1
|
Martinez EJ, Pham PH, Wang JF, Stalter LN, Welch BM, Leverson G, Marka N, Al-Qaoud T, Mandelbrot D, Parajuli S, Sollinger HW, Kaufman DB, Redfield RR, Odorico JS. Analysis of Rejection, Infection and Surgical Outcomes in Type I Versus Type II Diabetic Recipients After Simultaneous Pancreas-Kidney Transplantation. Transpl Int 2024; 37:13087. [PMID: 39364120 PMCID: PMC11446817 DOI: 10.3389/ti.2024.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Given the increasing frequency of simultaneous pancreas-kidney transplants performed in recipients with Type II diabetes and CKD, we sought to evaluate possible differences in the rates of allograft rejection, infection, and surgical complications in 298 Type I (T1D) versus 47 Type II (T2D) diabetic recipients of simultaneous pancreas-kidney transplants between 2006-2017. There were no significant differences in patient or graft survival. The risk of biopsy-proven rejection of both grafts was not significantly different between T2D and T1D recipients (HRpancreas = 1.04, p = 0.93; HRkidney = 0.96; p = 0.93). Rejection-free survival in both grafts were also not different between the two diabetes types (ppancreas = 0.57; pkidney = 0.41). T2D had a significantly lower incidence of de novo DSA at 1 year (21% vs. 39%, p = 0.02). There was no difference in T2D vs. T1D recipients regarding readmissions (HR = 0.77, p = 0.25), infections (HR = 0.77, p = 0.18), major surgical complications (HR = 0.89, p = 0.79) and thrombosis (HR = 0.92, p = 0.90). In conclusion, rejection, infections, and surgical complications after simultaneous pancreas-kidney transplant are not statistically significantly different in T2D compared to T1D recipients.
Collapse
Affiliation(s)
- Eric J. Martinez
- Anette C and Harold C Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, United States
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Phuoc H. Pham
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medicine, School of Medicine, Creighton University, Omaha, NE, United States
| | - Jesse F. Wang
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Lily N. Stalter
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Bridget M. Welch
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Glen Leverson
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Nicholas Marka
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Talal Al-Qaoud
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Didier Mandelbrot
- Division of Nephrology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Sandesh Parajuli
- Division of Nephrology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Hans W. Sollinger
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dixon B. Kaufman
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert R. Redfield
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jon Scott Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
2
|
Kido K, Beavers CJ, Dulnuan K, Fida N, Guglin M, Ilonze OJ, Mentz RJ, Narang N, Rajagopalan N, Ramu B, Sattar Y, Sokos G, Jankowska EA. Management of Iron Deficiency in Heart Failure: Practical Considerations and Implementation of Evidence-Based Iron Supplementation. JACC. HEART FAILURE 2024:S2213-1779(24)00433-5. [PMID: 39001744 DOI: 10.1016/j.jchf.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 07/15/2024]
Abstract
Iron deficiency (ID) is present in approximately 50% of patients with heart failure (HF) and even higher prevalence rate up to 80% in post-acute HF setting. The current guidelines for HF recommend intravenous (IV) iron replacement in HF with reduced or mildly reduced ejection fraction and ID based on clinical trials showing improvements in quality of life and exercise capacity, and an overall treatment benefit for recurrent HF hospitalization. However, several barriers cause challenges in implementing IV iron supplementation in practice due, in part, to clinician knowledge gaps and limited resource availability to protocolize routine utilization in appropriate patients. Thus, the current review will discuss practical considerations in ID treatment, implementation of evidence-based ID treatment to improve regional health disparities with toolkits, inclusion/exclusion criteria of IV iron supplementation, and clinical controversies in ID treatment, as well as gaps in evidence and questions to be answered.
Collapse
Affiliation(s)
- Kazuhiko Kido
- West Virginia University School of Pharmacy, Morgantown, West Virginia, USA.
| | - Craig J Beavers
- University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
| | - Kenneth Dulnuan
- Robert Wood Johnson University Hospital, New Brunswick, New Jersey, USA
| | | | - Maya Guglin
- Krannert Cardiovascular Research Center, Indiana University Health School of Medicine, Indianapolis, Indiana, USA
| | - Onyedika J Ilonze
- Division of Cardiovascular Medicine, Krannert Cardiovascular Research Center, Indiana University, Indianapolis, Indiana, USA
| | - Robert J Mentz
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Nikhil Narang
- Advocate Heart Institute, Oak Lawn, Illinois, USA; Division of Cardiology, Department of Medicine, University of Illinois-Chicago, Chicago, Illinois, USA
| | - Navin Rajagopalan
- Division of Cardiology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Yasar Sattar
- West Virginia University Medicine, Morgantown, West Virginia, USA
| | - George Sokos
- West Virginia University Medicine, Morgantown, West Virginia, USA
| | | |
Collapse
|
3
|
Dubois A, Jin X, Hooft C, Canovai E, Boelhouwer C, Vanuytsel T, Vanaudenaerde B, Pirenne J, Ceulemans LJ. New insights in immunomodulation for intestinal transplantation. Hum Immunol 2024; 85:110827. [PMID: 38805779 DOI: 10.1016/j.humimm.2024.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Tolerance is the Holy Grail of solid organ transplantation (SOT) and remains its primary challenge since its inception. In this topic, the seminal contributions of Thomas Starzl at Pittsburgh University outlined foundational principles of graft acceptance and tolerance, with chimerism emerging as a pivotal factor. Immunologically, intestinal transplantation (ITx) poses a unique hurdle due to the inherent characteristics and functions of the small bowel, resulting in increased immunogenicity. This necessitates heavy immunosuppression (IS) while IS drugs side effects cause significant morbidity. In addition, current IS therapies fall short of inducing clinical tolerance and their discontinuation has been proven unattainable in most cases. This underscores the unfulfilled need for immunological modulation to safely reduce IS-related burdens. To address this challenge, the Leuven Immunomodulatory Protocol (LIP), introduced in 2000, incorporates various pro-tolerogenic interventions in both the donor to the recipient, with the aim of facilitating graft acceptance and improving outcome. This review seeks to provide an overview of the current understanding of tolerance in ITx and outline recent advances in this domain.
Collapse
Affiliation(s)
- Antoine Dubois
- Unit of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Abdominal Transplant Surgery, Department of Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Xin Jin
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Charlotte Hooft
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Emilio Canovai
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Oxford Transplant Centre, Churchill Hospital, Oxford, United Kingdom
| | - Caroline Boelhouwer
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), KU Leuven, Leuven, Belgium; Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Unit of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Abdominal Transplant Surgery, Department of Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Leuven Intestinal Failure and Transplantation (LIFT), University Hospitals Leuven, Leuven, Belgium; Unit of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Li Y, Xu M, Chen J, Huang J, Cao J, Chen H, Zhang J, Luo Y, Wang Y, Sun J. Ameliorating and refining islet organoids to illuminate treatment and pathogenesis of diabetes mellitus. Stem Cell Res Ther 2024; 15:188. [PMID: 38937834 PMCID: PMC11210168 DOI: 10.1186/s13287-024-03780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
Diabetes mellitus, a significant global public health challenge, severely impacts human health worldwide. The organoid, an innovative in vitro three-dimensional (3D) culture model, closely mimics tissues or organs in vivo. Insulin-secreting islet organoid, derived from stem cells induced in vitro with 3D structures, has emerged as a potential alternative for islet transplantation and as a possible disease model that mirrors the human body's in vivo environment, eliminating species difference. This technology has gained considerable attention for its potential in diabetes treatment. Despite advances, the process of stem cell differentiation into islet organoid and its cultivation demonstrates deficiencies, prompting ongoing efforts to develop more efficient differentiation protocols and 3D biomimetic materials. At present, the constructed islet organoid exhibit limitations in their composition, structure, and functionality when compared to natural islets. Consequently, further research is imperative to achieve a multi-tissue system composition and improved insulin secretion functionality in islet organoid, while addressing transplantation-related safety concerns, such as tumorigenicity, immune rejection, infection, and thrombosis. This review delves into the methodologies and strategies for constructing the islet organoid, its application in diabetes treatment, and the pivotal scientific challenges within organoid research, offering fresh perspectives for a deeper understanding of diabetes pathogenesis and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Yushan Li
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Meiqi Xu
- Department of Biomedical Engineering, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jiali Chen
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiansong Huang
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiaying Cao
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Huajing Chen
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiayi Zhang
- Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yukun Luo
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yazhuo Wang
- Tsinghua-Peking Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Iglesias M, Bibicheff D, Komin A, Chicco M, Guinn S, Foley B, Raimondi G. T cell responsiveness to IL-10 defines the immunomodulatory effect of costimulation blockade via anti-CD154 and impacts transplant survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598652. [PMID: 38915537 PMCID: PMC11195256 DOI: 10.1101/2024.06.12.598652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Costimulation blockade (CoB)-based immunotherapy is a promising alternative to immunosuppression for transplant recipients; however, the current limited understanding of the factors that impact its efficacy restrains its clinical applicability. In this context, pro- and anti-inflammatory cytokines are being recognized as having an impact on T cell activation beyond effector differentiation. This study aims at elucidating the impact of direct IL-10 signaling in T cells on CoB outcomes. We used a full-mismatch skin transplantation model where recipients had a T cell-restricted expression of a dominant negative IL-10 receptor (10R-DN), alongside anti-CD154 as CoB therapy. Unlike wild-type recipients, 10R-DN mice failed to benefit from CoB. This accelerated graft rejection correlated with increased accumulation of T cells producing TNF-α, IFN-γ, and IL-17. In vitro experiments indicated that while lack of IL-10 signaling did not change the ability of anti-CD154 to modulate alloreactive T cell proliferation, the absence of this pathway heightened TH1 effector cell differentiation. Furthermore, deficiency of IL-10 signaling in T cells impaired Treg induction, a hallmark of anti-CD154 therapy. Overall, these findings unveil an important and novel role of IL-10 signaling in T cells that defines the success of CoB therapies and identifies a target pathway for obtaining robust immunoregulation.
Collapse
Affiliation(s)
- Marcos Iglesias
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Darrel Bibicheff
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander Komin
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Chicco
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samantha Guinn
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brendan Foley
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Wang Y, Peng X. Bioinformatics analysis characterizes immune infiltration landscape and identifies potential blood biomarkers for heart transplantation. Transpl Immunol 2024; 84:102036. [PMID: 38499050 DOI: 10.1016/j.trim.2024.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Cardiac allograft rejection (AR) remains a significant complication following heart transplantation. The primary objective of our study is to gain a comprehensive understanding of the fundamental mechanisms involved in AR and identify possible therapeutic targets. METHODS We acquired the GSE87301 dataset from the Gene Expression Omnibus database. In GSE87301, a comparison was conducted on blood samples from patients with and without cardiac allograft rejection (AR and NAR) to detect differentially expressed genes (DEGs). Enrichment analysis was conducted to identify the pathways that show significant enrichment during AR. Machine learning techniques, including the least absolute shrinkage and selection operator regression (LASSO) and random forest (RF) algorithms, were employed to identify potential genes for the diagnosis of AR. The diagnostic value was evaluated using a nomogram and receiver operating characteristic (ROC) curve. Additionally, immune cell infiltration was analyzed to explore any dysregulation of immune cells in AR. RESULTS A total of 114 DEGs were identified from the GSE87301 dataset. These DEGs were mainly found to be enriched in pathways related to the immune system. To identify the signature genes, the LASSO and RF algorithms were used, and four genes, namely ALAS2, HBD, EPB42, and FECH, were identified. The performance of these signature genes was evaluated using the receiver operating characteristic curve (ROC) analysis, which showed that the area under the curve (AUC) values for ALAS2, HBD, EPB42, and FECH were 0.906, 0.881, 0.900, and 0.856, respectively. These findings were further confirmed in the independent datasets and clinical samples. The selection of these specific genes was made to construct a nomogram, which demonstrated excellent diagnostic ability. Additionally, the results of the single-sample gene set enrichment analysis (ssGSEA) revealed that these genes may be involved in immune cell infiltration. CONCLUSION We identified four signature genes (ALAS2, HBD, EPB42, and FECH) as potential peripheral blood diagnostic candidates for AR diagnosis. Additionally, a nomogram was constructed to aid in the diagnosis of heart transplantation. This study offers valuable insights into the identification of candidate genes for heart transplantation using peripheral blood samples.
Collapse
Affiliation(s)
- Yujia Wang
- Queen Mary College of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaoping Peng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
7
|
Ayaz F, Demir D, Bölgen N. Electrospun nanofiber mats caged the mammalian macrophages on their surfaces and prevented their inflammatory responses independent of the fiber diameter. Sci Rep 2024; 14:12339. [PMID: 38811651 PMCID: PMC11137074 DOI: 10.1038/s41598-024-61450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Poly-ε-caprolactone (PCL) has been widely used as biocompatible materials in tissue engineering. They have been used in mammalian cell proliferation to polarization and differentiation. Their modified versions had regulatory activities on mammalian macrophages in vitro. There are also studies suggesting different nanofiber diameters might alter the biological activities of these materials. Based on these cues, we examined the inflammatory activities and adherence properties of mammalian macrophages on electrospun PCL nanofibrous scaffolds formed with PCL having different nanofiber diameters. Our results suggest that macrophages could easily attach and get dispersed on the scaffolds. Macrophages lost their inflammatory cytokine TNF and IL6 production capacity in the presence of LPS when they were incubated on nanofibers. These effects were independent of the mean fiber diameters. Overall, the scaffolds have potential to be used as biocompatible materials to suppress excessive inflammatory reactions during tissue and organ transplantation by caging and suppressing the inflammatory cells.
Collapse
Affiliation(s)
- Furkan Ayaz
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Biruni University, 34010, Istanbul, Turkey.
| | - Didem Demir
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences, Tarsus University, 33343, Tarsus, Mersin, Turkey
| | - Nimet Bölgen
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
8
|
Ravella S. Association between oral nutrition and inflammation after intestinal transplantation. Hum Immunol 2024; 85:110809. [PMID: 38724327 DOI: 10.1016/j.humimm.2024.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
Intestinal transplantation (Itx) can be a life-saving treatment for certain patient populations, including those patients with intestinal failure (IF) who develop life-threatening complications due to the use of parenteral nutrition (PN). Most patients who have undergone Itx are eventually able to tolerate a full oral diet. However, little guidance or consensus exists regarding optimizing the specific components of an oral diet for Itx patients, including macronutrients, micronutrients and dietary patterns. While oral dietary prescriptions have moved to the forefront of primary and preventive care, this movement has yet to occur across the field of organ transplantation. Evidence to date points to the role of systemic chronic inflammation (SCI) in a wide variety of chronic diseases as well as post-transplant graft dysfunction. This review will discuss current trends in oral nutrition for Itx patients and also offer novel insights into nutritional management techniques that may help to decrease SCI and chronic disease risk as well as optimize graft function.
Collapse
|
9
|
Li X, Chen Z, Ye W, Yu J, Zhang X, Li Y, Niu Y, Ran S, Wang S, Luo Z, Zhao J, Hao Y, Zong J, Xia C, Xia J, Wu J. High-throughput CRISPR technology: a novel horizon for solid organ transplantation. Front Immunol 2024; 14:1295523. [PMID: 38239344 PMCID: PMC10794540 DOI: 10.3389/fimmu.2023.1295523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Organ transplantation is the gold standard therapy for end-stage organ failure. However, the shortage of available grafts and long-term graft dysfunction remain the primary barriers to organ transplantation. Exploring approaches to solve these issues is urgent, and CRISPR/Cas9-based transcriptome editing provides one potential solution. Furthermore, combining CRISPR/Cas9-based gene editing with an ex vivo organ perfusion system would enable pre-implantation transcriptome editing of grafts. How to determine effective intervention targets becomes a new problem. Fortunately, the advent of high-throughput CRISPR screening has dramatically accelerated the effective targets. This review summarizes the current advancements, utilization, and workflow of CRISPR screening in various immune and non-immune cells. It also discusses the ongoing applications of CRISPR/Cas-based gene editing in transplantation and the prospective applications of CRISPR screening in solid organ transplantation.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
10
|
Thomas K, Babajide O, Gichoya J, Newsome J. Disparities in Transplant Interventions. Tech Vasc Interv Radiol 2023; 26:100921. [PMID: 38123285 DOI: 10.1016/j.tvir.2023.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Affiliation(s)
- Kaesha Thomas
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Owosela Babajide
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Judy Gichoya
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA.
| | - Janice Newsome
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
11
|
Fotros D, Sohouli M, Yari Z, Sakhdari H, Shafiekhani M, Nikoupour H, Jafarzadeh MA, Jafari K, Afiatjoo SS, Fatemi SA, Amiri M, Eghlimi H, Rabbani A, Broumandnia N, Mazdeh GM, Jafarian A, Hekmatdoost A. Vitamin D status as a predictor for liver transplant outcomes. Sci Rep 2023; 13:21018. [PMID: 38030697 PMCID: PMC10687262 DOI: 10.1038/s41598-023-48496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
It is well known that vitamin D plays a pivotal role in immune system modulation; however, its role in liver transplantation (LT) has not yet been well elucidated. This study aimed to assess the association between vitamin D status and LT outcomes. This retrospective cohort study was conducted on 335 registered cirrhotic patients with end-stage liver disease (ESLD) who underwent LT during 2019-2021 and had measurement of serum vitamin D before LT. The association of vitamin D levels before LT with the odds of acute cellular rejection (ACR) and risk mortality was assessed by applying logistic and cox regression, respectively. The mean MELD-Na and serum level of vitamin D were 20.39 ± 9.36 and 21.52 ± 15.28 ng/ml, respectively. In the final adjusted model, there was a significant association between vitamin D deficiency in the pre-transplant period and odds of ACR (odds ratio [OR] 2.69; 95% confidence interval [CI] 1.50-4.68). Although in the crude model, vitamin D deficiency in the pre-transplant period was significantly associated with an increased risk of mortality after two years of follow-up (Hazard ratio (HR) = 2.64, 95% CI 1.42-4.33), after adjustment for potential confounders, the association of vitamin D status and mortality became non-significant (HR = 1.46, 95% CI 0.71-3.00). The present study provides evidence that pre-transplant serum vitamin D levels may be a predictor for ACR in patients with cirrhosis undergoing LT.
Collapse
Affiliation(s)
- Danial Fotros
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadhassan Sohouli
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanie Sakhdari
- Student Research Committee, Babol University of Medical Science, Babol, Mazandaran, Iran
| | - Mojtaba Shafiekhani
- Shiraz Organ Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Nikoupour
- Shiraz Organ Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Keynoosh Jafari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Mahmoud Amiri
- Department of Medical-Surgical Nursing, School of Nursing and Midwifery, University of Medical Sciences, Tehran, Iran
| | - Hesameddin Eghlimi
- Department of General Surgery, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Amirhassan Rabbani
- Department of General Surgery, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nasrin Broumandnia
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mahdavi Mazdeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Jafarian
- Division of Hepatopancreatobiliary and Liver Transplantation Surgery, Imam Khomeini Hospital Complex, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Singh VK, Thakur DC, Rajak N, Mishra A, Kumar A, Giri R, Garg N. The multi-protein targeting potential of bioactive syringin in inflammatory diseases: using molecular modelling and in-silico analysis of regulatory elements. J Biomol Struct Dyn 2023:1-12. [PMID: 37882327 DOI: 10.1080/07391102.2023.2273440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
Inflammation plays a crucial role in the onset or progression of a variety of acute and chronic diseases. Non-steroidal anti-inflammatory drugs (NSAIDs) are the only available FDA-approved therapy. The therapeutic outcome of NSAIDs is still finite due to off-target effects and extreme side effects on other vital organs. Bioactive syringin has been manifested to hold anti-osteoporosis, cardiac hypertrophy, alter autophagy, anti-cancer, neuro-preventive effects, etc. However, its multi-protein targeting potential in inflammation mostly remains unexplored. In the present work, we have checked the multi-protein targeting potential of bioactive glycoside syringin in inflammatory diseases. Based on the binding score of protein-ligand complexes, glycoside syringin scored greater than -7 kcal/mol against 12 inflammatory proteins. Our molecular dynamic simulation study (200 ns) confirmed that bioactive syringin remained inside the binding cavity of inflammatory proteins (JAK1, TYK2, and COX1) in a stable conformation. Further, our co-expression analysis suggests that these genes play an essential role in multiple pathways and are regulated by multiple miRNAs. Our study demonstrates that bioactive glycoside syringin might be a multi-protein targeting potential against inflammatory diseases and could be further investigated utilizing different preclinical approaches.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - D C Thakur
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Naina Rajak
- Faculty of Ayurveda, Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Anand Mishra
- Molecular Plant Pathology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ankur Kumar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Rajanish Giri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, India
| | - Neha Garg
- Faculty of Ayurveda, Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
13
|
Clark A, Kulwatno J, Kanovka SS, McKinley TO, Potter BK, Goldman SM, Dearth CL. In situ forming biomaterials as muscle void fillers for the provisional treatment of volumetric muscle loss injuries. Mater Today Bio 2023; 22:100781. [PMID: 37736246 PMCID: PMC10509707 DOI: 10.1016/j.mtbio.2023.100781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Volumetric muscle loss (VML) represents a devastating extremity injury which leads to chronic functional deficits and disability and is unrecoverable through normal healing pathways. When left untreated, the VML pathophysiology creates many challenges towards successful treatment, such as altered residual muscle architecture, excessive fibrosis, and contracture(s). As such, innovative approaches and technologies are needed to prevent or reverse these adverse sequelae. Development of a rationally designed biomaterial technology which is intended to be acutely placed within a VML defect - i.e., to serve as a muscle void filler (MVF) by maintaining the VML defect - could address this clinical unmet need by preventing these adverse sequelae as well as enabling multi-staged treatment approaches. To that end, three biomaterials were evaluated for their ability to serve as a provisional MVF treatment intended to stabilize a VML defect in a rat model for an extended period (28 days): polyvinyl alcohol (PVA), hyaluronic acid and polyethylene glycol combination (HA + PEG), and silicone, a clinically used soft tissue void filler. HA + PEG biomaterial showed signs of deformation, while both PVA and silicone did not. There were no differences between treatment groups for their effects on adjacent muscle fiber count and size distribution. Not surprisingly, silicone elicited robust fibrotic response resulting in a fibrotic barrier with a large infiltration of macrophages, a response not seen with either the PVA or HA + PEG. Taken together, PVA was found to be the best material to be used as a provisional MVF for maintaining VML defect volume while minimizing adverse effects on the surrounding muscle.
Collapse
Affiliation(s)
- Andrew Clark
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Jonathan Kulwatno
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sergey S. Kanovka
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Todd O. McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Benjamin K. Potter
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Stephen M. Goldman
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christopher L. Dearth
- Extremity Trauma and Amputation Center of Excellence, Defense Health Agency, Bethesda, MD, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
14
|
Vaidya AS, Lee ES, Kawaguchi ES, DePasquale EC, Pandya KA, Fong MW, Nattiv J, Villalon S, Sertic A, Cochran A, Ackerman MA, Melendrez M, Cartus R, Johnston KA, Lee R, Wolfson AM. Effect of the UNOS policy change on rates of rejection, infection, and hospital readmission following heart transplantation. J Heart Lung Transplant 2023; 42:1415-1424. [PMID: 37211332 DOI: 10.1016/j.healun.2023.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND The 2018 adult heart allocation policy sought to improve waitlist risk stratification, reduce waitlist mortality, and increase organ access. This system prioritized patients at greatest risk for waitlist mortality, especially individuals requiring temporary mechanical circulatory support (tMCS). Posttransplant complications are significantly higher in patients on tMCS before transplantation, and early posttransplant complications impact long-term mortality. We sought to determine if policy change affected early posttransplant complication rates of rejection, infection, and hospitalization. METHODS We included all adult, heart-only, single-organ heart transplant recipients from the UNOS registry with pre-policy (PRE) individuals transplanted between November 1, 2016, and October 31, 2017, and post-policy (POST) between November 1, 2018, and October 31, 2019. We used a multivariable logistic regression analysis to assess the effect of policy change on posttransplant rejection, infection, and hospitalization. Two COVID-19 eras (2019-2020, 2020-2021) were included in our analysis. RESULTS The majority of baseline characteristics were comparable between PRE and POST era recipients. The odds of treated rejection (p = 0.8), hospitalization (p = 0.69), and hospitalization due to rejection (p = 0.76) and infection (p = 0.66) were similar between PRE and POST eras; there was a trend towards reduced odds of rejection (p = 0.08). In both COVID eras, there was a clear reduction in rejection and treated rejection with no effect on hospitalization for rejection or infection. Odds of all-cause hospitalization was increased in both COVID eras. CONCLUSIONS The UNOS policy change improves access to heart transplantation for higher acuity patients without increasing early posttransplant rates of treated rejection or hospitalization for rejection or infection, factors which portend risk for long-term posttransplant mortality.
Collapse
Affiliation(s)
- Ajay S Vaidya
- Division of Cardiovascular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California; Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.
| | - Emily S Lee
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Eric S Kawaguchi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eugene C DePasquale
- Division of Cardiovascular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California; Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Kruti A Pandya
- Division of Cardiovascular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California; Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Michael W Fong
- Division of Cardiovascular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California; Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Jonathan Nattiv
- Division of Cardiovascular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California; Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Sylvia Villalon
- Keck Medical Center of University of Southern California, Los Angeles, California
| | - Ashley Sertic
- Keck Medical Center of University of Southern California, Los Angeles, California
| | - Ashley Cochran
- Keck Medical Center of University of Southern California, Los Angeles, California
| | - Mary Alice Ackerman
- Keck Medical Center of University of Southern California, Los Angeles, California
| | - Marie Melendrez
- Keck Medical Center of University of Southern California, Los Angeles, California
| | - Rachel Cartus
- Keck Medical Center of University of Southern California, Los Angeles, California
| | - Kori Ann Johnston
- Keck Medical Center of University of Southern California, Los Angeles, California
| | - Raymond Lee
- Keck Medical Center of University of Southern California, Los Angeles, California
| | - Aaron M Wolfson
- Division of Cardiovascular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California; Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
15
|
Shea EV, Sinicropi NL, Cusick MF, Rabah R, Lim HM, Schumacher KR, McCormick AD, Peng DM. Pediatric Heart Transplant Rejection After COVID-19 Infection. Transplant Proc 2023; 55:1858-1861. [PMID: 37188611 PMCID: PMC10110939 DOI: 10.1016/j.transproceed.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Infections have been associated with rejection episodes in solid organ transplant recipients. We report an association between COVID-19 infection and heart transplant (HT) rejection. CASE DESCRIPTION The patient was 14 years old and 6.5 years post-HT. He developed symptoms of rejection within 2 weeks of COVID exposure and presumed infection. CONCLUSIONS In this case, COVID-19 infection closely preceded significant rejection and graft dysfunction. Further study is needed to establish a correlation between COVID-19 infection and rejection in HT patients.
Collapse
Affiliation(s)
- Erin V Shea
- Pediatric Cardiology, Duke University Medical Center
| | - Natalie L Sinicropi
- C.S. Mott Children's Hospital Congenital Heart Center, University of Michigan
| | | | - Raja Rabah
- Pediatric Pathology, University of Michigan Medicine
| | - Heang M Lim
- C.S. Mott Children's Hospital Congenital Heart Center, University of Michigan
| | - Kurt R Schumacher
- C.S. Mott Children's Hospital Congenital Heart Center, University of Michigan
| | - Amanda D McCormick
- C.S. Mott Children's Hospital Congenital Heart Center, University of Michigan
| | - David M Peng
- C.S. Mott Children's Hospital Congenital Heart Center, University of Michigan.
| |
Collapse
|
16
|
Chaabani R, Bejaoui M, Zaouali MA, Ben Abdennebi H. Protective effects of diclofenac on liver graft preservation. Can J Physiol Pharmacol 2023; 101:382-392. [PMID: 37224567 DOI: 10.1139/cjpp-2022-0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study aims to evaluate the effect of diclofenac addition to the preservation solution Celsior on liver graft preservation. Liver from Wistar rats were cold flushed in situ, harvested, and then stored in Celsior solution (24 h, 4 °C) supplemented or not with 50 mg/L of diclofenac sodium salt. Reperfusion was performed (120 min, 37 °C) using the isolated perfusion rat liver model. Perfusate samples were collected to evaluate transaminases' activities after cold storage and by the end of reperfusion. To evaluate liver function, bile flow, hepatic clearance of bromosulfophthalein, and vascular resistance were assessed. Diclofenac scavenging property (DPPH assay) as well as oxidative stress parameters (SOD and MPO activities and the concentration of glutathione, conjugated dienes, MDA, and carbonylated proteins) were measured. Transcription factors (PPAR-γ and NF-κB), inflammation (COX-2, IL-6, HMGB-1, and TLR-4), as well as apoptosis markers (Bcl-2 and Bax) were determined by quantitative RT-PCR. Enriching the preservation solution Celsior with diclofenac sodium salt attenuated liver injuries and improved graft function. Oxidative stress, inflammation, and apoptosis were significantly reduced in Celsior + Diclo solution. Also, diclofenac activated PPAR-γ and inhibited NF-κB transcription factors. To decrease graft damage and improve transplant recovery, diclofenac sodium salt may be a promising additive to preservation solution.
Collapse
Affiliation(s)
- Roua Chaabani
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, Rue Avicenne 5019, University of Monastir, Monastir, Tunisia
| | - Mohamed Bejaoui
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, Rue Avicenne 5019, University of Monastir, Monastir, Tunisia
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, Rue Avicenne 5019, University of Monastir, Monastir, Tunisia
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, Rue Avicenne 5019, University of Monastir, Monastir, Tunisia
| |
Collapse
|
17
|
Habibabady Z, McGrath G, Kinoshita K, Maenaka A, Ikechukwu I, Elias GF, Zaletel T, Rosales I, Hara H, Pierson RN, Cooper DKC. Antibody-mediated rejection in xenotransplantation: Can it be prevented or reversed? Xenotransplantation 2023; 30:e12816. [PMID: 37548030 PMCID: PMC11101061 DOI: 10.1111/xen.12816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Antibody-mediated rejection (AMR) is the commonest cause of failure of a pig graft after transplantation into an immunosuppressed nonhuman primate (NHP). The incidence of AMR compared to acute cellular rejection is much higher in xenotransplantation (46% vs. 7%) than in allotransplantation (3% vs. 63%) in NHPs. Although AMR in an allograft can often be reversed, to our knowledge there is no report of its successful reversal in a pig xenograft. As there is less experience in preventing or reversing AMR in models of xenotransplantation, the results of studies in patients with allografts provide more information. These include (i) depletion or neutralization of serum anti-donor antibodies, (ii) inhibition of complement activation, (iii) therapies targeting B or plasma cells, and (iv) anti-inflammatory therapy. Depletion or neutralization of anti-pig antibody, for example, by plasmapheresis, is effective in depleting antibodies, but they recover within days. IgG-degrading enzymes do not deplete IgM. Despite the expression of human complement-regulatory proteins on the pig graft, inhibition of systemic complement activation may be necessary, particularly if AMR is to be reversed. Potential therapies include (i) inhibition of complement activation (e.g., by IVIg, C1 INH, or an anti-C5 antibody), but some complement inhibitors are not effective in NHPs, for example, eculizumab. Possible B cell-targeted therapies include (i) B cell depletion, (ii) plasma cell depletion, (iii) modulation of B cell activation, and (iv) enhancing the generation of regulatory B and/or T cells. Among anti-inflammatory agents, anti-IL6R mAb and TNF blockers are increasingly being tested in xenotransplantation models, but with no definitive evidence that they reverse AMR. Increasing attention should be directed toward testing combinations of the above therapies. We suggest that treatment with a systemic complement inhibitor is likely to be most effective, possibly combined with anti-inflammatory agents (if these are not already being administered). Ultimately, it may require further genetic engineering of the organ-source pig to resolve the problem entirely, for example, knockout or knockdown of SLA, and/or expression of PD-L1, HLA E, and/or HLA-G.
Collapse
Affiliation(s)
- Zahra Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Gannon McGrath
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Kohei Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Akihiro Maenaka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ileka Ikechukwu
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriela F. Elias
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Tjasa Zaletel
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy Rosales
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hidetaka Hara
- Yunnan Xenotransplantation Engineering Research Center, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - David K. C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Shakoor H, Abdelrehim A, Maliakkal N, McKean S, Harrison C, Van Zyl J, Patel R, Hall S, Alam A. Alert! Does Prolonged Temporary Support Induce an Immunological Response? JACC Case Rep 2023; 16:101877. [PMID: 37396326 PMCID: PMC10313491 DOI: 10.1016/j.jaccas.2023.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 07/04/2023]
Abstract
Little is known about the development of human leukocyte antigen antibodies with use of the temporary transvalvular pump 5.5 mechanical circulatory support device. This case reports a patient who developed de novo antibodies prior to his heart transplantation and remains free of any episodes of rejection post transplantation to date. (Level of Difficulty: Advanced.).
Collapse
Affiliation(s)
- Hira Shakoor
- Baylor University Medical Center, part of Baylor Scott and White Health, Dallas, Texas, USA
- Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Ahmad Abdelrehim
- Baylor University Medical Center, part of Baylor Scott and White Health, Dallas, Texas, USA
- Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Neville Maliakkal
- Baylor University Medical Center, part of Baylor Scott and White Health, Dallas, Texas, USA
- Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Staci McKean
- Baylor University Medical Center, part of Baylor Scott and White Health, Dallas, Texas, USA
- Center for Advanced Heart and Lung Disease, Dallas, Texas, USA
| | - Caroline Harrison
- Baylor University Medical Center, part of Baylor Scott and White Health, Dallas, Texas, USA
- Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Johanna Van Zyl
- Baylor University Medical Center, part of Baylor Scott and White Health, Dallas, Texas, USA
- Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Raksha Patel
- Baylor University Medical Center, part of Baylor Scott and White Health, Dallas, Texas, USA
- Center for Advanced Heart and Lung Disease, Dallas, Texas, USA
| | - Shelley Hall
- Baylor University Medical Center, part of Baylor Scott and White Health, Dallas, Texas, USA
- Center for Advanced Heart and Lung Disease, Dallas, Texas, USA
| | - Amit Alam
- Baylor University Medical Center, part of Baylor Scott and White Health, Dallas, Texas, USA
- Center for Advanced Heart and Lung Disease, Dallas, Texas, USA
| |
Collapse
|
19
|
Ye J, Yao J, He F, Sun J, Zhao Z, Wang Y. Regulation of gut microbiota: a novel pretreatment for complications in patients who have undergone kidney transplantation. Front Cell Infect Microbiol 2023; 13:1169500. [PMID: 37346031 PMCID: PMC10280007 DOI: 10.3389/fcimb.2023.1169500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Kidney transplantation is an effective method to improve the condition of patients with end-stage renal disease. The gut microbiota significantly affects the immune system and can be used as an influencing factor to change the prognoses of patients who have undergone kidney transplantation. Recipients after kidney transplantation showed a lower abundance of Firmicutes and Faecalibacterium prausnitzii and a higher proportion of Bacteroidetes and Proteobacteria. After using prebiotics, synbiotics, and fecal microbiota transplantation to regulate the microbial community, the prognoses of patients who underwent kidney transplantation evidently improved. We aimed to determine the relationship between gut microbiota and various postoperative complications inpatients who have undergone kidney transplantation in recent years and to explore how gut microecology affects post-transplant complications. An in-depth understanding of the specific functions of gut microbiota and identification of the actual pathogenic flora during complications in patients undergoing kidney transplantation can help physicians develop strategies to restore the normal intestinal microbiome of transplant patients to maximize their survival and improve their quality of life.
Collapse
Affiliation(s)
- Jiajia Ye
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junxia Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Sun
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Zhao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Lackner K, Ebner S, Watschinger K, Maglione M. Multiple Shades of Gray-Macrophages in Acute Allograft Rejection. Int J Mol Sci 2023; 24:8257. [PMID: 37175964 PMCID: PMC10179242 DOI: 10.3390/ijms24098257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Long-term results following solid organ transplantation do not mirror the excellent short-term results achieved in recent decades. It is therefore clear that current immunosuppressive maintenance protocols primarily addressing the adaptive immune system no longer meet the required clinical need. Identification of novel targets addressing this shortcoming is urgently needed. There is a growing interest in better understanding the role of the innate immune system in this context. In this review, we focus on macrophages, which are known to prominently infiltrate allografts and, during allograft rejection, to be involved in the surge of the adaptive immune response by expression of pro-inflammatory cytokines and direct cytotoxicity. However, this active participation is janus-faced and unspecific targeting of macrophages may not consider the different subtypes involved. Under this premise, we give an overview on macrophages, including their origins, plasticity, and important markers. We then briefly describe their role in acute allograft rejection, which ranges from sustaining injury to promoting tolerance, as well as the impact of maintenance immunosuppressants on macrophages. Finally, we discuss the observed immunosuppressive role of the vitamin-like compound tetrahydrobiopterin and the recent findings that suggest the innate immune system, particularly macrophages, as its target.
Collapse
Affiliation(s)
- Katharina Lackner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Susanne Ebner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Manuel Maglione
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
- Department of Visceral, Transplant, and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Cold Storage Followed by Transplantation Induces Interferon-Gamma and STAT-1 in Kidney Grafts. Int J Mol Sci 2023; 24:ijms24065468. [PMID: 36982554 PMCID: PMC10051128 DOI: 10.3390/ijms24065468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Cold storage (CS)-mediated inflammation, a reality of donor kidney processing and transplantation, can contribute to organ graft failure. However, the mechanisms by which this inflammation is perpetuated during and after CS remain unclear. Here, we examined the immunoregulatory roles of signal transducer and activator of transcription (STAT) family proteins, most notably STAT1 and STAT3, with our in vivo model of renal CS and transplant. Donor rat kidneys were exposed to 4 h or 18 h of CS, which was then followed by transplantation (CS + transplant). STAT total protein level and activity (phosphorylation) were evaluated via Western blot analysis and mRNA expression was tabulated using quantitative RT-PCR after organ harvest on day 1 or day 9 post-surgery. In vivo assays were further corroborated via similar analyses featuring in vitro models, specifically proximal tubular cells (human and rat) as well as macrophage cells (Raw 264.7). Strikingly, gene expression of IFN-γ (a pro-inflammatory cytokine inducer of STAT) and STAT1 were markedly increased after CS + transplant. STAT3 dephosphorylation was additionally observed after CS, a result suggestive of dysregulation of anti-inflammatory signaling as phosphorylated STAT3 acts as a transcription factor in the nucleus to increase the expression of anti-inflammatory signaling molecules. In vitro, IFN-γ gene expression as well as amplification of downstream STAT1 and inducible nitric oxide synthase (iNOS; a hallmark of ischemia reperfusion injury) was remarkably increased after CS + rewarming. Collectively, these results demonstrate that aberrant induction of STAT1 is sustained in vivo post-CS exposure and post-transplant. Thus, Jak/STAT signaling may be a viable therapeutic target during CS to mitigate poor graft outcomes when transplanting kidneys from deceased donors.
Collapse
|
22
|
Cheung A, Levitsky J. CAQ Corner: Basic concepts of transplant immunology. Liver Transpl 2023; 29:331-339. [PMID: 37160065 PMCID: PMC9935643 DOI: 10.1002/lt.26501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Amanda Cheung
- Division of Gastroenterology and Hepatology, Comprehensive Transplant Center , Northwestern University Feinberg School of Medicine , Chicago , Illinois , USA
| | | |
Collapse
|
23
|
Symptomatic atherosclerotic vascular disease and graft survival in primary kidney transplant recipients – Observational analysis of the united network of organ sharing database. Transpl Immunol 2022; 75:101734. [DOI: 10.1016/j.trim.2022.101734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
24
|
Wei S, Hu Q, Ma J, Dai X, Sun Y, Han G, Meng H, Xu W, Zhang L, Ma X, Peng J, Wang Y. Acellular nerve xenografts based on supercritical extraction technology for repairing long-distance sciatic nerve defects in rats. Bioact Mater 2022; 18:300-320. [PMID: 35387172 PMCID: PMC8961471 DOI: 10.1016/j.bioactmat.2022.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/20/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Compared to conventional artificial nerve guide conduits (NGCs) prepared using natural polymers or synthetic polymers, acellular nerve grafts (ACNGs) derived from natural nerves with eliminated immune components have natural bionic advantages in composition and structure that polymer materials do not have. To further optimize the repair effect of ACNGs, in this study, we used a composite technology based on supercritical carbon dioxide (scCO2) extraction to process the peripheral nerve of a large mammal, the Yorkshire pig, and obtained an innovative Acellular nerve xenografts (ANXs, namely, CD + scCO2 NG). After scCO2 extraction, the fat and DNA content in CD + scCO2 NG has been removed to the greatest extent, which can better supported cell adhesion and proliferation, inducing an extremely weak inflammatory response. Interestingly, the protein in the CD + scCO2 NG was primarily involved in signaling pathways related to axon guidance. Moreover, compared with the pure chemical decellularized nerve graft (CD NG), the DRG axons grew naturally on the CD + scCO2 NG membrane and extended long distances. In vivo studies further revealed that the regenerated nerve axons had basically crossed the CD + scCO2 NG 3 weeks after surgery. 12 weeks after surgery, CD + scCO2 NG was similar to autologous nerves in improving the quality of nerve regeneration, target muscle morphology and motor function recovery and was significantly better than hollow NGCs and CD NG. Therefore, we believe that the fully decellularized and fat-free porcine ACNGs may be the most promising “bridge” for repairing human nerve defects at this stage and for some time to come. The native adipose tissue inside acellular nerve xenografts hinders regenerated nerve fibers. Environmentally friendly scCO2 extraction has natural advantages in reducing fat content. Natural three-dimensional nerve basement membrane tube structure guides regenerating axons.
Collapse
|
25
|
Bai J, Wu B, Zhao S, Wang G, Su S, Lu B, Hu Y, Geng Y, Guo Z, Wan J, OuYang W, Hu C, Liu J. The Effect of PD-1 Inhibitor Combined with Irradiation on HMGB1-Associated Inflammatory Cytokines and Myocardial Injury. J Inflamm Res 2022; 15:6357-6371. [PMID: 36424918 PMCID: PMC9680686 DOI: 10.2147/jir.s384279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/08/2022] [Indexed: 10/17/2023] Open
Abstract
PURPOSE To explore the effect of PD-1 inhibitors combined with irradiation on myocardial injury and the changes of HMGB1-associated inflammatory markers. METHODS Four groups of five mice were used, each groupformed by randomly dividing 20 mice (group A control; group B PD-1 inhibitors; group C Irradiation; group D PD-1 inhibitors+irradiation; n = 5 for each). The mice were treated with either PD-1 inhibitors or a 15 Gy dose of single heart irradiation, or both. Hematoxylin-eosin staining assessed the morphology and pathology of heart tissue; Masson staining assessed heart fibrosis; Tunel staining evaluated heart apoptosis; flow cytometry detected CD3+, CD4+, and CD8+ T lymphocytes in heart tissues; enzyme linked immunosorbent assay evaluated IL-1β, IL-6, and TNF-ɑ of heart tissue; Western blot and quantitative real-time PCR (qPCR) detected the expression of protein and mRNA of HMGB1, TLR-4, and NF-κB p65 respectively. RESULTS The degree of heart injury, collagen volume fraction (CVF) and apoptotic index (AI) in groups B, C, and D were higher than group A, but the differences between the CVF and AI of group A and group B were not statistical significance (P>0.05). Similarly, the absolute counts and relative percentage of CD3+ and CD8+ T lymphocytes and the concentrations of IL-1β, IL-6, and TNF-α in heart tissue with group D were significantly higher than the other groups (P<0.05). In addition, compared with group A, the expression of protein and mRNA of HMGB1 and NF-κB p65 in other groups were higher, and the differences between each group were statistically significant while TLR4 was not. In addition, interaction by PD-1 inhibitors and irradiation was found in inflammatory indicators, especially in the expression of the HMGB1 and CD8+ T lymphocytes. CONCLUSION PD-1 inhibitors can increase the expression of HMGB1-associated inflammatory cytokines and aggravate radiation-induced myocardial injury.
Collapse
Affiliation(s)
- Jie Bai
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Bibo Wu
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Shasha Zhao
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Gang Wang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Shengfa Su
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Bing Lu
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Yinxiang Hu
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Yichao Geng
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Zhengneng Guo
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Jun Wan
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Weiwei OuYang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Cheng Hu
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Jie Liu
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
- Department of Oncology, School of Clinical Medicine, Guizhou Medical University, Guiyang, People’s Republic of China
| |
Collapse
|
26
|
Duneton C, Winterberg PD, Ford ML. Activation and regulation of alloreactive T cell immunity in solid organ transplantation. Nat Rev Nephrol 2022; 18:663-676. [PMID: 35902775 PMCID: PMC9968399 DOI: 10.1038/s41581-022-00600-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 01/18/2023]
Abstract
Transplantation is the only curative treatment for patients with kidney failure but it poses unique immunological challenges that must be overcome to prevent allograft rejection and ensure long-term graft survival. Alloreactive T cells are important contributors to graft rejection, and a clearer understanding of the mechanisms by which these cells recognize donor antigens - through direct, indirect or semi-direct pathways - will facilitate their therapeutic targeting. Post-T cell priming rejection responses can also be modified by targeting pathways that regulate T cell trafficking, survival cytokines or innate immune activation. Moreover, the quantity and quality of donor-reactive memory T cells crucially shape alloimmune responses. Of note, many fundamental concepts in transplant immunology have been derived from models of infection. However, the programmed differentiation of allograft-specific T cell responses is probably distinct from that of pathogen-elicited responses, owing to the dearth of pathogen-derived innate immune activation in the transplantation setting. Understanding the fundamental (and potentially unique) immunological pathways that lead to allograft rejection is therefore a prerequisite for the rational development of therapeutics that promote transplantation tolerance.
Collapse
Affiliation(s)
- Charlotte Duneton
- Paediatric Nephrology, Robert Debré Hospital, Paris, France
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Pamela D Winterberg
- Paediatric Nephrology, Emory University Department of Paediatrics and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Mandy L Ford
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
27
|
Luminal Preservation Protects the Small Intestine in a Brain-dead Rat Model. Transplant Direct 2022; 8:e1378. [PMID: 36176723 PMCID: PMC9514830 DOI: 10.1097/txd.0000000000001378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
Intestinal transplantation depends on donation after brain death (DBD). Luminal preservation (LP) has been beneficial against preservation injury in previous studies in animal models, but none include DBD. This study aims to investigate whether these benefits occur also with DBD.
Collapse
|
28
|
Chen Z, Xu H, Li Y, Zhang X, Cui J, Zou Y, Yu J, Wu J, Xia J. Single-Cell RNA sequencing reveals immune cell dynamics and local intercellular communication in acute murine cardiac allograft rejection. Theranostics 2022; 12:6242-6257. [PMID: 36168621 PMCID: PMC9475451 DOI: 10.7150/thno.75543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Rationale: Transplant rejection is a major impediment to long-term allograft survival, in which the actions of immune cells are of fundamental importance. However, the immune cell dynamics and local intercellular communication of acute cardiac allograft rejection are not completely clear. Methods: Here we performed single-cell RNA sequencing on CD45+ immune cells isolated from cardiac grafts and spleens in a model of murine heterotopic heart transplantation. Moreover, we applied unsupervised clustering, functional enrichment analysis, cell trajectory construction and intercellular communication analysis to explore the immune cell dynamics and local intercellular communication of acute cardiac allograft rejection at single-cell level. The effect of CXCR3 antagonist and neutralizing antibody against its ligand on allograft rejection and T cell function was evaluated in murine heart transplantation model. Results: We presented the immune cell landscape of acute murine cardiac allograft rejection at single-cell resolution, and uncovered the functional characteristics and differentiation trajectory of several alloreactive cell subpopulations, including Mki67hi CTLs, Ccl5hi CTLs, activated Tregs and alloreactive B cells. We demonstrated local intercellular communication and revealed the upregulation of CXCR3 and its ligands in cardiac allografts. Finally, CXCR3 blockade significantly suppressed acute cardiac allograft rejection and inhibited the alloreactive T cell function. Conclusions: These results provide a new insight into the immune cell dynamics and local intercellular communication of acute cardiac allograft rejection, and suggest CXCR3 pathway may serve as a potential therapeutic target for transplant rejection.
Collapse
Affiliation(s)
- Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
29
|
Reyna-Sepulveda F, Badrudin D, Gala-Lopez BL. Graft survival after kidney transplantation with standard versus prolonged kidney procurement time. Can J Surg 2022; 65:E573-E579. [PMID: 36302131 PMCID: PMC9451504 DOI: 10.1503/cjs.005721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND During kidney procurement, after ice removal, kidneys located in the retroperitoneum are at risk for rewarming owing to the time taken to retrieve other abdominal and thoracic organs, which may lead to poorer outcomes. The purpose of this study was to evaluate the impact of prolonged kidney procurement time (PKP) on outcomes of kidney transplantation performed at the Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada. METHODS We retrospectively reviewed the cases of all adult (age ≥ 18 yr) patients who underwent kidney transplantation at the Queen Elizabeth II Health Sciences Centre between Jan. 1, 2010, and Dec. 31, 2015. We included all patients who received kidney transplants from deceased donors with a minimum follow-up period of 3 years. We defined PKP as more than 65 minutes from aortic cross-clamp to final organ extraction, and standard procurement time (SP) as 65 minutes or less. RESULTS Among the 455 transplantation procedures performed during the study period, we reviewed the cases of 145 patients who received kidneys from Nova Scotian donors and were followed in Nova Scotia. No statistically significant differences were seen in outcomes between kidney-only (n = 46) and multiorgan (n = 99) procurement, although more organs from kidney-only donors than multiorgan donors had a Kidney Donor Profile Index score greater than 50% (32 [69.6%] v. 48 [48.5%], p < 0.01). Compared to the SP group (n = 115), the PKP group (n = 30) had a higher rate of 30-day graft loss (6.7% v. 0.0%, p < 0.01), a higher incidence of de novo formation of donor-specific antibodies (3 [10.0%] v. 1 [0.9%], p < 0.01) and a lower 5-year graft survival rate (90.0% v. 97.4%, p = 0.03). Left kidneys remained 11 minutes longer on the donor than right kidneys when multiorgan procurement was performed (p < 0.01), and their 5-year survival rate was significantly lower than that of right kidneys (p = 0.03). CONCLUSION Procurement times longer than 65 minutes may be associated with poorer outcomes after kidney transplantation. Measures to reduce kidney exposure to rewarming during procurement may improve long-term outcomes.
Collapse
Affiliation(s)
| | - David Badrudin
- From the Multi-Organ Transplant Program, Department of Surgery, Dalhousie University, Halifax, NS
| | - Boris L Gala-Lopez
- From the Multi-Organ Transplant Program, Department of Surgery, Dalhousie University, Halifax, NS
| |
Collapse
|
30
|
Swarte JC, Li Y, Hu S, Björk JR, Gacesa R, Vich Vila A, Douwes RM, Collij V, Kurilshikov A, Post A, Klaassen MAY, Eisenga MF, Gomes-Neto AW, Kremer D, Jansen BH, Knobbe TJ, Berger SP, Sanders JSF, Heiner-Fokkema MR, Porte RJ, Cuperus FJC, de Meijer VE, Wijmenga C, Festen EAM, Zhernakova A, Fu J, Harmsen HJM, Blokzijl H, Bakker SJL, Weersma RK. Gut microbiome dysbiosis is associated with increased mortality after solid organ transplantation. Sci Transl Med 2022; 14:eabn7566. [PMID: 36044594 DOI: 10.1126/scitranslmed.abn7566] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Organ transplantation is a life-saving treatment for patients with end-stage disease, but survival rates after transplantation vary considerably. There is now increasing evidence that the gut microbiome is linked to the survival of patients undergoing hematopoietic cell transplant, yet little is known about the role of the gut microbiome in solid organ transplantation. We analyzed 1370 fecal samples from 415 liver and 672 renal transplant recipients using shotgun metagenomic sequencing to assess microbial taxonomy, metabolic pathways, antibiotic resistance genes, and virulence factors. To quantify taxonomic and metabolic dysbiosis, we also analyzed 1183 age-, sex-, and body mass index-matched controls from the same population. In addition, a subset of 78 renal transplant recipients was followed longitudinally from pretransplantation to 24 months after transplantation. Our data showed that both liver and kidney transplant recipients suffered from gut dysbiosis, including lower microbial diversity, increased abundance of unhealthy microbial species, decreased abundance of important metabolic pathways, and increased prevalence and diversity of antibiotic resistance genes and virulence factors. These changes were found to persist up to 20 years after transplantation. Last, we demonstrated that the use of immunosuppressive drugs was associated with the observed dysbiosis and that the extent of dysbiosis was associated with increased mortality after transplantation. This study represents a step toward potential microbiome-targeted interventions that might influence the outcomes of recipients of solid organ transplantation.
Collapse
Affiliation(s)
- J Casper Swarte
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Yanni Li
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Johannes R Björk
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Rianne M Douwes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Valerie Collij
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Adrian Post
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Marjolein A Y Klaassen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Michele F Eisenga
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - António W Gomes-Neto
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Daan Kremer
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Bernadien H Jansen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Tim J Knobbe
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Stefan P Berger
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Jan-Stephan F Sanders
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Robert J Porte
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Frans J C Cuperus
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Cisca Wijmenga
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands.,Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, Netherlands
| |
Collapse
|
31
|
Ponticelli C, Citterio F. Non-Immunologic Causes of Late Death-Censored Kidney Graft Failure: A Personalized Approach. J Pers Med 2022; 12:1271. [PMID: 36013220 PMCID: PMC9410103 DOI: 10.3390/jpm12081271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Despite continuous advances in surgical and immunosuppressive protocols, the long-term survival of transplanted kidneys is still far from being satisfactory. Antibody-mediated rejection, recurrent autoimmune diseases, and death with functioning graft are the most frequent causes of late-kidney allograft failure. However, in addition to these complications, a number of other non-immunologic events may impair the function of transplanted kidneys and directly or indirectly lead to their failure. In this narrative review, we will list and discuss the most important nonimmune causes of late death-censored kidney graft failure, including quality of the donated kidney, adherence to prescriptions, drug toxicities, arterial hypertension, dyslipidemia, new onset diabetes mellitus, hyperuricemia, and lifestyle of the renal transplant recipient. For each of these risk factors, we will report the etiopathogenesis and the potential consequences on graft function, keeping in mind that in many cases, two or more risk factors may negatively interact together.
Collapse
Affiliation(s)
| | - Franco Citterio
- Renal Transplant Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
32
|
Parker J, Roth O. Comparative assessment of immunological tolerance in fish with natural immunodeficiency. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104393. [PMID: 35276317 DOI: 10.1016/j.dci.2022.104393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Natural occurrences of immunodeficiency by definition should lead to compromised immune function. The major histocompatibility complexes (MHC) are key components of the vertebrate adaptive immune system, charged with mediating allorecognition and antigen presentation functions. To this end, the genomic loss of the MHC II pathway in Syngnathus pipefishes raises questions regarding their immunological vigilance and allorecognition capabilities. Utilising allograft and autograft fin-transplants, we compared the allorecognition immune responses of two pipefish species, with (Nerophis ophidion) and without (Syngnathus typhle) a functional MHC II. Transcriptome-wide assessments explored the immunological tolerance and potential compensatory measures occupying the role of the absent MHC II. Visual observations suggested a more acute rejection response in N. ophidion allografts compared with S. typhle allografts. Differentially expressed genes involved in innate immunity, angiogenesis and tissue recovery were identified among transplantees. The intriguing upregulation of the cytotoxic T-cell implicated gzma in S. typhle allografts, suggests a prominent MHC I related response, which may compensate for the MHC II and CD4 loss. MHC I related downregulation in N. ophidion autografts hints at an immunological tolerance related reaction. These findings may indicate alternative measures evolved to cope with the MHC II genomic loss enabling the maintenance of appropriate tolerance levels. This study provides intriguing insights into the immune and tissue recovery mechanisms associated with syngnathid transplantation, and can be a useful reference for future studies focusing on transplantation transcriptomics in non-model systems.
Collapse
Affiliation(s)
- Jamie Parker
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, D-24105, Kiel, Germany; Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany.
| | - Olivia Roth
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, D-24105, Kiel, Germany; Marine Evolutionary Biology, Christian-Albrechts-University, D-24118, Kiel, Germany
| |
Collapse
|
33
|
Modulating Microglia/Macrophage Activation by CDNF Promotes Transplantation of Fetal Ventral Mesencephalic Graft Survival and Function in a Hemiparkinsonian Rat Model. Biomedicines 2022; 10:biomedicines10061446. [PMID: 35740467 PMCID: PMC9221078 DOI: 10.3390/biomedicines10061446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta, which leads to the motor control deficits. Recently, cell transplantation is a cutting-edge technique for the therapy of PD. Nevertheless, one key bottleneck to realizing such potential is allogenic immune reaction of tissue grafts by recipients. Cerebral dopamine neurotrophic factor (CDNF) was shown to possess immune-modulatory properties that benefit neurodegenerative diseases. We hypothesized that co-administration of CDNF with fetal ventral mesencephalic (VM) tissue can improve the success of VM replacement therapies by attenuating immune responses. Hemiparkinsonian rats were generated by injecting 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle of Sprague Dawley (SD) rats. The rats were then intrastriatally transplanted with VM tissue from rats, with/without CDNF administration. Recovery of dopaminergic function and survival of the grafts were evaluated using the apomorphine-induced rotation test and small-animal positron emission tomography (PET) coupled with [18F] DOPA or [18F] FE-PE2I, respectively. In addition, transplantation-related inflammatory response was determined by uptake of [18F] FEPPA in the grafted side of striatum. Immunohistochemistry (IHC) examination was used to determine the survival of the grated dopaminergic neurons in the striatum and to investigate immune-modulatory effects of CDNF. The modulation of inflammatory responses caused by CDNF might involve enhancing M2 subset polarization and increasing fractal dimensions of 6-OHDA-treated BV2 microglial cell line. Analysis of CDNF-induced changes to gene expressions of 6-OHDA-stimulated BV2 cells implies that these alternations of the biomarkers and microglial morphology are implicated in the upregulation of protein kinase B signaling as well as regulation of catalytic, transferase, and protein serine/threonine kinase activity. The effects of CDNF on 6-OHDA-induced alternation of the canonical pathway in BV2 microglial cells is highly associated with PI3K-mediated phagosome formation. Our results are the first to show that CDNF administration enhances the survival of the grafted dopaminergic neurons and improves functional recovery in PD animal model. Modulation of the polarization, morphological characteristics, and transcriptional profiles of 6-OHDA-stimualted microglia by CDNF may possess these properties in transplantation-based regenerative therapies.
Collapse
|
34
|
Ravichandran R, Bansal S, Rahman M, Sureshbabu A, Sankpal N, Fleming T, Bharat A, Mohanakumar T. Extracellular Vesicles Mediate Immune Responses to Tissue-Associated Self-Antigens: Role in Solid Organ Transplantations. Front Immunol 2022; 13:861583. [PMID: 35572510 PMCID: PMC9094427 DOI: 10.3389/fimmu.2022.861583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Transplantation is a treatment option for patients diagnosed with end-stage organ diseases; however, long-term graft survival is affected by rejection of the transplanted organ by immune and nonimmune responses. Several studies have demonstrated that both acute and chronic rejection can occur after transplantation of kidney, heart, and lungs. A strong correlation has been reported between de novo synthesis of donor-specific antibodies (HLA-DSAs) and development of both acute and chronic rejection; however, some transplant recipients with chronic rejection do not have detectable HLA-DSAs. Studies of sera from such patients demonstrate that immune responses to tissue-associated antigens (TaAgs) may also play an important role in the development of chronic rejection, either alone or in combination with HLA-DSAs. The synergistic effect between HLA-DSAs and antibodies to TaAgs is being established, but the underlying mechanism is yet to be defined. We hypothesize that HLA-DSAs damage the transplanted donor organ resulting in stress and leading to the release of extracellular vesicles, which contribute to chronic rejection. These vesicles express both donor human leukocyte antigen (HLA) and non-HLA TaAgs, which can activate antigen-presenting cells and lead to immune responses and development of antibodies to both donor HLA and non-HLA tissue-associated Ags. Extracellular vesicles (EVs) are released by cells under many circumstances due to both physiological and pathological conditions. Primarily employing clinical specimens obtained from human lung transplant recipients undergoing acute or chronic rejection, our group has demonstrated that circulating extracellular vesicles display both mismatched donor HLA molecules and lung-associated Ags (collagen-V and K-alpha 1 tubulin). This review focuses on recent studies demonstrating an important role of antibodies to tissue-associated Ags in the rejection of transplanted organs, particularly chronic rejection. We will also discuss the important role of extracellular vesicles released from transplanted organs in cross-talk between alloimmunity and autoimmunity to tissue-associated Ags after solid organ transplantation.
Collapse
Affiliation(s)
| | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mohammad Rahman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Angara Sureshbabu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Narendra Sankpal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Timothy Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Ankit Bharat
- Department of Surgery-Thoracic, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
35
|
Intermittent Exposure of Hypercapnia Suppresses Allograft Rejection via Induction of Treg Differentiation and Inhibition of Neutrophil Accumulation. Biomedicines 2022; 10:biomedicines10040836. [PMID: 35453586 PMCID: PMC9028437 DOI: 10.3390/biomedicines10040836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background: In the management of major burn wounds, allogeneic skin transplantation is a critical procedure to improve wound repair. Our previous works found that intermittent exposure to carbon dioxide leads to permissive hypercapnia (HCA) and prolongs skin allograft survival. However, the modulatory effects of HCA exposure on the immune system are not well understood. Objectives: Our purpose was to investigate how intermittent exposure to HCA can effectively reduce the immune reaction to allogeneic skin graft rejection. Methods: A fully major histocompatibility complex-incompatible skin transplant from BALB/c to C57BL/6 mice model was utilized. Immune cells from splenic and draining lymph nodes were analyzed by flow cytometry. Serum proinflammatory cytokines were analyzed by ELISA. Results: Serum levels of IFN-γ, IL-2, IL-6, and TNF-α were significantly decreased in the HCA group. Additionally, the percentage of CD8+ cells in draining lymph nodes was significantly lower in HCA than in the control group. Moreover, the generation rate of FoxP3+ regulatory T cells (Tregs) from spleen naïve CD4+ T cells was increased by intermittent exposure to carbon dioxide. The infiltrated neutrophils were also eliminated by HCA. Taken together, we concluded that intermittent hypercapnia exposure could effectively suppress skin rejection by stimulating Treg cell generation and suppressing immune reactions.
Collapse
|
36
|
Langford JT, DiRito JR, Doilicho N, Chickering GR, Stern DA, Ouyang X, Mehal W, Tietjen GT. Revisiting the Principles of Preservation in an Era of Pandemic Obesity. Front Immunol 2022; 13:830992. [PMID: 35432296 PMCID: PMC9011385 DOI: 10.3389/fimmu.2022.830992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/02/2022] [Indexed: 11/27/2022] Open
Abstract
The current obesity epidemic has caused a significant decline in the health of our donor population. Organs from obese deceased donors are more prone to ischemia reperfusion injury resulting from organ preservation. As a consequence, these donors are more likely to be discarded under the assumption that nothing can be done to make them viable for transplant. Our current methods of organ preservation-which remain relatively unchanged over the last ~40 years-were originally adopted in the context of a much healthier donor population. But methods that are suitable for healthier deceased donors are likely not optimal for organs from obese donors. Naturally occurring models of acute obesity and fasting in hibernating mammals demonstrate that obesity and resilience to cold preservation-like conditions are not mutually exclusive. Moreover, recent advances in our understanding of the metabolic dysfunction that underlies obesity suggest that it may be possible to improve the resilience of organs from obese deceased donors. In this mini-review, we explore how we might adapt our current practice of organ preservation to better suit the current reality of our deceased donor population.
Collapse
Affiliation(s)
- John T. Langford
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Jenna R. DiRito
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Natty Doilicho
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | | | - David A. Stern
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Xinshou Ouyang
- Section of Digestive Diseases, Yale University, New Haven, CT, United States
| | - Wajahat Mehal
- Section of Digestive Diseases, Yale University, New Haven, CT, United States
| | - Gregory T. Tietjen
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| |
Collapse
|
37
|
Quante M, Iske J, Uehara H, Minami K, Nian Y, Maenosono R, Matsunaga T, Liu Y, Azuma H, Perkins D, Alegre ML, Zhou H, Elkhal A, Tullius SG. Taurodeoxycholic acid and valine reverse obesity-associated augmented alloimmune responses and prolong allograft survival. Am J Transplant 2022; 22:402-413. [PMID: 34551205 PMCID: PMC10614103 DOI: 10.1111/ajt.16856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 01/25/2023]
Abstract
Obesity initiates a chronic inflammatory network linked to perioperative complications and increased acute rejection rates in organ transplantation. Bariatric surgery is the most effective treatment of obesity recommended for morbidly obese transplant recipients. Here, we delineated the effects of obesity and bariatric surgery on alloimmunity and transplant outcomes in diet-induced obese (DIO) mice. Allograft survival was significantly shorter in DIO-mice. When performing sleeve gastrectomies (SGx) prior to transplantation, we found attenuated T cell-derived alloimmune responses resulting in prolonged allograft survival. Administering taurodeoxycholic acid (TDCA) and valine, metabolites depleted in DIO-mice and restored through SGx, prolonged graft survival in DIO-mice comparable with SGx an dampened Th1 and Th17 alloimmune responses while Treg frequencies and CD4+ T cell-derived IL-10 production were augmented. Moreover, in recipient animals treated with TDCA/valine, levels of donor-specific antibodies had been reduced. Mechanistically, TDCA/valine restrained inflammatory M1-macrophage polarization through TGR5 that compromised cAMP signaling and inhibited macrophage-derived T cell activation. Consistently, administering a TGR5 agonist to DIO-mice prolonged allograft survival. Overall, we provide novel insights into obesity-induced inflammation and its impact on alloimmunity. Furthermore, we introduce TDCA/valine as a noninvasive alternative treatment for obese transplant patients.
Collapse
Affiliation(s)
- Markus Quante
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- University Hospital Tuebingen, Department of General, Visceral and Transplant Surgery
| | - Jasper Iske
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Hirofumi Uehara
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Koichiro Minami
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Yeqi Nian
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ryochi Maenosono
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Tomohisa Matsunaga
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Yang Liu
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haruhito Azuma
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - David Perkins
- Department of Medicine, University of Illinois, Chicago, IL, USA
| | | | - Hao Zhou
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdallah Elkhal
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Abstract
Macrophages have emerged at the forefront of research in immunology and transplantation because of recent advances in basic science. New findings have illuminated macrophage populations not identified previously, expanded upon traditional macrophage phenotypes, and overhauled macrophage ontogeny. These advances have major implications for the field of transplant immunology. Macrophages are known to prime adaptive immune responses, perpetuate T-cell-mediated rejection and antibody-mediated rejection, and promote allograft fibrosis. In this review, macrophage phenotypes and their role in allograft injury of solid organ transplants will be discussed with an emphasis on kidney transplantation. Additionally, consideration will be given to the prospect of manipulating macrophage phenotypes as cell-based therapy. Innate immunity and macrophages represent important players in allograft injury and a promising target to improve transplant outcomes.
Collapse
Affiliation(s)
- Sarah E. Panzer
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
39
|
Peckert-Maier K, Royzman D, Langguth P, Marosan A, Strack A, Sadeghi Shermeh A, Steinkasserer A, Zinser E, Wild AB. Tilting the Balance: Therapeutic Prospects of CD83 as a Checkpoint Molecule Controlling Resolution of Inflammation. Int J Mol Sci 2022; 23:732. [PMID: 35054916 PMCID: PMC8775349 DOI: 10.3390/ijms23020732] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory diseases and transplant rejection represent major challenges for modern health care. Thus, identification of immune checkpoints that contribute to resolution of inflammation is key to developing novel therapeutic agents for those conditions. In recent years, the CD83 (cluster of differentiation 83) protein has emerged as an interesting potential candidate for such a "pro-resolution" therapy. This molecule occurs in a membrane-bound and a soluble isoform (mCD83 and sCD83, respectively), both of which are involved in resolution of inflammation. Originally described as a maturation marker on dendritic cells (DCs), mCD83 is also expressed by activated B and T cells as well as regulatory T cells (Tregs) and controls turnover of MHC II molecules in the thymus, and thereby positive selection of CD4+ T cells. Additionally, it serves to confine overshooting (auto-)immune responses. Consequently, animals with a conditional deletion of CD83 in DCs or regulatory T cells suffer from impaired resolution of inflammation. Pro-resolving effects of sCD83 became evident in pre-clinical autoimmune and transplantation models, where application of sCD83 reduced disease symptoms and enhanced allograft survival, respectively. Here, we summarize recent advances regarding CD83-mediated resolution of inflammatory responses, its binding partners as well as induced signaling pathways, and emphasize its therapeutic potential for future clinical trials.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| | | | | | | | | | | | | | | | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| |
Collapse
|
40
|
Samojlik MM, Stabler CL. Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes. Acta Biomater 2021; 133:87-101. [PMID: 34102338 PMCID: PMC9148663 DOI: 10.1016/j.actbio.2021.05.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022]
Abstract
The effective suppression of adaptive immune responses is essential for the success of allogeneic cell therapies. In islet transplantation for Type 1 Diabetes, pre-existing autoimmunity provides an additional hurdle, as memory autoimmune T cells mediate both an autoantigen-specific attack on the donor beta cells and an alloantigen-specific attack on the donor graft cells. Immunosuppressive agents used for islet transplantation are generally successful in suppressing alloimmune responses, but dramatically hinder the widespread adoption of this therapeutic approach and fail to control memory T cell populations, which leaves the graft vulnerable to destruction. In this review, we highlight the capacity of biomaterials to provide local and nuanced instruction to suppress or alter immune pathways activated in response to an allogeneic islet transplant. Biomaterial immunoisolation is a common approach employed to block direct antigen recognition and downstream cell-mediated graft destruction; however, immunoisolation alone still permits shed donor antigens to escape into the host environment, resulting in indirect antigen recognition, immune cell activation, and the creation of a toxic graft site. Designing materials to decrease antigen escape, improve cell viability, and increase material compatibility are all approaches that can decrease the local release of antigen and danger signals into the implant microenvironment. Implant materials can be further enhanced through the local delivery of anti-inflammatory, suppressive, chemotactic, and/or tolerogenic agents, which serve to control both the innate and adaptive immune responses to the implant with a benefit of reduced systemic effects. Lessons learned from understanding how to manipulate allogeneic and autogenic immune responses to pancreatic islets can also be applied to other cell therapies to improve their efficacy and duration. STATEMENT OF SIGNIFICANCE: This review explores key immunologic concepts and critical pathways mediating graft rejection in Type 1 Diabetes, which can instruct the future purposeful design of immunomodulatory biomaterials for cell therapy. A summary of immunological pathways initiated following cellular implantation, as well as current systemic immunomodulatory agents used, is provided. We then outline the potential of biomaterials to modulate these responses. The capacity of polymeric encapsulation to block some powerful rejection pathways is covered. We also highlight the role of cellular health and biocompatibility in mitigating immune responses. Finally, we review the use of bioactive materials to proactively modulate local immune responses, focusing on key concepts of anti-inflammatory, suppressive, and tolerogenic agents.
Collapse
Affiliation(s)
- Magdalena M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
41
|
Feng Y, Jones MR, Ahn JB, Garonzik-Wang JM, Segev DL, McAdams-DeMarco M. Ambient air pollution and posttransplant outcomes among kidney transplant recipients. Am J Transplant 2021; 21:3333-3345. [PMID: 33870639 PMCID: PMC8500923 DOI: 10.1111/ajt.16605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/16/2021] [Accepted: 04/03/2021] [Indexed: 01/25/2023]
Abstract
Fine particulate matter (PM2.5 ), a common form of air pollution which can induce systemic inflammatory response, is a risk factor for adverse health outcomes. Kidney transplant (KT) recipients are likely vulnerable to PM2.5 due to comorbidity and chronic immunosuppression. We sought to quantify the association between PM2.5 and post-KT outcomes. For adult KT recipients (1/1/2010-12/31/2016) in the Scientific Registry of Transplant Recipients, we estimated annual zip-code level PM2.5 concentrations at the time of KT using NASA's SEDAC Global PM2.5 Grids. We determined the associations between PM2.5 and delayed graft function (DGF) and 1-year acute rejection using logistic regression and death-censored graft failure (DCGF) and mortality using Cox proportional hazard models. All models were adjusted for sociodemographics, recipient, transplant, and ZIP code level confounders. Among 87 233 KT recipients, PM2.5 was associated with increased odds of DGF (OR = 1.59; 95% CI: 1.48-1.71) and 1-year acute rejection (OR = 1.31; 95% CI: 1.17-1.46) and increased risk of all-cause mortality (HR = 1.15; 95% CI: 1.07-1.23) but not DCGF (HR = 1.05; 95% CI: 0.97-1.51). In conclusion, PM2.5 was associated with higher odds of DGF and 1-year acute rejection and elevated risk of mortality among KT recipients. Our study highlights the importance of considering environmental exposure as risk factors for post-KT outcomes.
Collapse
Affiliation(s)
- Yijing Feng
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Miranda R. Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - JiYoon B. Ahn
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Dorry L. Segev
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Mara McAdams-DeMarco
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
42
|
Laghlam D, Jozwiak M, Nguyen LS. Renin-Angiotensin-Aldosterone System and Immunomodulation: A State-of-the-Art Review. Cells 2021; 10:cells10071767. [PMID: 34359936 PMCID: PMC8303450 DOI: 10.3390/cells10071767] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
The renin–angiotensin system (RAS) has long been described in the field of cardiovascular physiology as the main player in blood pressure homeostasis. However, other effects have since been described, and include proliferation, fibrosis, and inflammation. To illustrate the immunomodulatory properties of the RAS, we chose three distinct fields in which RAS may play a critical role and be the subject of specific treatments. In oncology, RAS hyperactivation has been associated with tumor migration, survival, cell proliferation, and angiogenesis; preliminary data showed promise of the benefit of RAS blockers in patients treated for certain types of cancer. In intensive care medicine, vasoplegic shock has been associated with severe macro- and microcirculatory imbalance. A relative insufficiency in angiotensin II (AngII) was associated to lethal outcomes and synthetic AngII has been suggested as a specific treatment in these cases. Finally, in solid organ transplantation, both AngI and AngII have been associated with increased rejection events, with a regional specificity in the RAS activity. These elements emphasize the complexity of the direct and indirect interactions of RAS with immunomodulatory pathways and warrant further research in the field.
Collapse
|
43
|
Liu Y, Qin X, Lei Z, Chai H, Wu Z. Diphenyleneiodonium ameliorates acute liver rejection during transplantation by inhibiting neutrophil extracellular traps formation in vivo. Transpl Immunol 2021; 68:101434. [PMID: 34216758 DOI: 10.1016/j.trim.2021.101434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Neutrophil extracellular traps (NETs) play critical roles in hepatic ischemic reperfusion injury (IRI) induced immune responses to inflammation. Diphenyleneiodonium (DPI) is an NADPH oxidative inhibitor that has been implicated in the regulation of NETs formation. However, the effects of NETs and their underlying mechanisms during DPI treatment of acute rejection (AR) after liver transplantation have not been elucidated. This study tested the hypothesis that blocking NETs formation by DPI treatment could be a potential therapeutic target against AR after liver transplantation. NETs were found to be excessively formed within the livers and serum of transplantation models, which could be an independent risk factor for AR. DPI was shown to alleviate hepatic injury and maintain liver functions by inhibiting NETs formation through the nicotinamide adenine dinucleotide phosphate (NADPH)/ROS/peptidylarginine deiminase 4 (PAD4) signaling pathway. NETs are highly involved in AR after liver transplantation. By inhibiting NETs formation, DPI suppresses activation of the NADPH/ROS/PAD4 signaling pathway which acts against AR after liver transplantation. Therefore, DPI is a potential candidate for the therapeutic management of AR after liver transplantation. Combination treatment containing both DPI and tacrolimus revealed a better antidamage efficacy than adjusting either treatment alone, suggesting that the joint therapy might be a promising solution in AR after liver transplantation.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Qin
- Department of General Surgery of Yuzhong District, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Children Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Zilun Lei
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Chai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
44
|
Hsu G, Sparkes TM, Reed BN, Gale SE, Crossley BE, Ravichandran BR. The Impact of Atherosclerotic Cardiovascular Risk on Graft Failure in Deceased-Donor Renal Transplantation. Prog Transplant 2021; 31:201-210. [PMID: 34132149 DOI: 10.1177/15269248211024610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Pretransplant cardiovascular risk may be amplified after renal transplant, but little is known about its impact on graft outcomes. RESEARCH QUESTION The purpose of this study was to determine if pretransplant cardiovascular risk was associated with graft outcomes. DESIGN This retrospective study included deceased-donor renal transplant recipients from 2010-2015. Atherosclerotic cardiovascular disease risk for patients without prior disease was calculated and patients were categorized into high (score >20%), intermediate (7.5-20%), and low risk (<7.5%). Patients with and without prior cardiovascular disease were also compared. The main endpoint was graft failure at 3-years post-transplant. Other outcomes included major adverse cardiovascular events, biopsy-proven rejection, and mortality. RESULTS In patients without prior atherosclerotic cardiovascular disease (N = 115), graft failure rates (4.5% vs 11.3% vs 12.5%; (P = 0.64) and major adverse cardiovascular events (9.1% vs 13.2% vs 5.0%; P = 0.52) were similar in the high, intermediate, and low risk groups. In those with prior disease (N = 220), rates of primary nonfunction (6.8% vs 1.7%; P = 0.04), major adverse cardiovascular events (7.3% vs 2.6%; P = 0.01), and heart failure (10.9% vs 3.5%; P = 0.02) were higher than those without cardiovascular; rates of major adverse cardiovascular events and heart failure were insignificant after adjusting for age, gender, and race. Other outcomes were not different. Outcomes did not differ based on pretransplant cardiovascular risk. DISCUSSION Pretransplant atherosclerotic cardiovascular disease was associated with increased early graft failure but similar outcomes at 3-years, suggesting cardiac risk alone should not exclude transplantation.
Collapse
Affiliation(s)
- Grace Hsu
- Department of Pharmacy Practice and Science, 15513University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Tracy M Sparkes
- Department of Pharmacy, 21668University of Maryland Medical Center, Baltimore, MD, USA
| | - Brent N Reed
- Department of Pharmacy Practice and Science, 15513University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Stormi E Gale
- Department of Pharmacy Practice and Science, 15513University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Brian E Crossley
- Department of Pharmacy Practice and Science, 15513University of Maryland School of Pharmacy, Baltimore, MD, USA
| | | |
Collapse
|
45
|
Collagen analogs with phosphorylcholine are inflammation-suppressing scaffolds for corneal regeneration from alkali burns in mini-pigs. Commun Biol 2021; 4:608. [PMID: 34021240 PMCID: PMC8140136 DOI: 10.1038/s42003-021-02108-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The long-term survival of biomaterial implants is often hampered by surgery-induced inflammation that can lead to graft failure. Considering that most corneas receiving grafts are either pathological or inflamed before implantation, the risk of rejection is heightened. Here, we show that bioengineered, fully synthetic, and robust corneal implants can be manufactured from a collagen analog (collagen-like peptide-polyethylene glycol hybrid, CLP-PEG) and inflammation-suppressing polymeric 2-methacryloyloxyethyl phosphorylcholine (MPC) when stabilized with the triazine-based crosslinker 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride. The resulting CLP-PEG-MPC implants led to reduced corneal swelling, haze, and neovascularization in comparison to CLP-PEG only implants when grafted into a mini-pig cornea alkali burn model of inflammation over 12 months. Implants incorporating MPC allowed for faster nerve regeneration and recovery of corneal sensation. CLP-PEG-MPC implants appear to be at a more advanced stage of regeneration than the CLP-PEG only implants, as evidenced by the presence of higher amounts of cornea-specific type V collagen, and a corresponding decrease in the presence of extracellular vesicles and exosomes in the corneal stroma, in keeping with the amounts present in healthy, unoperated corneas.
Collapse
|
46
|
Lo S, Jiang L, Stacks S, Lin H, Parajuli N. Aberrant activation of the complement system in renal grafts is mediated by cold storage. Am J Physiol Renal Physiol 2021; 320:F1174-F1190. [PMID: 33998295 DOI: 10.1152/ajprenal.00670.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aberrant complement activation leads to tissue damage during kidney transplantation, and it is recognized as an important target for therapeutic intervention. However, it is not clear whether cold storage (CS) triggers the complement pathway in transplanted kidneys. The goal of the present study was to determine the impact of CS on complement activation in renal transplants. Male Lewis and Fischer rats were used, and donor rat kidneys were exposed to 4 h or 18 h of CS followed by transplantation (CS + transplant). To study CS-induced effects, a group with no CS was included in which the kidney was removed and transplanted back to the same rat [autotransplantation (ATx)]. Complement proteins (C3 and C5b-9) were evaluated with Western blot analysis (reducing and nonreducing conditions) and immunostaining. Western blot analysis of renal extracts or serum indicated that the levels of C3 and C5b-9 increased after CS + transplant compared with ATx. Quite strikingly, intracellular C3 was profoundly elevated within renal tubules after CS + transplant but was absent in sham or ATx groups, which showed only extratubular C3. Similarly, C5b-9 immunofluorescence staining of renal sections showed an increase in C5b-9 deposits in kidneys after CS + transplant. Real-time PCR (SYBR green) showed increased expression of CD11b and CD11c, components of complement receptors 3 and 4, respectively, as well as inflammatory markers such as TNF-α. In addition, recombinant TNF-α significantly increased C3 levels in renal cells. Collectively, these results demonstrate that CS mediates aberrant activation of the complement system in renal grafts following transplantation.NEW & NOTEWORTHY This study highlights cold storage-mediated aberrant activation of complement components in renal allografts following transplantation. Specifically, the results demonstrate, for the first time, that cold storage functions in exacerbation of C5b-9, a terminal cytolytic membrane attack complex, in renal grafts following transplantation. In addition, the results indicated that cold storage induces local C3 biogenesis in renal proximal cells/tubules and that TNF-α promotes C3 biogenesis and activation in renal proximal tubular cells.
Collapse
Affiliation(s)
- Sorena Lo
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Li Jiang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Savannah Stacks
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Haixia Lin
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
47
|
Intravenous iron supplement for iron deficiency in cardiac transplant recipients (IronIC): A randomized clinical trial. J Heart Lung Transplant 2021; 40:359-367. [DOI: 10.1016/j.healun.2021.01.1390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
|
48
|
Ponticelli C, Campise MR. The inflammatory state is a risk factor for cardiovascular disease and graft fibrosis in kidney transplantation. Kidney Int 2021; 100:536-545. [PMID: 33932457 DOI: 10.1016/j.kint.2021.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Several factors, such as donor brain death, ischemia-reperfusion injury, rejection, infection, and chronic allograft dysfunction, may induce an inflammatory state in kidney transplantation. Furthermore, inflammatory cells, cytokines, growth factors, complement and coagulation cascade create an unbalanced interaction with innate and adaptive immunity, which are both heavily involved in atherogenesis. The crosstalk between inflammation and thrombosis may lead to a prothrombotic state and impaired fibrinolysis in kidney transplant recipients increasing the risk of cardiovascular disease. Inflammation is also associated with elevated levels of fibroblast growth factor 23 and low levels of Klotho, which contribute to major adverse cardiovascular events. Hyperuricemia, glucose intolerance, arterial hypertension, dyslipidemia, and physical inactivity may create a condition called metaflammation that concurs in atherogenesis. Another major consequence of the inflammatory state is the development of chronic hypoxia that through the mediation of interleukins 1 and 6, angiotensin II, and transforming growth factor beta can result in excessive accumulation of extracellular matrix, which can disrupt and replace functional parenchyma, leading to interstitial fibrosis and chronic allograft dysfunction. Lifestyle and regular physical activity may reduce inflammation. Several drugs have been proposed to control the graft inflammatory state, including low-dose aspirin, statins, renin-angiotensin inhibitors, xanthine-oxidase inhibitors, vitamin D supplements, and interleukin-6 blockade. However, no prospective controlled trial with these measures has been conducted in kidney transplantation.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Division of Nephrology, Ospedale Maggiore Policlinico, Milano, Italy (retired).
| | - Maria Rosaria Campise
- Division of Nephrology and Dialysis, Ca' Granda Foundation, Scientific Institute Ospedale Maggiore Policlinico di Milano, Milano, Italy
| |
Collapse
|
49
|
Halpern SE, Rush CK, Edwards RW, Brennan TV, Barbas AS, Pollara J. Systemic Complement Activation in Donation After Brain Death Versus Donation After Circulatory Death Organ Donors. EXP CLIN TRANSPLANT 2021; 19:635-644. [PMID: 33877036 DOI: 10.6002/ect.2020.0425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Complement activation in organs from deceased donors is associated with allograft injury and acute rejection. Because use of organs from donors after circulatory death is increasing, we characterized relative levels of complement activation in organs from donors after brain death and after circulatory death and examined associations between donor complement factor levels and outcomes after kidney and liver transplant. MATERIALS AND METHODS Serum samples from 65 donors (55 donations after brain death, 10 donations after circulatory death) were analyzed for classical, lectin, alternative, and terminal pathway components by Luminex multiplex assays. Complement factor levels were compared between groups, and associations with posttransplant outcomes were explored. RESULTS Serum levels of the downstream complement activation product C5a were similar in organs from donors after circulatory death versus donors after brain death. In organs from donors after circulatory death, complement activation occurred primarily via the alternative pathway; the classical, lectin, and alternative pathways all contributed in organs from donors after brain death. Donor complement levels were not associated with outcomes after kidney transplant. Lower donor complement levels were associated with need for transfusion, reintervention, hospital readmission, and acute rejection after liver transplant. CONCLUSIONS Complement activation occurs at similar levels in organs donated from donors after circulatory death versus those after brain death. Lower donor complement levels may contribute to adverse outcomes after liver transplant. Further study is warranted to better understand how donor complement activation contributes to posttransplant outcomes.
Collapse
Affiliation(s)
- Samantha E Halpern
- From the School of Medicine, Duke University, Durham, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
50
|
A novel histidine-tryptophan-ketoglutarate formulation ameliorates intestinal injury in a cold storage and ex vivo warm oxygenated reperfusion model in rats. Biosci Rep 2021; 40:222289. [PMID: 32129456 DOI: 10.1042/bsr20191989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/03/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
AIM The present study aims to evaluate protective effects of a novel histidine-tryptophan-ketoglutarate solution (HTK-N) and to investigate positive impacts of an additional luminal preservation route in cold storage-induced injury on rat small bowels. METHODS Male Lewis rats were utilized as donors of small bowel grafts. Vascular or vascular plus luminal preservation were conducted with HTK or HTK-N and grafts were stored at 4°C for 8 h followed by ex vivo warm oxygenated reperfusion with Krebs-Henseleit buffer for 30 min. Afterwards, intestinal tissue and portal vein effluent samples were collected for evaluation of morphological alterations, mucosal permeability and graft vitality. RESULTS The novel HTK-N decreased ultrastructural alterations but otherwise presented limited effect on protecting small bowel from ischemia-reperfusion injury in vascular route. However, the additional luminal preservation led to positive impacts on the integrity of intestinal mucosa and vitality of goblet cells. In addition, vascular plus luminal preservation route with HTK significantly protected the intestinal tissue from edema. CONCLUSION HTK-N protected the intestinal mucosal structure and graft vitality as a luminal preservation solution. Additional luminal preservation route in cold storage was shown to be promising.
Collapse
|