl T, Makkar R, Sehgal A, Singh S, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Exploration of Multiverse Activities of Endocannabinoids in Biological Systems. Int J Mol Sci 2022; 23:ijms23105734. [PMID: 35628545 PMCID: PMC9147046 DOI: 10.3390/ijms23105734] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2022] Open
Abstract
Over the last 25 years, the human endocannabinoid system (ECS) has come into the limelight as an imperative neuro-modulatory system. It is mainly comprised of endogenous cannabinoid (endocannabinoid), cannabinoid receptors and the associated enzymes accountable for its synthesis and deterioration. The ECS plays a proven role in the management of several neurological, cardiovascular, immunological, and other relevant chronic conditions. Endocannabinoid or endogenous cannabinoid are endogenous lipid molecules which connect with cannabinoid receptors and impose a fashionable impact on the behavior and physiological processes of the individual. Arachidonoyl ethanolamide or Anandamide and 2-arachidonoyl glycerol or 2-AG were the endocannabinoid molecules that were first characterized and discovered. The presence of lipid membranes in the precursor molecules is the characteristic feature of endocannabinoids. The endocannabinoids are released upon rapid enzymatic reactions into the extracellular space via activation through G-protein coupled receptors, which is contradictory to other neurotransmitter that are synthesized beforehand, and stock up into the synaptic vesicles. The current review highlights the functioning, synthesis, and degradation of endocannabinoid, and explains its functioning in biological systems.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
- Correspondence: (T.B.); (S.B.)
| | - Rashita Makkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (R.M.); (A.S.); (S.S.)
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department of College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Hassan A. Alhazmi
- Department of Pharmaceutcal Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Clinical Pharmacy Department of College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: (T.B.); (S.B.)
| |
Collapse
|
25
|
Anil SM, Peeri H, Koltai H. Medical Cannabis Activity Against Inflammation: Active Compounds and Modes of Action. Front Pharmacol 2022; 13:908198. [PMID: 35614947 PMCID: PMC9124761 DOI: 10.3389/fphar.2022.908198] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation often develops from acute, chronic, or auto-inflammatory disorders that can lead to compromised organ function. Cannabis (Cannabis sativa) has been used to treat inflammation for millennia, but its use in modern medicine is hampered by a lack of scientific knowledge. Previous studies report that cannabis extracts and inflorescence inhibit inflammatory responses in vitro and in pre-clinical and clinical trials. The endocannabinoid system (ECS) is a modulator of immune system activity, and dysregulation of this system is involved in various chronic inflammations. This system includes cannabinoid receptor types 1 and 2 (CB1 and CB2), arachidonic acid-derived endocannabinoids, and enzymes involved in endocannabinoid metabolism. Cannabis produces a large number of phytocannabinoids and numerous other biomolecules such as terpenes and flavonoids. In multiple experimental models, both in vitro and in vivo, several phytocannabinoids, including Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabigerol (CBG), exhibit activity against inflammation. These phytocannabinoids may bind to ECS and/or other receptors and ameliorate various inflammatory-related diseases by activating several signaling pathways. Synergy between phytocannabinoids, as well as between phytocannabinoids and terpenes, has been demonstrated. Cannabis activity can be improved by selecting the most active plant ingredients (API) while eliminating parts of the whole extract. Moreover, in the future cannabis components might be combined with pharmaceutical drugs to reduce inflammation.
Collapse
|
26
|
Schab M, Skoczen S. The Role of Nutritional Status, Gastrointestinal Peptides, and Endocannabinoids in the Prognosis and Treatment of Children with Cancer. Int J Mol Sci 2022; 23:5159. [PMID: 35563548 PMCID: PMC9106013 DOI: 10.3390/ijms23095159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/26/2022] Open
Abstract
Neoplastic diseases in children are the second most frequent cause of death among the young. It is estimated that 400,000 children worldwide will be diagnosed with cancer each year. The nutritional status at diagnosis is a prognostic indicator and influences the treatment tolerance. Both malnutrition and obesity increase the risk of mortality and complications during treatment. It is necessary to constantly search for new factors that impair the nutritional status. The endocannabinoid system (ECS) is a signaling system whose best-known function is regulating energy balance and food intake, but it also plays a role in pain control, embryogenesis, neurogenesis, learning, and the regulation of lipid and glucose metabolism. Its action is multidirectional, and its role is being discovered in an increasing number of diseases. In adults, cannabinoids have been shown to have anti-cancer properties against breast and pancreatic cancer, melanoma, lymphoma, and brain tumors. Data on the importance of both the endocannabinoid system and synthetic cannabinoids are lacking in children with cancer. This review highlights the role of nutritional status in the oncological treatment process, and describes the role of ECS and gastrointestinal peptides in regulating appetite. We also point to the need for research to evaluate the role of the endocannabinoid system in children with cancer, together with a prospective assessment of nutritional status during oncological treatment.
Collapse
Affiliation(s)
- Magdalena Schab
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland;
| | - Szymon Skoczen
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland;
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
27
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
28
|
Canseco-Alba A, Sanabria B, Hammouda M, Bernadin R, Mina M, Liu QR, Onaivi ES. Cell-Type Specific Deletion of CB2 Cannabinoid Receptors in Dopamine Neurons Induced Hyperactivity Phenotype: Possible Relevance to Attention-Deficit Hyperactivity Disorder. Front Psychiatry 2022; 12:803394. [PMID: 35211038 PMCID: PMC8860836 DOI: 10.3389/fpsyt.2021.803394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/31/2021] [Indexed: 12/23/2022] Open
Abstract
DAT-Cnr2 mice are conditional knockout (cKO) animals that do not express cannabinoid CB2 receptors (CB2R), in midbrain dopamine neurons. The hyperactivity phenotype of DAT-Cnr2 cKO mice were paradoxically reduced by low dose of amphetamine. Here, we report on the locomotor activity analysis in male and female adolescent (PND 30 ± 2) mice in basal conditions and in response to different doses of amphetamine, using the Open Field (OF), Elevated Plus-Maze (EPM) tests and the Novel Object Recognition (NOR) task as a putative model of attention deficit hyperactivity disorder (ADHD). Results showed that both male and female adolescent DAT-Cnr2 mice displayed significant increases in distance traveled in the OF test compared with WT mice. However, 2 mg/kg dose of amphetamine reduced the distance traveled by the DAT-Cnr2 but was increased in the WT mice. In the EPM test of anxiety-like behavioral responses, DAT-Cnr2 spent more time in the open arms of the maze than the WT mice, suggesting a reduction in anxiety-like response. DAT-Cnr2 mice showed significant increase in the number of unprotected head dips in the maze test and in the cliff avoidance reaction (CAR) test demonstrating impulsivity and risky behavior. DAT-Cnr2 mice also exhibited deficient response in the delay decision making (DDM), with impulsive choice. Both DAT-Cnr2 and WT were able to recognize the new object in the NOR task, but the exploration by the DAT-Cnr2 was less than that of the WT mice. Following the administration of 2 mg/kg of amphetamine, the similarities and differential performances of the DAT-Cnr2 and WT mice in the EPM test and NOR task was probably due to increase in attention. Microglia activation detected by Cd11b immunolabelling was enhanced in the hippocampus in DAT-Cnr2 cKO than in WT mice, implicating neuro-immune modulatory effects of CB2R. The results demonstrates that DAT-Cnr2 cKO mice with cell-type specific deletion of CB2R in midbrain dopaminergic neurons may represent a possible model for studying the neurobiological basis of ADHD.
Collapse
Affiliation(s)
- Ana Canseco-Alba
- Dirección de Investigación, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Branden Sanabria
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Mariam Hammouda
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Rollanda Bernadin
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Marizel Mina
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Emmanuel S. Onaivi
- Department of Biology, William Paterson University, Wayne, NJ, United States
| |
Collapse
|
29
|
He Y, Ge L, Tong F, Zheng P, Yang J, Zhou J, Sun Z, Wang H, Yang S, Li Y, Yu Y. Metabolic responses in the cortex and hippocampus induced by Il-15rα mutation. Mol Omics 2022; 18:865-872. [DOI: 10.1039/d2mo00105e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metabolomics showed distinct metabolic phenotypes of the different brain regions related to the IL-15 system, enhancing our understanding of the IL-15 system and its interactions with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yi He
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Lijun Ge
- Liyuan Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Fang Tong
- Department of Physiology and Biochemistry, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Jingjing Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Haixia Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Shun Yang
- Department of General Surgery, Yantian District People's Hospital, Shenzhen, 518081, China
| | - Yifan Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuxin Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|