1
|
Harris MC, Gary HE, Cooper SK, Ackart DF, DiLisio JE, Basaraba RJ, Cheng TY, van Rhijn I, Branch Moody D, Podell BK. Establishment of CD1b-restricted immunity to lipid antigens in the pulmonary response to Mycobacterium tuberculosis infection. Infect Immun 2024; 92:e0038024. [PMID: 39494875 PMCID: PMC11629625 DOI: 10.1128/iai.00380-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
CD1 is an antigen-presenting glycoprotein homologous to MHC I; however, CD1 proteins present lipid rather than peptide antigens. CD1 proteins are well established to present lipid antigens of Mycobacterium tuberculosis (Mtb) to T cells, but understanding the role of CD1-restricted immunity in vivo in response to Mtb infection has been limited by the availability of animal models naturally expressing the CD1 proteins implicated in human response: CD1a, CD1b, and CD1c. Guinea pigs, in contrast to other rodent models, express four CD1b orthologs, and here we utilize the guinea pig to establish the kinetics of gene and protein expression of CD1b orthologs, as well as the Mtb lipid-antigen and CD1b-restricted immune response at the tissue level over the course of Mtb infection. Our results indicate transient upregulation of CD1b expression during the effector phase of adaptive immunity that wanes with disease chronicity. Gene expression indicates that the upregulation of CD1b is the result of transcriptional induction across all CD1b orthologs. We show high CD1b3 expression on B cells, and identify CD1b3 as the predominant CD1b ortholog in pulmonary granuloma lesions. We identify ex vivo cytotoxic activity directed against CD1b that parallels the kinetic changes in CD1b expression in Mtb-infected lungs and spleen. This study confirms that CD1b expression is modulated by Mtb infection in lung and spleen, leading to pulmonary and extrapulmonary CD1b-restricted immunity as a component of the antigen-specific response to Mtb infection.
Collapse
Affiliation(s)
- Macallister C. Harris
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Hadley E. Gary
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah K. Cooper
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - David F. Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James E. DiLisio
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Randall J. Basaraba
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Tan-Yun Cheng
- Brigham and Women’s Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, Massachusetts, USA
| | - Ildiko van Rhijn
- Brigham and Women’s Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, Massachusetts, USA
| | - D. Branch Moody
- Brigham and Women’s Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, Massachusetts, USA
| | - Brendan K. Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Wang Y, Zou Y, Jiang Q, Li W, Chai X, Zhao T, Liu S, Yuan Z, Yu C, Wang T. Ox-LDL-induced CD80 + macrophages expand pro-atherosclerotic NKT cells via CD1d in atherosclerotic mice and hyperlipidemic patients. Am J Physiol Cell Physiol 2024; 326:C1563-C1572. [PMID: 38586879 DOI: 10.1152/ajpcell.00043.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Atherosclerosis is an inflammatory disease of blood vessels involving the immune system. Natural killer T (NKT) cells, as crucial components of the innate and acquired immune systems, play critical roles in the development of atherosclerosis. However, the mechanism and clinical relevance of NKT cells in early atherosclerosis are largely unclear. The study investigated the mechanism influencing NKT cell function in apoE deficiency-induced early atherosclerosis. Our findings demonstrated that there were higher populations of NKT cells and interferon-gamma (IFN-γ)-producing NKT cells in the peripheral blood of patients with hyperlipidemia and in the aorta, blood, spleen, and bone marrow of early atherosclerotic mice compared with the control groups. Moreover, we discovered that the infiltration of CD80+ macrophages and CD1d expression on CD80+ macrophages in atherosclerotic mice climbed remarkably. CD1d expression increased in CD80+ macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) ex vivo and in vitro. Ex vivo coculture of macrophages with NKT cells revealed that ox-LDL-induced CD80+ macrophages presented lipid antigen α-Galcer (alpha-galactosylceramide) to NKT cells via CD1d, enabling NKT cells to express more IFN-γ. Furthermore, a greater proportion of CD1d+ monocytes and CD1d+CD80+ monocytes were found in peripheral blood of hyperlipidemic patients compared with that of healthy donors. Positive correlations were found between CD1d+CD80+ monocytes and NKT cells or IFN-γ+ NKT cells in hyperlipidemic patients. Our findings illustrated that CD80+ macrophages stimulated NKT cells to secrete IFN-γ via CD1d-presenting α-Galcer, which may accelerate the progression of early atherosclerosis. Inhibiting lipid antigen presentation by CD80+ macrophages to NKT cells may be a promising immune target for the treatment of early atherosclerosis.NEW & NOTEWORTHY This work proposed the ox-LDL-CD80+ monocyte/macrophage-CD1d-NKT cell-IFN-γ axis in the progression of atherosclerosis. The proinflammatory IFN-γ+ NKT cells are closely related to CD1d+CD80+ monocytes in hyperlipidemic patients. Inhibiting CD80+ macrophages to present lipid antigens to NKT cells through CD1d blocking may be a new therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Yin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Yao Zou
- Department of Pharmacy, People's Hospital of Chongqing Liangjiang New District, Chongqing, People's Republic of China
| | - Qingsong Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, People's Republic of China
| | - Wenming Li
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinyu Chai
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Tingrui Zhao
- Department of Clinical Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Sichuan, People's Republic of China
| | - Siyi Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Zhiyi Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| | - Tingting Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, People's Republic of China
- Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Veerapandian R, Gadad SS, Jagannath C, Dhandayuthapani S. Live Attenuated Vaccines against Tuberculosis: Targeting the Disruption of Genes Encoding the Secretory Proteins of Mycobacteria. Vaccines (Basel) 2024; 12:530. [PMID: 38793781 PMCID: PMC11126151 DOI: 10.3390/vaccines12050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB), a chronic infectious disease affecting humans, causes over 1.3 million deaths per year throughout the world. The current preventive vaccine BCG provides protection against childhood TB, but it fails to protect against pulmonary TB. Multiple candidates have been evaluated to either replace or boost the efficacy of the BCG vaccine, including subunit protein, DNA, virus vector-based vaccines, etc., most of which provide only short-term immunity. Several live attenuated vaccines derived from Mycobacterium tuberculosis (Mtb) and BCG have also been developed to induce long-term immunity. Since Mtb mediates its virulence through multiple secreted proteins, these proteins have been targeted to produce attenuated but immunogenic vaccines. In this review, we discuss the characteristics and prospects of live attenuated vaccines generated by targeting the disruption of the genes encoding secretory mycobacterial proteins.
Collapse
Affiliation(s)
- Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX 77030, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
4
|
Harris MC, Gary HE, Cooper SK, Ackart DF, Dilisio JE, Basaraba RJ, Cheng TY, van Rhijn I, Moody DB, Podell BK. Establishment of CD1b-restricted immunity to lipid antigens in the pulmonary response to Mycobacterium tuberculosis infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541963. [PMID: 37292852 PMCID: PMC10245897 DOI: 10.1101/2023.05.23.541963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CD1 is an antigen presenting glycoprotein homologous to MHC I; however, CD1 proteins present lipid rather than peptide antigen. CD1 proteins are well established to present lipid antigens of Mycobacterium tuberculosis (Mtb) to T cells, but understanding the role of CD1-restricted immunity in vivo in response to Mtb infection has been limited by availability of animal models naturally expressing the CD1 proteins implicated in human response: CD1a, CD1b and CD1c. Guinea pigs, in contrast to other rodent models, express four CD1b orthologs, and here we utilize the guinea pig to establish the kinetics of gene and protein expression of CD1b orthologs, as well as the Mtb lipid-antigen and CD1b-restricted immune response at the tissue level over the course of Mtb infection. Our results indicate transient upregulation of CD1b expression during the effector phase of adaptive immunity that wanes with disease chronicity. Gene expression indicates that upregulation of CD1b is the result of transcriptional induction across all CD1b orthologs. We show high CD1b3 expression on B cells, and identify CD1b3 as the predominant CD1b ortholog in pulmonary granuloma lesions. We identify ex vivo cytotoxic activity directed against CD1b that closely paralleled the kinetic changes in CD1b expression in Mtb infected lung and spleen. This study confirms that CD1b expression is modulated by Mtb infection in lung and spleen, leading to pulmonary and extrapulmonary CD1b-restricted immunity as a component of the antigen-specific response to Mtb infection.
Collapse
|
5
|
Gong Y, Wang J, Li F, Zhu B. Polysaccharides and glycolipids of Mycobacterium tuberculosis and their induced immune responses. Scand J Immunol 2023; 97:e13261. [PMID: 39008002 DOI: 10.1111/sji.13261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 07/16/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease mainly caused by Mycobacterium tuberculosis (M. tuberculosis). The structures of polysaccharides and glycolipids at M. tuberculosis cell wall vary among different strains, which affect the physiology and pathogenesis of mycobacteria by activating or inhibiting innate and acquired immunity. Among them, some components such as lipomannan (LM) and lipoarabinomannan (LAM) activate innate immunity by recognizing some kinds of pattern recognition receptors (PRRs) like Toll-like receptors, while other components like mannose-capped lipoarabinomannan (ManLAM) could prevent innate immune responses by inhibiting the secretion of pro-inflammatory cytokines and maturation of phagosomes. In addition, many glycolipids can activate natural killer T (NKT) cells and CD1-restricted T cells to produce interferon-γ (IFN-γ). Furthermore, humoral immunity against cell wall components, such as antibodies against LAM, plays a role in immunity against M. tuberculosis infection. Cell wall polysaccharides and glycolipids of M. tuberculosis have potential applications as antigens and adjuvants for novel TB subunit vaccines.
Collapse
Affiliation(s)
- Yang Gong
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Correia-Neves M, Nigou J, Mousavian Z, Sundling C, Källenius G. Immunological hyporesponsiveness in tuberculosis: The role of mycobacterial glycolipids. Front Immunol 2022; 13:1035122. [PMID: 36544778 PMCID: PMC9761185 DOI: 10.3389/fimmu.2022.1035122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 12/09/2022] Open
Abstract
Glycolipids constitute a major part of the cell envelope of Mycobacterium tuberculosis (Mtb). They are potent immunomodulatory molecules recognized by several immune receptors like pattern recognition receptors such as TLR2, DC-SIGN and Dectin-2 on antigen-presenting cells and by T cell receptors on T lymphocytes. The Mtb glycolipids lipoarabinomannan (LAM) and its biosynthetic relatives, phosphatidylinositol mannosides (PIMs) and lipomannan (LM), as well as other Mtb glycolipids, such as phenolic glycolipids and sulfoglycolipids have the ability to modulate the immune response, stimulating or inhibiting a pro-inflammatory response. We explore here the downmodulating effect of Mtb glycolipids. A great proportion of the studies used in vitro approaches although in vivo infection with Mtb might also lead to a dampening of myeloid cell and T cell responses to Mtb glycolipids. This dampened response has been explored ex vivo with immune cells from peripheral blood from Mtb-infected individuals and in mouse models of infection. In addition to the dampening of the immune response caused by Mtb glycolipids, we discuss the hyporesponse to Mtb glycolipids caused by prolonged Mtb infection and/or exposure to Mtb antigens. Hyporesponse to LAM has been observed in myeloid cells from individuals with active and latent tuberculosis (TB). For some myeloid subsets, this effect is stronger in latent versus active TB. Since the immune response in individuals with latent TB represents a more protective profile compared to the one in patients with active TB, this suggests that downmodulation of myeloid cell functions by Mtb glycolipids may be beneficial for the host and protect against active TB disease. The mechanisms of this downmodulation, including tolerance through epigenetic modifications, are only partly explored.
Collapse
Affiliation(s)
- Margarida Correia-Neves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal,Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B's), Portuguese (PT) Government Associate Laboratory, Braga, Portugal,Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Zaynab Mousavian
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Gunilla Källenius,
| |
Collapse
|
7
|
Kim SJ, Karamooz E. MR1- and HLA-E-Dependent Antigen Presentation of Mycobacterium tuberculosis. Int J Mol Sci 2022; 23:ijms232214412. [PMID: 36430890 PMCID: PMC9693577 DOI: 10.3390/ijms232214412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
MR1 and HLA-E are highly conserved nonclassical antigen-presenting molecules. They can present antigens derived from Mycobacterium tuberculosis to a distinct subset of MR1-restricted or HLA-restricted CD8+ T cells. MR1 presents small microbial metabolites, and HLA-E presents peptides and glycopeptides. In this review, we will discuss the current understanding of MR1 and HLA-E antigen presentation in the context of Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Se-Jin Kim
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elham Karamooz
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
8
|
Gibson AJ, Stiens J, Passmore IJ, Faulkner V, Miculob J, Willcocks S, Coad M, Berg S, Werling D, Wren BW, Nobeli I, Villarreal-Ramos B, Kendall SL. Defining the Genes Required for Survival of Mycobacterium bovis in the Bovine Host Offers Novel Insights into the Genetic Basis of Survival of Pathogenic Mycobacteria. mBio 2022; 13:e0067222. [PMID: 35862770 PMCID: PMC9426507 DOI: 10.1128/mbio.00672-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis has severe impacts on both humans and animals. Understanding the genetic basis of survival of both Mycobacterium tuberculosis, the human-adapted species, and Mycobacterium bovis, the animal-adapted species, is crucial to deciphering the biology of both pathogens. There are several studies that identify the genes required for survival of M. tuberculosis in vivo using mouse models; however, there are currently no studies probing the genetic basis of survival of M. bovis in vivo. In this study, we utilize transposon insertion sequencing in M. bovis AF2122/97 to determine the genes required for survival in cattle. We identify genes encoding established mycobacterial virulence functions such as the ESX-1 secretion system, phthiocerol dimycocerosate (PDIM) synthesis, mycobactin synthesis, and cholesterol catabolism that are required in vivo. We show that, as in M. tuberculosis H37Rv, phoPR is required by M. bovis AF2122/97 in vivo despite the known defect in signaling through this system. Comparison to studies performed in species that are able to use carbohydrates as an energy source, such as M. bovis BCG and M. tuberculosis, suggests that there are differences in the requirement for genes involved in cholesterol import (mce4 operon) and oxidation (hsd). We report a good correlation with existing mycobacterial virulence functions but also find several novel virulence factors, including genes involved in protein mannosylation, aspartate metabolism, and glycerol-phosphate metabolism. These findings further extend our knowledge of the genetic basis of survival in vivo in bacteria that cause tuberculosis and provide insight for the development of novel diagnostics and therapeutics. IMPORTANCE This is the first report of the genetic requirements of an animal-adapted member of the Mycobacterium tuberculosis complex (MTBC) in a natural host. M. bovis has devastating impacts on cattle, and bovine tuberculosis is a considerable economic, animal welfare, and public health concern. The data highlight the importance of mycobacterial cholesterol catabolism and identify several new virulence factors. Additionally, the work informs the development of novel differential diagnostics and therapeutics for TB in both human and animal populations.
Collapse
Affiliation(s)
- Amanda J. Gibson
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Jennifer Stiens
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Ian J. Passmore
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Valwynne Faulkner
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Josephous Miculob
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Sam Willcocks
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael Coad
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Stefan Berg
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Dirk Werling
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Brendan W. Wren
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Irene Nobeli
- Institute of Structural and Molecular Biology, Biological Sciences, Birkbeck, University of London, London, United Kingdom
| | | | - Sharon L. Kendall
- Centre for Emerging, Endemic and Exotic Diseases, Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
9
|
Suliman S, Kjer-Nielsen L, Iwany SK, Lopez Tamara K, Loh L, Grzelak L, Kedzierska K, Ocampo TA, Corbett AJ, McCluskey J, Rossjohn J, León SR, Calderon R, Lecca-Garcia L, Murray MB, Moody DB, Van Rhijn I. Dual TCR-α Expression on Mucosal-Associated Invariant T Cells as a Potential Confounder of TCR Interpretation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1389-1395. [PMID: 35246495 PMCID: PMC9359468 DOI: 10.4049/jimmunol.2100275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 01/12/2022] [Indexed: 05/20/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that are highly abundant in human blood and tissues. Most MAIT cells have an invariant TCRα-chain that uses T cell receptor α-variable 1-2 (TRAV1-2) joined to TRAJ33/20/12 and recognizes metabolites from bacterial riboflavin synthesis bound to the Ag-presenting molecule MHC class I related (MR1). Our attempts to identify alternative MR1-presented Ags led to the discovery of rare MR1-restricted T cells with non-TRAV1-2 TCRs. Because altered Ag specificity likely alters affinity for the most potent known Ag, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), we performed bulk TCRα- and TCRβ-chain sequencing and single-cell-based paired TCR sequencing on T cells that bound the MR1-5-OP-RU tetramer with differing intensities. Bulk sequencing showed that use of V genes other than TRAV1-2 was enriched among MR1-5-OP-RU tetramerlow cells. Although we initially interpreted these as diverse MR1-restricted TCRs, single-cell TCR sequencing revealed that cells expressing atypical TCRα-chains also coexpressed an invariant MAIT TCRα-chain. Transfection of each non-TRAV1-2 TCRα-chain with the TCRβ-chain from the same cell demonstrated that the non-TRAV1-2 TCR did not bind the MR1-5-OP-RU tetramer. Thus, dual TCRα-chain expression in human T cells and competition for the endogenous β-chain explains the existence of some MR1-5-OP-RU tetramerlow T cells. The discovery of simultaneous expression of canonical and noncanonical TCRs on the same T cell means that claims of roles for non-TRAV1-2 TCR in MR1 response must be validated by TCR transfer-based confirmation of Ag specificity.
Collapse
Affiliation(s)
- Sara Suliman
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA;
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San Francisco, San Francisco, CA
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah K Iwany
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kattya Lopez Tamara
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Socios en Salud Sucursal Perú, Lima, Peru
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ludivine Grzelak
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tonatiuh A Ocampo
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | | | | | - Megan B Murray
- Department of Global Health and Social Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA;
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
10
|
Bjornson-Hooper ZB, Fragiadakis GK, Spitzer MH, Chen H, Madhireddy D, Hu K, Lundsten K, McIlwain DR, Nolan GP. A Comprehensive Atlas of Immunological Differences Between Humans, Mice, and Non-Human Primates. Front Immunol 2022; 13:867015. [PMID: 35359965 PMCID: PMC8962947 DOI: 10.3389/fimmu.2022.867015] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Animal models are an integral part of the drug development and evaluation process. However, they are unsurprisingly imperfect reflections of humans, and the extent and nature of many immunological differences are unknown. With the rise of targeted and biological therapeutics, it is increasingly important that we understand the molecular differences in the immunological behavior of humans and model organisms. However, very few antibodies are raised against non-human primate antigens, and databases of cross-reactivity between species are incomplete. Thus, we screened 332 antibodies in five immune cell populations in blood from humans and four non-human primate species generating a comprehensive cross-reactivity catalog that includes cell type-specificity. We used this catalog to create large mass cytometry universal cross-species phenotyping and signaling panels for humans, along with three of the model organisms most similar to humans: rhesus and cynomolgus macaques and African green monkeys; and one of the mammalian models most widely used in drug development: C57BL/6 mice. As a proof-of-principle, we measured immune cell signaling responses across all five species to an array of 15 stimuli using mass cytometry. We found numerous instances of different cellular phenotypes and immune signaling events occurring within and between species, and detailed three examples (double-positive T cell frequency and signaling; granulocyte response to Bacillus anthracis antigen; and B cell subsets). We also explore the correlation of herpes simian B virus serostatus on the immune profile. Antibody panels and the full dataset generated are available online as a resource to enable future studies comparing immune responses across species during the evaluation of therapeutics.
Collapse
Affiliation(s)
| | - Gabriela K. Fragiadakis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
- Department of Medicine, Division of Rheumatology, University of California San Francisco, San Francisco, CA, United States
- Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA, United States
- University of California, San Francisco (UCSF) Data Science CoLab and University of California, San Francisco (UCSF) Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Matthew H. Spitzer
- Immunology Program, Stanford University, Stanford, CA, United States
- Departments of Otolaryngology – Head and Neck Surgery and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Han Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Deepthi Madhireddy
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Kevin Hu
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Kelly Lundsten
- BioLegend Inc, Advanced Cytometry, San Diego, CA, United States
| | - David R. McIlwain
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Garry P. Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| |
Collapse
|
11
|
Shao MM, Yi FS, Huang ZY, Peng P, Wu FY, Shi HZ, Zhai K. T Cell Receptor Repertoire Analysis Reveals Signatures of T Cell Responses to Human Mycobacterium tuberculosis. Front Microbiol 2022; 13:829694. [PMID: 35197957 PMCID: PMC8859175 DOI: 10.3389/fmicb.2022.829694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Abstract
Characterization of T cell receptor (TCR) repertoires is essential for understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection involving T cell adaptive immunity. The characteristics of TCR sequences and distinctive signatures of T cell subsets in tuberculous patients are still unclear. By combining single-cell TCR sequencing (sc-TCR seq) with single-cell RNA sequencing (sc-RNA seq) and flow cytometry to characterize T cells in tuberculous pleural effusions (TPEs), we identified 41,718 CD3+ T cells in TPEs and paired blood samples, including 30,515 CD4+ T cells and 11,203 CD8+ T cells. Compared with controls, no differences in length and profile of length distribution were observed in complementarity determining region 3 (CDR3) in both CD4+ and CD8+ T cells in TPE. Altered hydrophobicity was demonstrated in CDR3 in CD8+ T cells and a significant imbalance in the TCR usage pattern of T cells with preferential expression of TRBV4-1 in TPE. A significant increase in clonality was observed in TCR repertoires in CD4+ T cells, but not in CD8+ T cells, although both enriched CD4+ and CD8+ T cells showed TH1 and cytotoxic signatures. Furthermore, we identified a new subset of polyfunctional CD4+ T cells with CD1-restricted, TH1, and cytotoxic characteristics, and this subset might provide protective immunity against Mtb.
Collapse
Affiliation(s)
- Ming-Ming Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhong-Yin Huang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Peng Peng
- Department of Respiratory and Critical Care Medicine, Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Feng-Yao Wu
- Department of Tuberculosis, Nanning Fourth People’s Hospital, Nanning, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Kan Zhai,
| |
Collapse
|
12
|
Zhou AX, Scriba TJ, Day CL, Hagge DA, Seshadri C. A simple assay to quantify mycobacterial lipid antigen-specific T cell receptors in human tissues and blood. PLoS Negl Trop Dis 2021; 15:e0010018. [PMID: 34914694 PMCID: PMC8717985 DOI: 10.1371/journal.pntd.0010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/30/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
T cell receptors (TCRs) encode the history of antigenic challenge within an individual and have the potential to serve as molecular markers of infection. In addition to peptide antigens bound to highly polymorphic MHC molecules, T cells have also evolved to recognize bacterial lipids when bound to non-polymorphic CD1 molecules. One such subset, germline-encoded, mycolyl lipid-reactive (GEM) T cells, recognizes mycobacterial cell wall lipids and expresses a conserved TCR-ɑ chain that is shared among genetically unrelated individuals. We developed a quantitative PCR assay to determine expression of the GEM TCR-ɑ nucleotide sequence in human tissues and blood. This assay was validated on plasmids and T cell lines. We tested blood samples from South African subjects with or without tuberculin reactivity or with active tuberculosis disease. We were able to detect GEM TCR-ɑ above the limit of detection in 92% of donors but found no difference in GEM TCR-ɑ expression among the three groups after normalizing for total TCR-ɑ expression. In a cohort of leprosy patients from Nepal, we successfully detected GEM TCR-ɑ in 100% of skin biopsies with histologically confirmed tuberculoid and lepromatous leprosy. Thus, GEM T cells constitute part of the T cell repertoire in the skin. However, GEM TCR-ɑ expression was not different between leprosy patients and control subjects after normalization. Further, these results reveal the feasibility of developing a simple, field deployable molecular diagnostic based on mycobacterial lipid antigen-specific TCR sequences that are readily detectable in human tissues and blood independent of genetic background.
Collapse
MESH Headings
- Antigens, CD1/genetics
- Antigens, CD1/immunology
- Cell Wall/genetics
- Cell Wall/immunology
- Cohort Studies
- Humans
- Leprosy/blood
- Leprosy/diagnosis
- Leprosy/immunology
- Leprosy/microbiology
- Lipids/immunology
- Molecular Diagnostic Techniques/methods
- Mycobacterium/genetics
- Mycobacterium/immunology
- Mycobacterium/isolation & purification
- Nepal
- Polymerase Chain Reaction
- Receptors, Antigen, T-Cell, alpha-beta/blood
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- South Africa
- T-Lymphocytes/immunology
- T-Lymphocytes/microbiology
- Tuberculosis/blood
- Tuberculosis/diagnosis
- Tuberculosis/immunology
- Tuberculosis/microbiology
Collapse
Affiliation(s)
- Angela X. Zhou
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Tuberculosis Research and Training Center, University of Washington, Seattle, Washington, United States of America
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Cheryl L. Day
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Deanna A. Hagge
- Mycobacterial Research Laboratories, Anandaban Hospital, Kathmandu, Nepal
| | - Chetan Seshadri
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Tuberculosis Research and Training Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
13
|
Hermann C, King CG. TB or not to be: what specificities and impact do antibodies have during tuberculosis? OXFORD OPEN IMMUNOLOGY 2021; 2:iqab015. [PMID: 36845566 PMCID: PMC9914581 DOI: 10.1093/oxfimm/iqab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis, an infectious disease caused by Mycobacterium tuberculosis (Mtb), is a major cause of global morbidity and mortality. The primary barrier to the development of an effective tuberculosis vaccine is our failure to fully understand the fundamental characteristics of a protective immune response. There is an increasing evidence that mobilization of antibody and B cell responses during natural Mtb infection and vaccination play a role in host protection. Several studies have assessed the levels of Mtb-specific antibodies induced during active disease as well as the potential of monoclonal antibodies to modulate bacterial growth in vitro and in vivo. A major limitation of these studies, however, is that the specific antigens capable of eliciting humoral responses are largely unknown. As a result, information about antibody dynamics and function, which might fundamentally transform our understanding of host Mtb immunity, is missing. Importantly, Mtb infection also induces the recruitment, accumulation and colocalization of B and T cells in the lung, which are positively correlated with protection in humans and animal models of disease. These ectopic lymphoid tissues generally support local germinal center reactions for the proliferation and ongoing selection of effector and memory B cells in the mucosa. Efforts to leverage such responses for human health, however, require a more complete understanding of how antibodies and B cells contribute to the local and systemic host Mtb immunity.
Collapse
Affiliation(s)
- Clemens Hermann
- Department of Biomedicine, University of Basel, University Hospital of Basel, CH-4031 Basel, Switzerland
| | - Carolyn G King
- Department of Biomedicine, University of Basel, University Hospital of Basel, CH-4031 Basel, Switzerland,Correspondence address. Department of Biomedicine, University of Basel, University Hospital of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland. Tel: +41 61 265 3874; E-mail:
| |
Collapse
|
14
|
Holzheimer M, Buter J, Minnaard AJ. Chemical Synthesis of Cell Wall Constituents of Mycobacterium tuberculosis. Chem Rev 2021; 121:9554-9643. [PMID: 34190544 PMCID: PMC8361437 DOI: 10.1021/acs.chemrev.1c00043] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The pathogen Mycobacterium tuberculosis (Mtb), causing
tuberculosis disease, features an extraordinary
thick cell envelope, rich in Mtb-specific lipids,
glycolipids, and glycans. These cell wall components are often directly
involved in host–pathogen interaction and recognition, intracellular
survival, and virulence. For decades, these mycobacterial natural
products have been of great interest for immunology and synthetic
chemistry alike, due to their complex molecular structure and the
biological functions arising from it. The synthesis of many of these
constituents has been achieved and aided the elucidation of their
function by utilizing the synthetic material to study Mtb immunology. This review summarizes the synthetic efforts of a quarter
century of total synthesis and highlights how the synthesis layed
the foundation for immunological studies as well as drove the field
of organic synthesis and catalysis to efficiently access these complex
natural products.
Collapse
Affiliation(s)
- Mira Holzheimer
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jeffrey Buter
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
15
|
The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host's immune system. Biochem J 2020; 477:1983-2006. [PMID: 32470138 PMCID: PMC7261415 DOI: 10.1042/bcj20200194] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
Tuberculosis, caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is the leading cause of death from an infectious disease, with a mortality rate of over a million people per year. This pathogen's remarkable resilience and infectivity is largely due to its unique waxy cell envelope, 40% of which comprises complex lipids. Therefore, an understanding of the structure and function of the cell wall lipids is of huge indirect clinical significance. This review provides a synopsis of the cell envelope and the major lipids contained within, including structure, biosynthesis and roles in pathogenesis.
Collapse
|
16
|
Hermann C, Karamchand L, Blackburn JM, Soares NC. Cell Envelope Proteomics of Mycobacteria. J Proteome Res 2020; 20:94-109. [PMID: 33140963 DOI: 10.1021/acs.jproteome.0c00650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The World Health Organization (WHO) estimates that Mycobacterium tuberculosis, the most pathogenic mycobacterium species to humans, has infected up to a quarter of the world's population, with the occurrence of multidrug-resistant strains on the rise. Research into the detailed composition of the cell envelope proteome in mycobacteria over the last 20 years has formed a key part of the efforts to understand host-pathogen interactions and to control the current tuberculosis epidemic. This is due to the great importance of the cell envelope proteome during infection and during the development of antibiotic resistance as well as the search of surface-exposed proteins that could be targeted by therapeutics and vaccines. A variety of experimental approaches and mycobacterial species have been used in proteomic studies thus far. Here we provide for the first time an extensive summary of the different approaches to isolate the mycobacterial cell envelope, highlight some of the limitations of the studies performed thus far, and comment on how the recent advances in membrane proteomics in other fields might be translated into the field of mycobacteria to provide deeper coverage.
Collapse
Affiliation(s)
- Clemens Hermann
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Leshern Karamchand
- National Research Council Canada, Nanotechnology Research Centre, Biomedical Nanotechnologies, 11421 Saskatchewan Drive NW, Edmonton, Alberta T6G 2M9, Canada
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.,College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
17
|
Camacho F, Moreno E, Garcia-Alles LF, Chinea Santiago G, Gilleron M, Vasquez A, Choong YS, Reyes F, Norazmi MN, Sarmiento ME, Acosta A. A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors. Front Immunol 2020; 11:566710. [PMID: 33162982 PMCID: PMC7591678 DOI: 10.3389/fimmu.2020.566710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022] Open
Abstract
Lipids, glycolipids and lipopeptides derived from Mycobacterium tuberculosis (Mtb) are presented to T cells by monomorphic molecules known as CD1. This is the case of the Mtb-specific sulfoglycolipid Ac2SGL, which is presented by CD1b molecules and is recognized by T cells found in tuberculosis (TB) patients and in individuals with latent infections. Our group, using filamentous phage display technology, obtained two specific ligands against the CD1b-Ac2SGL complex: (i) a single chain T cell receptor (scTCR) from a human T cell clone recognizing the CD1b-AcSGL complex; and (ii) a light chain domain antibody (dAbκ11). Both ligands showed lower reactivity to a synthetic analog of Ac2SGL (SGL12), having a shorter acyl chain as compared to the natural antigen. Here we put forward the hypothesis that the CD1b endogenous spacer lipid (EnSpacer) plays an important role in the recognition of the CD1b-Ac2SGL complex by specific T cells. To support this hypothesis we combined: (a) molecular binding assays for both the scTCR and the dAbκ11 antibody domain against a small panel of synthetic Ac2SGL analogs having different acyl chains, (b) molecular modeling of the CD1b-Ac2SGL/EnSpacer complex, and (c) modeling of the interactions of this complex with the scTCR. Our results contribute to understand the mechanisms of lipid presentation by CD1b molecules and their interactions with T-cell receptors and other specific ligands, which may help to develop specific tools targeting Mtb infected cells for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Frank Camacho
- Biologicals Sciences School, University of Concepcion, Concepcion, Chile
| | - Ernesto Moreno
- Faculty of Basic Sciences, University of Medellin, Medellin, Colombia
| | | | | | - Martine Gilleron
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, Toulouse, France
| | - Aleikar Vasquez
- Biologicals Sciences School, University of Concepcion, Concepcion, Chile
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Malaysia
| | - Fátima Reyes
- Biologicals Sciences School, University of Concepcion, Concepcion, Chile
| | - Mohd Nor Norazmi
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Maria E. Sarmiento
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Armando Acosta
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
18
|
Herrmann T, Karunakaran MM, Fichtner AS. A glance over the fence: Using phylogeny and species comparison for a better understanding of antigen recognition by human γδ T-cells. Immunol Rev 2020; 298:218-236. [PMID: 32981055 DOI: 10.1111/imr.12919] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 01/20/2023]
Abstract
Both, jawless and jawed vertebrates possess three lymphocyte lineages defined by highly diverse antigen receptors: Two T-cell- and one B-cell-like lineage. In both phylogenetic groups, the theoretically possible number of individual antigen receptor specificities can even outnumber that of lymphocytes of a whole organism. Despite fundamental differences in structure and genetics of these antigen receptors, convergent evolution led to functional similarities between the lineages. Jawed vertebrates possess αβ and γδ T-cells defined by eponymous αβ and γδ T-cell antigen receptors (TCRs). "Conventional" αβ T-cells recognize complexes of Major Histocompatibility Complex (MHC) class I and II molecules and peptides. Non-conventional T-cells, which can be αβ or γδ T-cells, recognize a large variety of ligands and differ strongly in phenotype and function between species and within an organism. This review describes similarities and differences of non-conventional T-cells of various species and discusses ligands and functions of their TCRs. A special focus is laid on Vγ9Vδ2 T-cells whose TCRs act as sensors for phosphorylated isoprenoid metabolites, so-called phosphoantigens (PAg), associated with microbial infections or altered host metabolism in cancer or after drug treatment. We discuss the role of butyrophilin (BTN)3A and BTN2A1 in PAg-sensing and how species comparison can help in a better understanding of this human Vγ9Vδ2 T-cell subset.
Collapse
Affiliation(s)
- Thomas Herrmann
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
19
|
Basu S, Elkington P, Rao NA. Pathogenesis of ocular tuberculosis: New observations and future directions. Tuberculosis (Edinb) 2020; 124:101961. [PMID: 33010848 DOI: 10.1016/j.tube.2020.101961] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023]
Abstract
Ocular tuberculosis (OTB) encompasses all forms of intra- and extra-ocular inflammation associated with Mycobacterium tuberculosis (Mtb) infection. However, the organism is rarely found in ocular fluid samples of diseased eyes, rendering the pathomechanisms of the disease unclear. This confounds clinical decision-making in diagnosis and treatment of OTB. Here, we critically review existing human and animal data related to ocular inflammation and TB pathogenesis to unravel likely pathomechanisms of OTB. Broadly there appear to be two fundamental mechanisms that may underlie the development of TB-associated ocular inflammation: a. inflammatory response to live/replicating Mtb in the eye, and b. immune mediated ocular inflammation induced by non-viable Mtb or its components in the eye. This distinction is significant as in direct Mtb-driven mechanisms, diagnosis and treatment would be aimed at detection of Mtb-infection and its elimination; while indirect mechanisms would primarily require anti-inflammatory therapy with adjunctive anti-TB therapy. Further, we discuss how that most clinical phenotypes of OTB likely represent a combination of both mechanisms, with one being predominant than the other.
Collapse
Affiliation(s)
- Soumyava Basu
- Retina and Uveitis Service, L V Prasad Eye Institute (Mithu Tulsi Chanrai Campus), Bhubaneswar, India.
| | - Paul Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Narsing A Rao
- USC-Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Layre E. Trafficking of Mycobacterium tuberculosis Envelope Components and Release Within Extracellular Vesicles: Host-Pathogen Interactions Beyond the Wall. Front Immunol 2020; 11:1230. [PMID: 32765485 PMCID: PMC7378356 DOI: 10.3389/fimmu.2020.01230] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Components of Mycobacterium tuberculosis (Mtb) envelope such as lipoproteins, lypoglycans, lipids, and glycolipids act as Pathogen Associated Molecular Patterns and/or antigens, hence contributing in different ways to the bacillus recognition, phagocytosis, and to immune responses modulation. However, Mtb envelope components are not only encountered at the bacillus-host direct contact but can act remotely from the bacillus envelope. Indeed, they are also released from the bacillus envelope and are detected in different compartments such as the infected cells endosomal compartments or in extracellular vesicles produced by the bacillus itself or by infected cells. Characterizing their trafficking is of main importance for our understanding of their role in host-pathogen interactions and consequently for their potential use as vaccine components. This review aims at providing an overview of the current knowledge of the nature of Mtb envelope components shuttled within extracellular vesicles, the interaction of these vesicles with host immune cells and the remaining black holes.
Collapse
Affiliation(s)
- Emilie Layre
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
21
|
Schmaler M, Orlova-Fink N, Rutishauser T, Abdulla S, Daubenberger C. Human unconventional T cells in Plasmodium falciparum infection. Semin Immunopathol 2020; 42:265-277. [PMID: 32076813 PMCID: PMC7223888 DOI: 10.1007/s00281-020-00791-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
Abstract
Malaria is an old scourge of humankind and has a large negative impact on the economic development of affected communities. Recent success in malaria control and reduction of mortality seems to have stalled emphasizing that our current intervention tools need to be complemented by malaria vaccines. Different populations of unconventional T cells such as mucosal-associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells and γδ T cells are gaining attention in the field of malaria immunology. Significant advances in our basic understanding of unconventional T cell biology in rodent malaria models have been made, however, their roles in humans during malaria are less clear. Unconventional T cells are abundant in skin, gut and liver tissues, and long-lasting expansions and functional alterations were observed upon malaria infection in malaria naïve and malaria pre-exposed volunteers. Here, we review the current understanding of involvement of unconventional T cells in anti-Plasmodium falciparum immunity and highlight potential future research avenues.
Collapse
Affiliation(s)
- Mathias Schmaler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Nina Orlova-Fink
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Tobias Rutishauser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Clinical Trial Unit, Bagamoyo, Tanzania
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.
| |
Collapse
|
22
|
Schrager LK, Vekemens J, Drager N, Lewinsohn DM, Olesen OF. The status of tuberculosis vaccine development. THE LANCET. INFECTIOUS DISEASES 2020; 20:e28-e37. [DOI: 10.1016/s1473-3099(19)30625-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
|
23
|
Kroesen VM, Madacki J, Frigui W, Sayes F, Brosch R. Mycobacterial virulence: impact on immunogenicity and vaccine research. F1000Res 2019; 8. [PMID: 32047597 PMCID: PMC6979476 DOI: 10.12688/f1000research.20572.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 12/17/2022] Open
Abstract
The borderline between virulence and efficacy in live attenuated vaccine strains is often blurred and this is also the case for the Bacillus Calmette–Guérin (BCG), the only currently licensed anti-tuberculosis vaccine used on a large, global scale, which was obtained almost 100 years ago. While BCG is more than 99% identical at the genome level to
Mycobacterium tuberculosis, the causative pathogen of human tuberculosis, some important differences in virulence factors cause naturally irreversible attenuation and safety of this vaccine in the immunocompetent host. Some of these virulence factors are involved in persistence capacities of the vaccine strains and also represent strong immunogens, responsible for inducing different host signaling pathways, which have to be taken into consideration for the development of revised and new vaccine strains. Here we discuss a number of selected mycobacterial features in relation to their biological functions and potential impact on virulence and vaccine efficacy.
Collapse
Affiliation(s)
- Vera M Kroesen
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut Pasteur, Paris, France.,Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jan Madacki
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut Pasteur, Paris, France
| | - Wafa Frigui
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut Pasteur, Paris, France
| | - Fadel Sayes
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut Pasteur, Paris, France
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut Pasteur, Paris, France
| |
Collapse
|
24
|
Vivas W, Leonhardt I, Hünniger K, Häder A, Marolda A, Kurzai O. Multiple Signaling Pathways Involved in Human Dendritic Cell Maturation Are Affected by the Fungal Quorum-Sensing Molecule Farnesol. THE JOURNAL OF IMMUNOLOGY 2019; 203:2959-2969. [DOI: 10.4049/jimmunol.1900431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/25/2019] [Indexed: 01/30/2023]
|
25
|
Liu X, Li F, Niu H, Ma L, Chen J, Zhang Y, Peng L, Gan C, Ma X, Zhu B. IL-2 Restores T-Cell Dysfunction Induced by Persistent Mycobacterium tuberculosis Antigen Stimulation. Front Immunol 2019; 10:2350. [PMID: 31632413 PMCID: PMC6783502 DOI: 10.3389/fimmu.2019.02350] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is a chronic disease mainly caused by Mycobacterium tuberculosis. The function of T cells usually decreased and even exhausted in severe TB such as multiple drug resistant TB (MDR-TB), which might lead to the failure of treatment in return. The mechanism of T cell dysfunction in TB is still not clear. In this study we set up a mouse model of T cell dysfunction by persistent M. tuberculosis antigen stimulation and investigated the therapeutic role of interleukin 2 (IL-2) in it. C57BL/6 mice were primed with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) and boosted repeatedly with a combination of M. tuberculosis fusion proteins Mtb10.4-HspX (MH) plus ESAT6-Ag85B-MPT64 <190-198>-Mtb8.4-Rv2626c (LT70) or MH plus ESAT6 and CFP10 with adjuvant of N, N'-dimethyl-N, N'-dioctadecylammonium bromide (DDA) plus polyinosinic-polycytidylic acid (Poly I:C). Following persistent antigen stimulation, the mice were treated with IL-2 and the therapeutic effects were analyzed. The results showed that compared with the mice that received transient antigen stimulation (boost twice), persistent antigen stimulation (boost more than 10 times) resulted in decrease of antigen specific IFN-γ and IL-2 production, reduction of memory CD8+ T cells, over-expression of immune checkpoint programmed cell death protein 1 (PD-1), and impaired the protective immunity against bacterial challenge. Treating the T cell functionally exhausted mice with IL-2 restored antigen-specific T cell responses and protective efficacy. In conclusion, persistent stimulation with M. tuberculosis antigens induced T cell dysfunction, which could be restored by complement of IL-2.
Collapse
Affiliation(s)
- Xun Liu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Pathogen Biology, Lanzhou University, Lanzhou, China
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Pathogen Biology, Lanzhou University, Lanzhou, China
| | - Hongxia Niu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Pathogen Biology, Lanzhou University, Lanzhou, China
| | - Lan Ma
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Pathogen Biology, Lanzhou University, Lanzhou, China
| | - Jianzhu Chen
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Liang Peng
- Center of Life Science, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chao Gan
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Pathogen Biology, Lanzhou University, Lanzhou, China
| | - Xingming Ma
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Institute of Pathogen Biology, Lanzhou University, Lanzhou, China
| |
Collapse
|
26
|
Correia-Neves M, Sundling C, Cooper A, Källenius G. Lipoarabinomannan in Active and Passive Protection Against Tuberculosis. Front Immunol 2019; 10:1968. [PMID: 31572351 PMCID: PMC6749014 DOI: 10.3389/fimmu.2019.01968] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Glycolipids of the cell wall of Mycobacterium tuberculosis (Mtb) are important immunomodulators in tuberculosis. In particular, lipoarabinomannan (LAM) has a profound effect on the innate immune response. LAM and its structural variants can be recognized by and activate human CD1b-restricted T cells, and emerging evidence indicates that B cells and antibodies against LAM can modulate the immune response to Mtb. Anti-LAM antibodies are induced during Mtb infection and after bacille Calmette-Guerin (BCG) vaccination, and monoclonal antibodies against LAM have been shown to confer protection by passive administration in mice and guinea pigs. In this review, we describe the immune response against LAM and the potential use of the mannose-capped arabinan moiety of LAM in the construction of vaccine candidates against tuberculosis.
Collapse
Affiliation(s)
- Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Cooper
- Leicester Tuberculosis Research Group (LTBRG), Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Gunilla Källenius
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Counoupas C, Triccas JA. The generation of T-cell memory to protect against tuberculosis. Immunol Cell Biol 2019; 97:656-663. [PMID: 31127962 DOI: 10.1111/imcb.12275] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) kills more individuals each year than any other single pathogen and a more effective vaccine is critical for the global control of the disease. Although there has been recent progress in the clinical testing of candidates, no new vaccine has been licensed for use and correlates of protective immunity in humans have not been defined. Prior Mycobacterium tuberculosis infection does not appear to confer long-term protective immunity in humans; thus mimicking the natural immune response to infection may not be a suitable approach to develop improved TB vaccines. Data from animal testing are used to progress vaccines through the "vaccine pipeline", but studies in animals have not been able to predict efficacy in humans. Furthermore, although the generation of conventional CD4+ T-cell responses are considered necessary to control infection with M. tuberculosis, these do not necessarily correlate with protection induced by candidate vaccines and other immune components may play a role, including donor unrestricted T cells, tissue-resident memory T cells and anti-M. tuberculosis antibodies. This review will summarize the current understanding of the protective immune responses following M. tuberculosis infection or vaccination, with a particular focus on vaccines that have recently entered clinical trials.
Collapse
Affiliation(s)
- Claudio Counoupas
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
| | - James A Triccas
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
28
|
Abstract
Mycobacterium tuberculosis synthesizes a wide variety of complex lipids that can serve as antigens in immune recognition of the bacterium. In this issue of Cell Chemical Biology, Gilleron et al. (2016) identify key enzymes essential for lipid antigen processing, which is required for CD1b-restricted T cell activation.
Collapse
Affiliation(s)
- Peter Sander
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30/32, CH-8006 Zurich, Switzerland.
| | - Katja Becker
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30/32, CH-8006 Zurich, Switzerland
| | - Michael Dal Molin
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30/32, CH-8006 Zurich, Switzerland
| |
Collapse
|
29
|
Taheri M, Danesh H, Bizhani F, Bahari G, Naderi M, Hashemi M. Association between genetic variants in CD1A and CD1D genes and pulmonary tuberculosis in an Iranian population. Biomed Rep 2019; 10:259-265. [PMID: 30972222 DOI: 10.3892/br.2019.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/12/2019] [Indexed: 11/06/2022] Open
Abstract
Cluster of differentiation (CD)1 molecules are a highly conserved family of MCH-like transmembrane glycoproteins that bind lipid and glycolipid antigens and present a diverse range of microbial and self-glycolipids to antigen-specific T cells. The current study aimed to find out the impact of CD1A and CD1D polymorphisms on pulmonary tuberculosis (PTB). This case-control study encompassed 172 PTB patients and 180 healthy subjects. Genotyping of CD1A and CD1D variants was achieved using the polymerase chain reaction restriction fragment length polymorphism method. The results revealed that CD1A rs411089 variant significantly increased the risk of PTB in recessive model [odds ratio (OR)=2.71, 95% confidence interval (CI)=1.38-5.57, CC vs. TT+TC, P=0.005]. CD1D rs859009 polymorphism significantly reduced the risk of PTB in heterozygous codominant (OR=0.50, 95% CI=0.29-0.86, P=0.011, GC vs. GG) and dominant (OR=0.53, 95% CI=0.31-0.88, P=0.019, GC+CC vs. GG) inheritance model. The CD1A rs366316, CD1D rs973742 and CD1D rs859010 were not associated with the risk/protection from PTB (P>0.05). The results of the present study suggest that CD1A rs411089 and CD1D rs859009 but not CD1A rs366316, CD1D rs973742 and CD1D rs859010 polymorphisms are associated with PTB in a sample of the Iranian population. Further investigation with different ethnicities and larger sample sizes are necessary to certify the findings of the present study.
Collapse
Affiliation(s)
- Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Hiva Danesh
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Fatemeh Bizhani
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Gholamreza Bahari
- Children and Adolescent Health Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Mohammad Naderi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Mohammad Hashemi
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| |
Collapse
|
30
|
Counoupas C, Triccas JA, Britton WJ. Deciphering protective immunity against tuberculosis: implications for vaccine development. Expert Rev Vaccines 2019; 18:353-364. [PMID: 30793629 DOI: 10.1080/14760584.2019.1585246] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The development of more effective tuberculosis (TB) vaccines is essential for the global control of TB. Recently, there have been major advances in the field, but an important hindrance remains the lack of correlates of protection against TB. This requires each vaccine candidate to undergo clinical efficacy trials based on data from animal protection studies, but the results from animal models do not necessarily predict efficacy in humans. AREAS COVERED In this review we summarize our current knowledge of immune mechanisms that may contribute to protective immunity against TB following vaccination and relate these to protective efficacy in animal models and recent clinical trials. Although some initial trials did not reproduce protection against TB in humans, recent trials have demonstrated promising efficacy for three vaccine approaches. EXPERT OPINION Although CD4+ T lymphocytes are essential for protection against TB, there is no clear correlation between conventional CD4+ or CD8+ T cell responses and protective efficacy of TB vaccines. Recent attention has focused on other immune responses, including donor unrestricted T cells, B lymphocytes, and antibodies. Prospective studies on samples from vaccinated individuals protected in recent trials will allow evaluation of these alternative immune mechanisms as potential correlates of protection.
Collapse
Affiliation(s)
- Claudio Counoupas
- a Tuberculosis Research Program Centenary Institute , The University of Sydney , Camperdown , NSW , Australia.,b The University of Sydney , Central Clinical School Faculty of Medicine and Health , Sydney , NSW , Australia
| | - James A Triccas
- a Tuberculosis Research Program Centenary Institute , The University of Sydney , Camperdown , NSW , Australia
| | - Warwick J Britton
- a Tuberculosis Research Program Centenary Institute , The University of Sydney , Camperdown , NSW , Australia.,b The University of Sydney , Central Clinical School Faculty of Medicine and Health , Sydney , NSW , Australia
| |
Collapse
|
31
|
Hyoe RK, Robert J. A Xenopus tadpole alternative model to study innate-like T cell-mediated anti-mycobacterial immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:253-259. [PMID: 30521838 PMCID: PMC6330235 DOI: 10.1016/j.dci.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Owing to the high incidence of multi-drug resistance and challenges posed by the complex and long duration of treatments, Mycobacterium tuberculosis (Mtb) infections remain a significant clinical burden, which would benefit from development of novel immuno-therapeutic-based treatment strategies. Among early immune effectors, invariant or innate-like (i)T cells are attracting attention because of their potential regulatory activity, which can shape anti-mycobacterial immune responses. Unlike conventional T cells, iT cells express a semi-invariant T cell receptor, and respond rapidly and robustly to molecular patterns presented by MHC class I-like molecules. To date, functional studies of iT cells in vivo has been problematic and the role of iT cells in anti-Mtb responses remains unclear. Here, after reviewing the recent literature on anti-mycobacterial iT cell immunity, we describe a novel alternative model system in the amphibian Xenopus laevis tadpoles during infection with Mycobacterium marinum (Mm). X. laevis tadpoles rely mostly on a few distinct prominent innate-like (i)T cell subsets, whose development and function are governed by distinct MHC class I-like molecules. Thus, X. laevis tadpoles provide a convenient and cost-effective in vivo model uniquely suited to investigate the roles of iT cells during mycobacterial infections. We have developed reverse genetics and MHC tetramer technology to characterize this MHC-like/iT system in tadpoles. Our study in X. laevis provides evidence of a conserved convergent function of iT cells in host defenses against mycobacteria between mammals and amphibians.
Collapse
Affiliation(s)
- Rhoo Kun Hyoe
- Department of Microbiology and Immunology, University of Rochester Medical Center, United States
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, United States.
| |
Collapse
|
32
|
Abstract
Most studies of T lymphocytes focus on recognition of classical major histocompatibility complex (MHC) class I or II molecules presenting oligopeptides, yet there are numerous variations and exceptions of biological significance based on recognition of a wide variety of nonclassical MHC molecules. These include αβ and γδ T cells that recognize different class Ib molecules (CD1, MR-1, HLA-E, G, F, et al.) that are nearly monomorphic within a given species. Collectively, these T cells can be considered “unconventional,” in part because they recognize lipids, metabolites, and modified peptides. Unlike classical MHC-specific cells, unconventional T cells generally exhibit limited T-cell antigen receptor (TCR) repertoires and often produce innate immune cell-like rapid effector responses. Exploiting this system in new generation vaccines for human immunodeficiency virus (HIV), tuberculosis (TB), other infectious agents, and cancer was the focus of a recent workshop, “Immune Surveillance by Non-classical MHC Molecules: Improving Diversity for Antigens,” sponsored by the National Institute of Allergy and Infectious Diseases. Here, we summarize salient points presented regarding the basic immunobiology of unconventional T cells, recent advances in methodologies to measure unconventional T-cell activity in diseases, and approaches to harness their considerable clinical potential.
Collapse
|
33
|
Abstract
Tuberculosis kills more people worldwide than any other single infectious disease agent, a threat made more dire by the spread of drug-resistant strains of Mycobacterium tuberculosis (Mtb). Development of new vaccines capable of preventing TB disease and new Mtb infection are an essential component of the strategy to combat the TB epidemic. Accordingly, the WHO considers the development of new TB vaccines a major public health priority. In October 2017, the WHO convened a consultation with global leaders in the TB vaccine development field to emphasize the WHO commitment to this effort and to facilitate creative approaches to the discovery and development of TB vaccine candidates. This review summarizes the presentations at this consultation, updated with scientific literature references, and includes discussions of the public health need for a TB vaccine; the status of efforts to develop vaccines to replace or potentiate BCG in infants and develop new TB vaccines for adolescents and adults; strategies being employed to diversify vaccine platforms; and new animal models being developed to facilitate TB vaccine development. A perspective on the status of these efforts from the major funders and organizational contributors also is included. This presentation highlights the extraordinary progress being made to develop new TB vaccines and provided a clear picture of the exciting development pathways that are being explored.
Collapse
Affiliation(s)
| | | | - Johan Vekemans
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland
| |
Collapse
|
34
|
Abstract
Tuberculosis kills more people worldwide than any other single infectious disease agent, a threat made more dire by the spread of drug-resistant strains of Mycobacterium tuberculosis (Mtb). Development of new vaccines capable of preventing TB disease and new Mtb infection are an essential component of the strategy to combat the TB epidemic. Accordingly, the WHO considers the development of new TB vaccines a major public health priority. In October 2017, the WHO convened a consultation with global leaders in the TB vaccine development field to emphasize the WHO commitment to this effort and to facilitate creative approaches to the discovery and development of TB vaccine candidates. This review summarizes the presentations at this consultation, updated with scientific literature references, and includes discussions of the public health need for a TB vaccine; the status of efforts to develop vaccines to replace or potentiate BCG in infants and develop new TB vaccines for adolescents and adults; strategies being employed to diversify vaccine platforms; and new animal models being developed to facilitate TB vaccine development. A perspective on the status of these efforts from the major funders and organizational contributors also is included. This presentation highlights the extraordinary progress being made to develop new TB vaccines and provided a clear picture of the exciting development pathways that are being explored.
Collapse
Affiliation(s)
| | | | - Johan Vekemans
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland
| |
Collapse
|
35
|
BoseDasgupta S, Pieters J. Macrophage-microbe interaction: lessons learned from the pathogen Mycobacterium tuberculosis. Semin Immunopathol 2018; 40:577-591. [PMID: 30306257 DOI: 10.1007/s00281-018-0710-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
Macrophages, being the cornerstone of the immune system, have adapted the ancient nutrient acquisition mechanism of phagocytosis to engulf various infectious organisms thereby helping to orchestrate an appropriate host response. Phagocytosis refers to the process of internalization and degradation of particulate material, damaged and senescent cells and microorganisms by specialized cells, after which the vesicle containing the ingested particle, the phagosome, matures into acidic phagolysosomes upon fusion with hydrolytic enzyme-containing lysosomes. The destructive power of the macrophage is further exacerbated through the induction of macrophage activation upon a variety of inflammatory stimuli. Despite being the end-point for many phagocytosed microbes, the macrophage can also serve as an intracellular survival niche for a number of intracellular microorganisms. One microbe that is particularly successful at surviving within macrophages is the pathogen Mycobacterium tuberculosis, which can efficiently manipulate the macrophage at several levels, including modulation of the phagocytic pathway as well as interfering with a number of immune activation pathways that normally would lead to eradication of the internalized bacilli. M. tuberculosis excels at circumventing destruction within macrophages, thus establishing itself successfully for prolonged times within the macrophage. In this contribution, we describe a number of general features of macrophages in the context of their function to clear an infection, and highlight the strategies employed by M. tuberculosis to counter macrophage attack. Interestingly, research on the evasion tactics employed by M. tuberculosis within macrophages not only helps to design strategies to curb tuberculosis, but also allows a better understanding of host cell biology.
Collapse
Affiliation(s)
- Somdeb BoseDasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Jean Pieters
- Department of Biochemistry, Biozentrum, University of Basel, 50-70 Klingelbergstrasse, 4056, Basel, Switzerland.
| |
Collapse
|
36
|
Shahine A, Van Rhijn I, Cheng TY, Iwany S, Gras S, Moody DB, Rossjohn J. A molecular basis of human T cell receptor autoreactivity toward self-phospholipids. Sci Immunol 2018; 2:2/16/eaao1384. [PMID: 29054999 PMCID: PMC6649662 DOI: 10.1126/sciimmunol.aao1384] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022]
Abstract
Human T cell autoreactivity toward lipid antigens presented by CD1 proteins can manifest in numerous diseases, including psoriasis, contact hypersensitivities, and allergies. However, the molecular mechanisms for regulating T cell autoreactivity toward lipid antigens remain unclear. We determined the basis for T cell receptor (TCR) autoreactivity toward CD1b bound to self-phospholipids. The spectrum of self-antigens captured by CD1b skews toward abundant membrane phospholipids such as phosphatidylcholine and phosphatidylethanolamine. However, TCRs can specifically recognize rare phospholipids, including phosphatidylglycerol (PG). The structure of an autoreactive TCR bound to CD1b-PG shows that discrimination occurs through a marked induced fit movement of PG so that its polar head group fits snugly into the cationic cup of the TCR. Conversely, TCR binding toward ubiquitous self-phospholipids was sterically or electrostatically repelled. Accordingly, we describe a mechanism of TCR autoreactivity toward rare phospholipids and avoidance of autoreactivity to the most abundant self-phospholipids.
Collapse
Affiliation(s)
- Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, Netherlands
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sarah Iwany
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - D Branch Moody
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
37
|
Lepore M, Mori L, De Libero G. The Conventional Nature of Non-MHC-Restricted T Cells. Front Immunol 2018; 9:1365. [PMID: 29963057 PMCID: PMC6010553 DOI: 10.3389/fimmu.2018.01365] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022] Open
Abstract
The definition “unconventional T cells” identifies T lymphocytes that recognize non-peptide antigens presented by monomorphic antigen-presenting molecules. Two cell populations recognize lipid antigens and small metabolites presented by CD1 and MR1 molecules, respectively. A third cell population expressing the TCR Vγ9Vδ2 is stimulated by small phosphorylated metabolites. In the recent past, we have learnt a lot about the selection, tissue distribution, gene transcription programs, mode of expansion after antigen recognition, and persistence of these cells. These studies depict their functions in immune homeostasis and diseases. Current investigations are revealing that unconventional T cells include distinct sub-populations, which display unexpected similarities to classical MHC-restricted T cells in terms of TCR repertoire diversity, antigen specificity variety, functional heterogeneity, and naïve-to-memory differentiation dynamic. This review discusses the latest findings with a particular emphasis on these T cells, which appear to be more conventional than previously appreciated, and with the perspective of using CD1 and MR1-restricted T cells in vaccination and immunotherapy.
Collapse
Affiliation(s)
- Marco Lepore
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
38
|
Gras S, Van Rhijn I, Shahine A, Le Nours J. Molecular recognition of microbial lipid-based antigens by T cells. Cell Mol Life Sci 2018; 75:1623-1639. [PMID: 29340708 PMCID: PMC6328055 DOI: 10.1007/s00018-018-2749-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/17/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
Abstract
The immune system has evolved to protect hosts from pathogens. T cells represent a critical component of the immune system by their engagement in host defence mechanisms against microbial infections. Our knowledge of the molecular recognition by T cells of pathogen-derived peptidic antigens that are presented by the major histocompatibility complex glycoproteins is now well established. However, lipids represent an additional, distinct chemical class of molecules that when presented by the family of CD1 antigen-presenting molecules can serve as antigens, and be recognized by specialized subsets of T cells leading to antigen-specific activation. Over the past decades, numerous CD1-presented self- and bacterial lipid-based antigens have been isolated and characterized. However, our understanding at the molecular level of T cell immunity to CD1 molecules presenting microbial lipid-based antigens is still largely unexplored. Here, we review the insights and the molecular basis underpinning the recognition of microbial lipid-based antigens by T cells.
Collapse
Affiliation(s)
- Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - Ildiko Van Rhijn
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital/Harvard Medical School, Boston, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University Utrecht, Utrecht, The Netherlands
| | - Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
39
|
Chancellor A, Gadola SD, Mansour S. The versatility of the CD1 lipid antigen presentation pathway. Immunology 2018; 154:196-203. [PMID: 29460282 DOI: 10.1111/imm.12912] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/19/2022] Open
Abstract
The family of non-classical major histocompatibility complex (MHC) class-I like CD1 molecules has an emerging role in human disease. Group 1 CD1 includes CD1a, CD1b and CD1c, which function to display lipids on the cell surface of antigen-presenting cells for direct recognition by T-cells. The recent advent of CD1 tetramers and the identification of novel lipid ligands has contributed towards the increasing number of CD1-restricted T-cell clones captured. These advances have helped to identify novel donor unrestricted and semi-invariant T-cell populations in humans and new mechanisms of T-cell recognition. However, although there is an opportunity to design broadly acting lipids and harness the therapeutic potential of conserved T-cells, knowledge of their role in health and disease is lacking. We briefly summarize the current evidence implicating group 1 CD1 molecules in infection, cancer and autoimmunity and show that although CD1 are not as diverse as MHC, recent discoveries highlight their versatility as they exhibit intricate mechanisms of antigen presentation.
Collapse
Affiliation(s)
- Andrew Chancellor
- Faculty of Medicine, Academic Unit of Clinical and Experimental Sciences, Southampton, UK
| | - Stephan D Gadola
- Faculty of Medicine, Academic Unit of Clinical and Experimental Sciences, Southampton, UK.,F.Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Salah Mansour
- Faculty of Medicine, Academic Unit of Clinical and Experimental Sciences, Southampton, UK
| |
Collapse
|
40
|
Zhu B, Dockrell HM, Ottenhoff THM, Evans TG, Zhang Y. Tuberculosis vaccines: Opportunities and challenges. Respirology 2018; 23:359-368. [PMID: 29341430 DOI: 10.1111/resp.13245] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/12/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB) is a serious disease around the world. Bacillus Calmette-Guérin (BCG) is the only TB vaccine licensed for use in human beings, and is effective in protecting infants and children against severe miliary and meningeal TB. However, BCG's protective efficacy is variable in adults. Novel TB vaccine candidates being developed include whole-cell vaccines (recombinant BCG (rBCG), attenuated Mycobacterium tuberculosis, killed M. tuberculosis or Mycobacterium vaccae), adjuvanted protein subunit vaccines, viral vector-delivered subunit vaccines, plasmid DNA vaccines, RNA-based vaccines etc. At least 12 novel TB vaccine candidates are now in clinical trials, including killed M. vaccae, rBCG ΔureC::hly, adjuvanted fusion proteins M72 and H56 and viral vectored MVA85A. Unfortunately, in TB, there are no correlates of vaccine-induced protection, although cell-mediated immune responses such as interferon-gamma (IFN-γ) production are widely used to assess vaccine's immunogenicity. Recent studies suggested that central memory T cells and local secreted IgA correlated with protection against TB disease. Clinical TB vaccine efficacy trials should invest in identifying correlates of protection, and evaluate new TB biomarkers emerging from human and animal studies. Accumulating new knowledge on M. tuberculosis antigens and immune profiles correlating with protection or disease risk will be of great help in designing next generation of TB vaccines.
Collapse
Affiliation(s)
- Bingdong Zhu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hazel M Dockrell
- Department of Immunology and Infection and Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, UK
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
41
|
Parlato S, Chiacchio T, Salerno D, Petrone L, Castiello L, Romagnoli G, Canini I, Goletti D, Gabriele L. Impaired IFN-α-mediated signal in dendritic cells differentiates active from latent tuberculosis. PLoS One 2018; 13:e0189477. [PMID: 29320502 PMCID: PMC5761858 DOI: 10.1371/journal.pone.0189477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
Individuals exposed to Mycobacterium tuberculosis (Mtb) may be infected and remain for the entire life in this condition defined as latent tuberculosis infection (LTBI) or develop active tuberculosis (TB). Among the multiple factors governing the outcome of the infection, dendritic cells (DCs) play a major role in dictating antibacterial immunity. However, current knowledge on the role of the diverse components of human DCs in shaping specific T-cell response during Mtb infection is limited. In this study, we performed a comparative evaluation of peripheral blood circulating DC subsets as well as of monocyte-derived Interferon-α DCs (IFN-DCs) from patients with active TB, subjects with LTBI and healthy donors (HD). The proportion of circulating myeloid BDCA3+ DCs (mDC2) and plasmacytoid CD123+ DCs (pDCs) declined significantly in active TB patients compared to HD, whereas the same subsets displayed a remarkable activation in LTBI subjects. Simultaneously, the differentiation of IFN-DCs from active TB patients resulted profoundly impaired compared to those from LTBI and HD individuals. Importantly, the altered developmental trait of IFN-DCs from active TB patients was associated with down-modulation of IFN-linked genes, marked changes in molecular signaling conveying antigen (Ag) presentation and full inability to induce Ag-specific T cell response. Thus, these data reveal an important role of IFN-α in determining the induction of Mtb-specific immunity.
Collapse
Affiliation(s)
- Stefania Parlato
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Teresa Chiacchio
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI) IRCCS, Rome, Italy
| | - Debora Salerno
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI) IRCCS, Rome, Italy
| | | | - Giulia Romagnoli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Irene Canini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI) IRCCS, Rome, Italy
- * E-mail: (LG); (DG)
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- * E-mail: (LG); (DG)
| |
Collapse
|
42
|
Schaible UE, Linnemann L, Redinger N, Patin EC, Dallenga T. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity. Front Immunol 2017; 8:1755. [PMID: 29312298 PMCID: PMC5732265 DOI: 10.3389/fimmu.2017.01755] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.
Collapse
Affiliation(s)
- Ulrich E Schaible
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, Research Center Borstel, Borstel, Germany
| | - Lara Linnemann
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany
| | - Natalja Redinger
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany
| | - Emmanuel C Patin
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | - Tobias Dallenga
- Cellular Microbiology, Priority Program Infections, Research Center Borstel, Borstel, Germany.,Thematic Translation Unit Tuberculosis, German Center for Infection Research, Research Center Borstel, Borstel, Germany
| |
Collapse
|
43
|
Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol 2017; 14:963-975. [PMID: 28890547 PMCID: PMC5719146 DOI: 10.1038/cmi.2017.88] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022] Open
Abstract
The major innate immune cell types involved in tuberculosis (TB) infection are macrophages, dendritic cells (DCs), neutrophils and natural killer (NK) cells. These immune cells recognize the TB-causing pathogen Mycobacterium tuberculosis (Mtb) through various pattern recognition receptors (PRRs), including but not limited to Toll-like receptors (TLRs), Nod-like receptors (NLRs) and C-type lectin receptors (CLRs). Upon infection by Mtb, the host orchestrates multiple signaling cascades via the PRRs to launch a variety of innate immune defense functions such as phagocytosis, autophagy, apoptosis and inflammasome activation. In contrast, Mtb utilizes numerous exquisite strategies to evade or circumvent host innate immunity. Here we discuss recent research on major host innate immune cells, PRR signaling, and the cellular functions involved in Mtb infection, with a specific focus on the host's innate immune defense and Mtb immune evasion. A better understanding of the molecular mechanisms underlying host-pathogen interactions could provide a rational basis for the development of effective anti-TB therapeutics.
Collapse
Affiliation(s)
- Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haiying Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100176, China
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
44
|
Liu Z, Guo J. NKT-cell glycolipid agonist as adjuvant in synthetic vaccine. Carbohydr Res 2017; 452:78-90. [DOI: 10.1016/j.carres.2017.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 01/07/2023]
|
45
|
Abstract
The human cluster of differentiation (CD)1 system for antigen display is comprised of four types of antigen-presenting molecules, each with a distinct functional niche: CD1a, CD1b, CD1c, and CD1d. Whereas CD1 proteins were thought solely to influence T-cell responses through display of amphipathic lipids, recent studies emphasize the role of direct contacts between the T-cell receptor and CD1 itself. Moving from molecules to diseases, new research approaches emphasize human CD1-transgenic mouse models and the study of human polyclonal T cells
in vivo or
ex vivo in disease states. Whereas the high genetic diversity of major histocompatibility complex (MHC)-encoded antigen-presenting molecules provides a major hurdle for designing antigens that activate T cells in all humans, the simple population genetics of the CD1 system offers the prospect of discovering or designing broadly acting immunomodulatory agents.
Collapse
Affiliation(s)
- D Branch Moody
- Division of Rheumatology, Immunology Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara Suliman
- Division of Rheumatology, Immunology Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Targeting neutrophils for host-directed therapy to treat tuberculosis. Int J Med Microbiol 2017; 308:142-147. [PMID: 29055689 DOI: 10.1016/j.ijmm.2017.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/26/2017] [Accepted: 10/01/2017] [Indexed: 01/08/2023] Open
Abstract
M. tuberculosis is one of the prime killers from infectious diseases worldwide. Infections with multidrug-resistant variants counting for almost half a million new cases per year are steadily on the rise. Tuberculosis caused by extensively drug-resistant variants that are even resistant against newly developed or last resort antibiotics have to be considered untreaTable Susceptible tuberculosis already requires a six-months combinational therapy which requires further prolongation to treat drug-resistant infections. Such long treatment schedules are often accompanied by serious adverse effects causing patients to stop therapy. To tackle the global tuberculosis emergency, novel approaches for treatment need to be urgently explored. Host-directed therapies that target components of the defense system represent such a novel approach. In this review, we put a spotlight on neutrophils and neutrophil-associated effectors as promising targets for adjunct host-directed therapies to improve antibiotic efficacy and reduce both, treatment time and long-term pathological sequelae.
Collapse
|
47
|
Legoux F, Salou M, Lantz O. Unconventional or Preset αβ T Cells: Evolutionarily Conserved Tissue-Resident T Cells Recognizing Nonpeptidic Ligands. Annu Rev Cell Dev Biol 2017; 33:511-535. [PMID: 28661722 DOI: 10.1146/annurev-cellbio-100616-060725] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A majority of T cells bearing the αβ T cell receptor (TCR) are specific for peptides bound to polymorphic classical major histocompatibility complex (MHC) molecules. Smaller subsets of T cells are reactive toward various nonpeptidic ligands associated with nonpolymorphic MHC class-Ib (MHC-Ib) molecules. These cells have been termed unconventional for decades, even though only the composite antigen is different from the one seen by classical T cells. Herein, we discuss the identity of these particular T cells in light of the coevolution of their TCR and MHC-Ib restricting elements. We examine their original thymic development: selection on hematopoietic cells leading to the acquisition of an original differentiation program. Most of these cells acquire memory cell features during thymic maturation and exhibit unique patterns of migration into peripheral nonlymphoid tissues to become tissue resident. Thus, these cells are termed preset T cells, as they also display a variety of effector functions. They may act as microbial or danger sentinels, fight microbes, or regulate tissue homeostasis.
Collapse
Affiliation(s)
- Francois Legoux
- Institut Curie, PSL Research University, INSERM, U 932, 75005 Paris, France; , ,
| | - Marion Salou
- Institut Curie, PSL Research University, INSERM, U 932, 75005 Paris, France; , ,
| | - Olivier Lantz
- Institut Curie, PSL Research University, INSERM, U 932, 75005 Paris, France; , , .,Center of Clinical Investigations, CIC-1428 IGR/Curie, 75005 Paris, France.,Laboratoire d'immunologie clinique, Institut Curie, 75005 Paris, France
| |
Collapse
|
48
|
Busch M, Herzmann C, Kallert S, Zimmermann A, Höfer C, Mayer D, Zenk SF, Muche R, Lange C, Bloom BR, Modlin RL, Stenger S. Lipoarabinomannan-Responsive Polycytotoxic T Cells Are Associated with Protection in Human Tuberculosis. Am J Respir Crit Care Med 2017; 194:345-55. [PMID: 26882070 DOI: 10.1164/rccm.201509-1746oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The development of host-targeted, prophylactic, and therapeutic interventions against tuberculosis requires a better understanding of the immune mechanisms that determine the outcome of infection with Mycobacterium tuberculosis. OBJECTIVES To identify T-cell-dependent mechanisms that are protective in tuberculosis. METHODS Multicolor flow cytometry, cell sorting and growth inhibition assays were employed to compare the frequency, phenotype and function of T lymphocytes from bronchoalveolar lavage or the peripheral blood. MEASUREMENTS AND MAIN RESULTS At two independent study sites, bronchoalveolar lavage cells from donors with latent tuberculosis infection limited the growth of virulent Mycobacterium tuberculosis more efficiently than those in patients who developed disease. Unconventional, glycolipid-responsive T cells contributed to reduced mycobacterial growth because antibodies to CD1b inhibited this effect by 55%. Lipoarabinomannan was the most potent mycobacterial lipid antigen (activation of 1.3% T lymphocytes) and activated CD1b-restricted T cells that limited bacterial growth. A subset of IFN-γ-producing lipoarabinomannan-responsive T cells coexpressed the cytotoxic molecules perforin, granulysin, and granzyme B, which we termed polycytotoxic T cells. Taking advantage of two well-defined cohorts of subjects latently infected with Mycobacterium tuberculosis or patients who developed active disease after infection, we found a correlation between the frequency of polycytotoxic T cells and the ability to control infection (latent tuberculosis infection, 62%; posttuberculosis patients, 26%). CONCLUSIONS Our data define an unconventional CD8(+) T-cell subset (polycytotoxic T cells) that is based on antigen recognition and function. The results link clinical and mechanistic evidence that glycolipid-responsive, polycytotoxic T cells contribute to protection against tuberculosis.
Collapse
Affiliation(s)
- Martin Busch
- 1 Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Christian Herzmann
- 2 Division of Clinical Infectious Diseases, German Center for Infection Research, Borstel, Germany
| | - Stephanie Kallert
- 1 Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Andreas Zimmermann
- 1 Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Christoph Höfer
- 1 Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Daniel Mayer
- 1 Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Sebastian F Zenk
- 1 Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Rainer Muche
- 3 Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Christoph Lange
- 2 Division of Clinical Infectious Diseases, German Center for Infection Research, Borstel, Germany
| | - Barry R Bloom
- 4 Harvard School of Public Health, Boston, Massachusetts; and
| | - Robert L Modlin
- 5 Division of Dermatology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Steffen Stenger
- 1 Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | | |
Collapse
|
49
|
Inhibition of endocytic lipid antigen presentation by common lipophilic environmental pollutants. Sci Rep 2017; 7:2085. [PMID: 28522830 PMCID: PMC5437007 DOI: 10.1038/s41598-017-02229-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Environmental pollutants as non-heritable factors are now recognized as triggers for multiple human inflammatory diseases involving T cells. We postulated that lipid antigen presentation mediated by cluster of differentiation 1 (CD1) proteins for T cell activation is susceptible to lipophilic environmental pollutants. To test this notion, we determined whether the common lipophilic pollutants benzo[a]pyrene and diesel exhaust particles impact on the activation of lipid-specific T cells. Our results demonstrated that the expression of CD1a and CD1d proteins, and the activation of CD1a- and CD1d-restricted T cells were sensitively inhibited by benzo[a]pyrene even at the low concentrations detectable in exposed human populations. Similarly, diesel exhaust particles showed a marginal inhibitory effect. Using transcriptomic profiling, we discovered that the gene expression for regulating endocytic and lipid metabolic pathways was perturbed by benzo[a]pyrene. Imaging flow cytometry also showed that CD1a and CD1d proteins were retained in early and late endosomal compartments, respectively, supporting an impaired endocytic lipid antigen presentation for T cell activation upon benzo[a]pyrene exposure. This work conceptually demonstrates that lipid antigen presentation for T cell activation is inhibited by lipophilic pollutants through profound interference with gene expression and endocytic function, likely further disrupting regulatory cytokine secretion and ultimately exacerbating inflammatory diseases.
Collapse
|
50
|
Protective efficacy of a lipid antigen vaccine in a guinea pig model of tuberculosis. Vaccine 2017; 35:1395-1402. [DOI: 10.1016/j.vaccine.2017.01.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/12/2017] [Accepted: 01/30/2017] [Indexed: 01/25/2023]
|