1
|
Pardini E, Barachini S, Alì G, Infirri GS, Burzi IS, Montali M, Petrini I. Single-cell sequencing has revealed a more complex array of thymic epithelial cells. Immunol Lett 2024; 269:106904. [PMID: 39117004 DOI: 10.1016/j.imlet.2024.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Thymic epithelial cells participate in the maturation and selection of T lymphocytes. This review explores recent insights from single-cell sequencing regarding classifying thymic epithelial cells in both normal and neoplastic thymus. Cortical thymic epithelial cells facilitate thymocyte differentiation and contribute to positive selection. Medullary epithelial cells are distinguished by their expression of AIRE. Cells progress from a pre-AIRE state, containing precursors with cortical and medullary characteristics, termed junctional cells. Mature medullary epithelial cells exhibit promiscuous gene expression and after that downregulate AIRE mRNA. Post-AIRE cells can adopt a Hassall corpuscle-like phenotype or exhibit distinctive differentiation characteristics including tuft cells, ionocytes, neuroendocrine cells, and myoid cells.
Collapse
Affiliation(s)
- Eleonora Pardini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Greta Alì
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Pisa, Italy
| | - Gisella Sardo Infirri
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Irene Sofia Burzi
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Marina Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Cosway EJ, James KD, White AJ, Parnell SM, Bacon A, McKenzie ANJ, Jenkinson WE, Anderson G. The alarmin IL33 orchestrates type 2 immune-mediated control of thymus regeneration. Nat Commun 2023; 14:7201. [PMID: 37938566 PMCID: PMC10632327 DOI: 10.1038/s41467-023-43072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
As the primary site of T-cell development, the thymus dictates immune competency of the host. The rates of thymus function are not constant, and thymus regeneration is essential to restore new T-cell production following tissue damage from environmental factors and therapeutic interventions. Here, we show the alarmin interleukin (IL) 33 is a product of Sca1+ thymic mesenchyme both necessary and sufficient for thymus regeneration via a type 2 innate immune network. IL33 stimulates expansion of IL5-producing type 2 innate lymphoid cells (ILC2), which triggers a cellular switch in the intrathymic availability of IL4. This enables eosinophil production of IL4 to re-establish thymic mesenchyme prior to recovery of thymopoiesis-inducing epithelial compartments. Collectively, we identify a positive feedback mechanism of type 2 innate immunity that regulates the recovery of thymus function following tissue injury.
Collapse
Affiliation(s)
- Emilie J Cosway
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Kieran D James
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Andrea J White
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sonia M Parnell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Andrea Bacon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | - W E Jenkinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
3
|
Dias A, Damaceno-Rodrigues N, Gimenez T, Oliveira P, Zerbini M, Carneiro-Sampaio M, Odone V, Jatene M, Vasconcelos D, Rocha V, Novak E. A model for preservation of thymocyte-depleted thymus. Braz J Med Biol Res 2023; 56:e12647. [PMID: 37585915 PMCID: PMC10427159 DOI: 10.1590/1414-431x2023e12647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023] Open
Abstract
DiGeorge syndrome is a disorder caused by a microdeletion on the long arm of chromosome 22. Approximately 1% of patients diagnosed with DiGeorge syndrome may have an absence of a functional thymus, which characterizes the complete form of the syndrome. These patients require urgent treatment to reconstitute T cell immunity. Thymus transplantation is a promising investigational procedure for reconstitution of thymic function in infants with congenital athymia. Here, we demonstrate a possible optimization of the preparation of thymus slices for transplantation through prior depletion of thymocytes and leukocyte cell lineages followed by cryopreservation with cryoprotective media (5% dextran FP 40, 5% Me2SO, and 5% FBS) while preserving tissue architecture. Thymus fragments were stored in liquid nitrogen at -196°C for 30 days or one year. The tissue architecture of the fragments was preserved, including the distinction between medullary thymic epithelial cells (TECs), cortical TECs, and Hassall bodies. Moreover, depleted thymus fragments cryopreserved for one year were recolonized by intrathymic injections of 3×106 thymocytes per mL, demonstrating the capability of these fragments to support T cell development. Thus, this technique opens up the possibility of freezing and storing large volumes of thymus tissue for immediate transplantation into patients with DiGeorge syndrome or atypical (Omenn-like) phenotype.
Collapse
Affiliation(s)
- A.S. Dias
- Laboratório de Pediatria Clínica LIM36, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto de Tratamento de Câncer Infantil, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - N.R. Damaceno-Rodrigues
- Departamento de Patologia, Laboratório de Biologia Celular (LIM 59), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - T.M. Gimenez
- Laboratório de Pediatria Clínica LIM36, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto de Tratamento de Câncer Infantil, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - P.M. Oliveira
- Setor de Cirurgia Cardíaca Pediátrica, Hospital do Coração da Associação do Beneficente Síria, São Paulo, SP, Brasil
| | - M.C. Zerbini
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M. Carneiro-Sampaio
- Laboratório de Pediatria Clínica LIM36, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - V. Odone
- Laboratório de Pediatria Clínica LIM36, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto de Tratamento de Câncer Infantil, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M.B. Jatene
- Setor de Cirurgia Cardíaca Pediátrica, Hospital do Coração da Associação do Beneficente Síria, São Paulo, SP, Brasil
| | - D.M. Vasconcelos
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM 56), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia (LIM 31), Serviço de Hematologia, Hemoterapia e Terapia Celular, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - V. Rocha
- Fundação Pró-Sangue São Paulo, Hemocentro de São Paulo, São Paulo, SP, Brasil
- Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia (LIM 31), Serviço de Hematologia, Hemoterapia e Terapia Celular, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E.M. Novak
- Fundação Pró-Sangue São Paulo, Hemocentro de São Paulo, São Paulo, SP, Brasil
- Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia (LIM 31), Serviço de Hematologia, Hemoterapia e Terapia Celular, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
4
|
Lagou MK, Karagiannis GS. Obesity-induced thymic involution and cancer risk. Semin Cancer Biol 2023; 93:3-19. [PMID: 37088128 DOI: 10.1016/j.semcancer.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Declining thymic functions associated either with old age (i.e., age-related thymic involution), or with acute involution as a result of stress, infectious disease, or cytoreductive therapies (e.g., chemotherapy/radiotherapy), have been associated with cancer development. A key mechanism underlying such increased cancer risk is the thymus-dependent debilitation of adaptive immunity, which is responsible for orchestrating immunoediting mechanisms and tumor immune surveillance. In the past few years, a blooming set of evidence has intriguingly linked obesity with cancer development and progression. The majority of such studies has focused on obesity-driven chronic inflammation, steroid/sex hormone and adipokine production, and hyperinsulinemia, as principal factors affecting the tumor microenvironment and driving the development of primary malignancy. However, experimental observations about the negative impact of obesity on T cell development and maturation have existed for more than half a century. Here, we critically discuss the molecular and cellular mechanisms of obesity-driven thymic involution as a previously underrepresented intermediary pathology leading to cancer development and progression. This knowledge could be especially relevant in the context of childhood obesity, because impaired thymic function in young individuals leads to immune system abnormalities, and predisposes to various pediatric cancers. A thorough understanding behind the molecular and cellular circuitries governing obesity-induced thymic involution could therefore help towards the rationalized development of targeted thymic regeneration strategies for obese individuals at high risk of cancer development.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
de Araújo Vieira LF, Lins MP, Porto FL, Smaniotto S, Dos Santos Reis MD. IGF-1 increases survival of CD4 + lineage in a 2D model of thymocyte/thymic stromal cell co-culture. In Vitro Cell Dev Biol Anim 2022; 58:877-885. [PMID: 36401120 DOI: 10.1007/s11626-022-00730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022]
Abstract
Insulin-like growth factor-1 (IGF-1), in addition to its classic effects on cell proliferation and organism growth, has pleiotropic actions on the immune system, particularly on the thymus. Thus, the objective of this study was to evaluate the influence of IGF-1 on molecules involved in the survival of thymocytes in vitro using a co-culture system with thymic stromal cells obtained from C57BL/6 mice. The obtained thymic stroma has contained thymic epithelial cells, macrophages, dendritic cells, fibroblasts, and preserved the expression of the major histocompatibility complex (MHC) molecules. Fresh thymocytes were added to these cultures and the co-culture were treated daily with IGF-1 (100 ng/mL) for 3 days. In this scheme, the viability of the thymocytes was about 70%, either in the control (non-treated cells) or in the IGF-1-treated cultures. It was found that IGF-1 was able to increase the percentage of thymocytes from the CD4+ single-positive (SP) subset. This result was accompanied by an increase in the MHC II expression on thymic stromal cells and an augment on the interleukin-7 receptor (CD127) on the surface of the CD4 SP thymocytes after treatment with IGF-1. Finally, IGF-1 treatment increased the expression of the ThPOK encoding gene Zbtb7b, which is involved in the differentiation of CD4+ SP thymocytes. Our study demonstrates the participation of IGF-1 in the thymocyte/thymic stroma interactions, especially in the extended survival of the CD4+ lineage in the thymus.
Collapse
Affiliation(s)
- Larissa Fernanda de Araújo Vieira
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Alagoas, 57072-970, Brazil
| | - Marvin Paulo Lins
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Alagoas, 57072-970, Brazil. .,Brazilian National Institute of Science and Technology On Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| | - Felipe Lima Porto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Alagoas, 57072-970, Brazil
| | - Salete Smaniotto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Alagoas, 57072-970, Brazil.,Brazilian National Institute of Science and Technology On Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Maria Danielma Dos Santos Reis
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Alagoas, 57072-970, Brazil.,Brazilian National Institute of Science and Technology On Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Abstract
The microenvironment of the thymus is composed of a group of stromal cells that include endoderm-derived thymic epithelial cells (TECs) and mesenchymal stromal cells such as fibroblasts and serves as a site for the development of T cells. TECs are known to play an essential role in T cell differentiation and selection. Mesenchymal stromal cells have been less studied in terms of their immunological significance compared to TECs. Recently, new technologies have made it possible to identify and characterize mesenchymal stromal cells in the thymus, revealing their unique functions in thymic organogenesis and T cell development. This review outlines the current views on mesenchymal stromal cells in the thymus, particularly highlighting the newly discovered function of thymic fibroblasts in T cell repertoire selection.
Collapse
Affiliation(s)
- Takeshi Nitta
- grid.26999.3d0000 0001 2151 536XDepartment of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Wu Q, Li B, Li Y, Liu F, Yang L, Ma Y, Zhang Y, Xu D, Li Y. Effects of PAMK on lncRNA, miRNA, and mRNA expression profiles of thymic epithelial cells. Funct Integr Genomics 2022; 22:849-863. [PMID: 35505120 DOI: 10.1007/s10142-022-00863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
Polysaccharides from Atractylodes macrocephala Koidz (PAMK) can promote the proliferation of thymocytes and improve the body's immunity. However, the effect of PAMK on thymic epithelial cells has not been reported. Studies have shown that miRNAs and lncRNAs are key factors in regulating cell proliferation. In this study, we found that PAMK could promote the proliferation of mouse medullary thymic epithelial cell line 1 (MTEC1) cells through CCK-8 and EdU experiments. To further explore its mechanism, we detected the effect of PAMK on the expression profiles of lncRNAs, miRNAs, and mRNAs in MTEC1 cells. The results showed that PAMK significantly affected the expression of 225 lncRNAs, 29 miRNAs, and 800 mRNAs. Functional analysis showed that these differentially expressed genes were significantly enriched in cell cycle, cell division, NF-kappaB signaling, apoptotic process, and MAPK signaling pathway. Finally, we used Cytoscape to visualize lncRNA-miRNA-mRNA(14 lncRNAs, 17 miRNAs, 171 mRNAs) networks based on ceRNA theory. These results suggest that lncRNAs and miRNAs may be involved in the effect of PAMK on the proliferation of MTEC1 cells, providing a new research direction for exploring the molecular mechanism of PAMK promoting the proliferation of thymic epithelial cells.
Collapse
Affiliation(s)
- Qingru Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bingxin Li
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Fenfen Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Danning Xu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
De novo construction of T cell compartment in humanized mice engrafted with iPSC-derived thymus organoids. Nat Methods 2022; 19:1306-1319. [PMID: 36064772 DOI: 10.1038/s41592-022-01583-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 07/18/2022] [Indexed: 11/09/2022]
Abstract
Hematopoietic humanized (hu) mice are powerful tools for modeling the action of human immune system and are widely used for preclinical studies and drug discovery. However, generating a functional human T cell compartment in hu mice remains challenging, primarily due to the species-related differences between human and mouse thymus. While engrafting human fetal thymic tissues can support robust T cell development in hu mice, tissue scarcity and ethical concerns limit their wide use. Here, we describe the tissue engineering of human thymus organoids from inducible pluripotent stem cells (iPSC-thymus) that can support the de novo generation of a diverse population of functional human T cells. T cells of iPSC-thymus-engrafted hu mice could mediate both cellular and humoral immune responses, including mounting robust proinflammatory responses on T cell receptor engagement, inhibiting allogeneic tumor graft growth and facilitating efficient Ig class switching. Our findings indicate that hu mice engrafted with iPSC-thymus can serve as a new animal model to study human T cell-mediated immunity and accelerate the translation of findings from animal studies into the clinic.
Collapse
|
9
|
Dong X, Liang Z, Zhang J, Zhang Q, Xu Y, Zhang Z, Zhang L, Zhang B, Zhao Y. Trappc1 deficiency impairs thymic epithelial cell development by breaking endoplasmic reticulum homeostasis. Eur J Immunol 2022; 52:1789-1804. [PMID: 35908180 DOI: 10.1002/eji.202249915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
Abstract
Thymic epithelial cells (TECs) are important for T cell development and immune tolerance establishment. Although comprehensive molecular regulation of TEC development has been studied, the role of transport protein particle complexes (Trappcs) in TECs is not clear. Using TEC-specific homozygous or heterozygous Trappc1 deleted mice model, we found that Trappc1 deficiency caused severe thymus atrophy with decreased cell number and blocked maturation of TECs. Mice with a TEC-specific Trappc1 deletion show poor thymic T cell output and have a greater percentage of activated/memory T cells, suffered from spontaneous autoimmune disorders. Our RNA-seq and molecular studies indicated that the decreased endoplasmic reticulum (ER) and Golgi apparatus, enhanced unfolded protein response (UPR) and subsequent Atf4-CHOP-mediated apoptosis, and reactive oxygen species (ROS)-mediated ferroptosis coordinately contributed to the reduction of Trappc1-deleted TECs. Additionally, reduced Aire+ mTECs accompanied by the decreased expression of Irf4, Irf8, and Tbx21 in Trappc1 deficiency mTECs, may further coordinately block the tissue-restricted antigen expression. In this study, we reveal that Trappc1 plays an indispensable role in TEC development and maturation and provide evidence for the importance of inter-organelle traffic and ER homeostasis in TEC development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences.,Beijing Institute for Stem Cell and Regeneration
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases and Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences.,Beijing Institute for Stem Cell and Regeneration
| |
Collapse
|
10
|
Wakitani S, Kawabata R, Yasuda M. Insufficiency of CD205-positive cortical thymic epithelial cells in immature Japanese Black cattle with severe thymic abnormalities and poor prognosis. Vet Immunol Immunopathol 2022; 245:110379. [PMID: 35038635 DOI: 10.1016/j.vetimm.2021.110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/19/2022]
Abstract
To investigate the involvement of thymic function in the development of diseases with poor prognosis in calves, this study conducted a survey for the assessment of thymus cell composition in immature Japanese Black cattle with poor prognosis. Histopathological evaluation of 47 cattle showed signs of acute thymic involution in most cases. Less than half of the cases had a cortex predominant over the medulla in the thymic parenchyma, and a quarter of the cases indicated severe histological condition with an unclear boundary between the cortex and medulla. Correlation analysis revealed a close relationship between the corresponding stages of acute involution, cortical occupancy, and the expression of CD4, CD8B, and CD205. When cases were grouped by cortical occupancy, the expression of CD4 and CD8B expression was lower in the severe group with less than 25 % cortical occupancy, and the expression of CD205 was lower in the group with an unclear cortical-medullary boundary. Meanwhile, there was no difference in the expressions of IL7, CD80, FEZF2, and FOXN1 according to cortical occupancy. Immunohistochemistry has shown that cytokeratin-positive thymic epithelial cells are more densely populated in the severe thymus. UEA-I-binding medullary thymic epithelial cells were also present, but CD205-positive cortical thymic epithelial cells were rare in severe thymus. Moreover, there were significantly fewer Ki-67-positive cells in cattle with severe thymus. Therefore, these results indicate that thymic histological abnormalities frequently occur in immature cattle with a poor prognosis, and the presence of CD205-positive cortical thymic epithelial cells is associated with the severity of the abnormalities.
Collapse
Affiliation(s)
- Shoichi Wakitani
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.
| | - Risako Kawabata
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Masahiro Yasuda
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
11
|
Martinez-Ruíz GU, Morales-Sánchez A, Bhandoola A. Transcriptional and epigenetic regulation in thymic epithelial cells. Immunol Rev 2022; 305:43-58. [PMID: 34750841 PMCID: PMC8766885 DOI: 10.1111/imr.13034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
The thymus is required for the development of both adaptive and innate-like T cell subsets. There is keen interest in manipulating thymic function for therapeutic purposes in circumstances of autoimmunity, immunodeficiency, and for purposes of immunotherapy. Within the thymus, thymic epithelial cells play essential roles in directing T cell development. Several transcription factors are known to be essential for thymic epithelial cell development and function, and a few transcription factors have been studied in considerable detail. However, the role of many other transcription factors is less well understood. Further, it is likely that roles exist for other transcription factors not yet known to be important in thymic epithelial cells. Recent progress in understanding of thymic epithelial cell heterogeneity has provided some new insight into transcriptional requirements in subtypes of thymic epithelial cells. However, it is unknown whether progenitors of thymic epithelial cells exist in the adult thymus, and consequently, developmental relationships linking putative precursors with differentiated cell types are poorly understood. While we do not presently possess a clear understanding of stage-specific requirements for transcription factors in thymic epithelial cells, new single-cell transcriptomic and epigenomic technologies should enable rapid progress in this field. Here, we review our current knowledge of transcription factors involved in the development, maintenance, and function of thymic epithelial cells, and the mechanisms by which they act.
Collapse
Affiliation(s)
- Gustavo Ulises Martinez-Ruíz
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Research Division, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Children’s Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Abigail Morales-Sánchez
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Children’s Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus Degeneration and Regeneration. Front Immunol 2021; 12:706244. [PMID: 34539637 PMCID: PMC8442952 DOI: 10.3389/fimmu.2021.706244] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
The immune system’s ability to resist the invasion of foreign pathogens and the tolerance to self-antigens are primarily centered on the efficient functions of the various subsets of T lymphocytes. As the primary organ of thymopoiesis, the thymus performs a crucial role in generating a self-tolerant but diverse repertoire of T cell receptors and peripheral T cell pool, with the capacity to recognize a wide variety of antigens and for the surveillance of malignancies. However, cells in the thymus are fragile and sensitive to changes in the external environment and acute insults such as infections, chemo- and radiation-therapy, resulting in thymic injury and degeneration. Though the thymus has the capacity to self-regenerate, it is often insufficient to reconstitute an intact thymic function. Thymic dysfunction leads to an increased risk of opportunistic infections, tumor relapse, autoimmunity, and adverse clinical outcome. Thus, exploiting the mechanism of thymic regeneration would provide new therapeutic options for these settings. This review summarizes the thymus’s development, factors causing thymic injury, and the strategies for improving thymus regeneration.
Collapse
Affiliation(s)
- Maxwell Duah
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qiu Lan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Liang N, Liu L, Huang C, Liu H, Guo C, Li J, Wang W, Li N, Lin R, Wang T, Ding L, Mao L, Li S. Transcriptomic and Mutational Analysis Discovering Distinct Molecular Characteristics Among Chinese Thymic Epithelial Tumor Patients. Front Oncol 2021; 11:647512. [PMID: 34568003 PMCID: PMC8456088 DOI: 10.3389/fonc.2021.647512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Thymic epithelial tumors (TETs) are malignancies arising from the epithelium of the thymic gland, rare but with relatively favorable prognosis. TETs have different pathological subtypes: thymomas and thymic carcinoma, and they show different clinical characteristics regarding prognosis, pathology, and molecular profiles, etc. Although some studies have investigated the pathogenesis of TETs, more molecular data is still needed to further understand the underlying mechanisms among different TETs subtypes and populations. METHODS In this study, we performed targeted gene panel sequencing and whole transcriptome sequencing on the tumor tissues from 27 Chinese TET patients, including 24 thymomas (A, AB, and B subtypes) and 3 thymic squamous cell carcinomas. We analyzed the genetic variations and differentially expressed genes among multiple TET subtypes. Moreover, we compared our data with the published The Cancer Genome Atlas (TCGA) TET data on both the genetic and transcriptomic levels. RESULTS Compared with the TCGA TET genomic data, we found that NF1 and ATM were the most frequently mutated genes (each with a frequency of 11%, 3/27). These mutations were not mutually exclusive, since one B1 thymoma showed mutations of both genes. The GTF2I mutation was mainly enriched in subtype A and AB thymomas, consistent with the previous reports. RNA-seq results unveiled that the genes related to thymus development (FGF7, FGF10 and CLDN4) were highly expressed in certain TET subtypes, implicating that the developmental process of thymus might be linked to the tumorigenesis of these subtypes. We found high expression of CD274 (PD-L1) in B2 and B3 thymoma samples, and validated its expression using immunohistochemistry (IHC). Based on the expression profiles, we further established a machine learning model to predict the myasthenia gravis status of TET patients and achieved 90% sensitivity and 70.6% specificity in the testing cohort. CONCLUSION This study provides the first genomic and transcriptomic analysis of a Chinese TET cohort. The high expression of genes involved in thymus developmental processes suggests the potential association between tumorigenesis of TETs and dysregulation of developmental pathways. The high expression of PD-L1 in B2 and B3 thymomas support the potential application of immunotherapy on certain thymoma subtypes.
Collapse
Affiliation(s)
- Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Cheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiwei Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Li
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Rui Lin
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Tao Wang
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Lieming Ding
- Department of Medical, Betta Pharmaceuticals Co., Ltd., Hangzhou, China
| | - Li Mao
- Department of Medical, Betta Pharmaceuticals Co., Ltd., Hangzhou, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Nitta T, Ota A, Iguchi T, Muro R, Takayanagi H. The fibroblast: An emerging key player in thymic T cell selection. Immunol Rev 2021; 302:68-85. [PMID: 34096078 PMCID: PMC8362222 DOI: 10.1111/imr.12985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts have recently attracted attention as a key stromal component that controls the immune responses in lymphoid tissues. The thymus has a unique microenvironment comprised of a variety of stromal cells, including fibroblasts and thymic epithelial cells (TECs), the latter of which is known to be important for T cell development because of their ability to express self‐antigens. Thymic fibroblasts contribute to thymus organogenesis during embryogenesis and form the capsule and medullary reticular network in the adult thymus. However, the immunological significance of thymic fibroblasts has thus far only been poorly elucidated. In this review, we will summarize the current views on the development and functions of thymic fibroblasts as revealed by new technologies such as multicolor flow cytometry and single cell–based transcriptome profiling. Furthermore, the recently discovered role of medullary fibroblasts in the establishment of T cell tolerance by producing a unique set of self‐antigens will be highlighted.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayami Ota
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Iguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Irla M. RANK Signaling in the Differentiation and Regeneration of Thymic Epithelial Cells. Front Immunol 2021; 11:623265. [PMID: 33552088 PMCID: PMC7862717 DOI: 10.3389/fimmu.2020.623265] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022] Open
Abstract
Thymic epithelial cells (TECs) provide essential clues for the proliferation, survival, migration, and differentiation of thymocytes. Recent advances in mouse and human have revealed that TECs constitute a highly heterogeneous cell population with distinct functional properties. Importantly, TECs are sensitive to thymic damages engendered by myeloablative conditioning regimen used for bone marrow transplantation. These detrimental effects on TECs delay de novo T-cell production, which can increase the risk of morbidity and mortality in many patients. Alike that TECs guide the development of thymocytes, reciprocally thymocytes control the differentiation and organization of TECs. These bidirectional interactions are referred to as thymic crosstalk. The tumor necrosis factor receptor superfamily (TNFRSF) member, receptor activator of nuclear factor kappa-B (RANK) and its cognate ligand RANKL have emerged as key players of the crosstalk between TECs and thymocytes. RANKL, mainly provided by positively selected CD4+ thymocytes and a subset of group 3 innate lymphoid cells, controls mTEC proliferation/differentiation and TEC regeneration. In this review, I discuss recent advances that have unraveled the high heterogeneity of TECs and the implication of the RANK-RANKL signaling axis in TEC differentiation and regeneration. Targeting this cell-signaling pathway opens novel therapeutic perspectives to recover TEC function and T-cell production.
Collapse
Affiliation(s)
- Magali Irla
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
16
|
Nitta T, Takayanagi H. Non-Epithelial Thymic Stromal Cells: Unsung Heroes in Thymus Organogenesis and T Cell Development. Front Immunol 2021; 11:620894. [PMID: 33519827 PMCID: PMC7840694 DOI: 10.3389/fimmu.2020.620894] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
The stromal microenvironment in the thymus is essential for generating a functional T cell repertoire. Thymic epithelial cells (TECs) are numerically and phenotypically one of the most prominent stromal cell types in the thymus, and have been recognized as one of most unusual cell types in the body by virtue of their unique functions in the course of the positive and negative selection of developing T cells. In addition to TECs, there are other stromal cell types of mesenchymal origin, such as fibroblasts and endothelial cells. These mesenchymal stromal cells are not only components of the parenchymal and vascular architecture, but also have a pivotal role in controlling TEC development, although their functions have been less extensively explored than TECs. Here, we review both the historical studies on and recent advances in our understanding of the contribution of such non-TEC stromal cells to thymic organogenesis and T cell development. In particular, we highlight the recently discovered functional effect of thymic fibroblasts on T cell repertoire selection.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
17
|
Lepletier A, Hun ML, Hammett MV, Wong K, Naeem H, Hedger M, Loveland K, Chidgey AP. Interplay between Follistatin, Activin A, and BMP4 Signaling Regulates Postnatal Thymic Epithelial Progenitor Cell Differentiation during Aging. Cell Rep 2020; 27:3887-3901.e4. [PMID: 31242421 DOI: 10.1016/j.celrep.2019.05.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/06/2019] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
A key feature of immune functional impairment with age is the progressive involution of thymic tissue responsible for naive T cell production. In this study, we identify two major phases of thymic epithelial cell (TEC) loss during aging: a block in mature TEC differentiation from the pool of immature precursors, occurring at the onset of puberty, followed by impaired bipotent TEC progenitor differentiation and depletion of Sca-1lo cTEC and mTEC lineage-specific precursors. We reveal that an increase in follistatin production by aging TECs contributes to their own demise. TEC loss occurs primarily through the antagonism of activin A signaling, which we show is required for TEC maturation and acts in dissonance to BMP4, which promotes the maintenance of TEC progenitors. These results support a model in which an imbalance of activin A and BMP4 signaling underpins the degeneration of postnatal TEC maintenance during aging, and its reversal enables the transient replenishment of mature TECs.
Collapse
Affiliation(s)
- Ailin Lepletier
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Michael L Hun
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Maree V Hammett
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Kahlia Wong
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Haroon Naeem
- Monash Bioinformatics Platform, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Mark Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia
| | - Kate Loveland
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC 3800, Australia; Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Melbourne, VIC 3168, Australia; Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Ann P Chidgey
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
18
|
Eshima K, Misawa K, Ohashi C, Noma H, Iwabuchi K. NF-κB-inducing kinase contributes to normal development of cortical thymic epithelial cells: its possible role in shaping a proper T-cell repertoire. Immunology 2020; 160:198-208. [PMID: 32145062 PMCID: PMC7218659 DOI: 10.1111/imm.13186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/13/2023] Open
Abstract
Nuclear factor (NF)-κB-inducing kinase (NIK) is known to be a critical regulator of multiple aspects of the immune response. Although the role of NIK in the development of medullary thymic epithelial cells (mTECs) has been well documented, the impact of NIK on the differentiation and function of cortical thymic epithelial cells (cTECs) remains ambiguous. To investigate the possible involvement of NIK in cTEC differentiation, we have compared the gene expression and function of cTECs from a NIK-mutant mouse, alymphoplasia (aly/aly) with those of cTECs from wild-type (WT) mice. Flow cytometric analyses revealed that expression levels of MHC class II, but not MHC class I or other TEC markers, were higher in aly/aly cells than in WT cells. Notably, the proportion of MHC class IIhi+ cTECs was elevated in aly/aly mice. We also demonstrated that expression of Ccl5 mRNA in the MHC class IIhi+ subset of aly/aly cTECs was decreased compared with that in WT cells, implying an abnormal pattern of gene expression in aly/aly cTECs. Analyses of bone marrow chimera using aly/aly or aly/+ mice as hosts suggested that Vβ usage and CD5 expression on WT T-cells were altered when they matured in aly/aly thymi. These results collectively indicate that NIK may be involved in controlling the function of cTEC in selecting a proper T-cell repertoire.
Collapse
Affiliation(s)
- Koji Eshima
- Department of ImmunologyKitasato University School of MedicineKanagawaJapan
| | - Kana Misawa
- Department of ImmunologyKitasato University School of MedicineKanagawaJapan
| | - Chihiro Ohashi
- Department of ImmunologyKitasato University School of MedicineKanagawaJapan
| | - Haruka Noma
- Department of ImmunologyKitasato University School of MedicineKanagawaJapan
| | - Kazuya Iwabuchi
- Department of ImmunologyKitasato University School of MedicineKanagawaJapan
| |
Collapse
|
19
|
Abstract
The generation of a functional T cell repertoire in the thymus is mainly orchestrated by thymic epithelial cells (TECs), which provide developing T cells with cues for their navigation, proliferation, differentiation and survival. The TEC compartment has been segregated historically into two major populations of medullary TECs and cortical TECs, which differ in their anatomical localization, molecular characteristics and functional roles. However, recent studies have shown that TECs are highly heterogeneous and comprise multiple subpopulations with distinct molecular and functional characteristics, including tuft cell-like or corneocyte-like phenotypes. Here, we review the most recent advances in our understanding of TEC heterogeneity from a molecular, functional and developmental perspective. In particular, we highlight the key insights that were recently provided by single-cell genomic technologies and in vivo fate mapping and discuss them in the context of previously published data.
Collapse
|
20
|
Luan R, Liang Z, Zhang Q, Sun L, Zhao Y. Molecular regulatory networks of thymic epithelial cell differentiation. Differentiation 2019; 107:42-49. [PMID: 31238242 DOI: 10.1016/j.diff.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 01/15/2023]
Abstract
Functional mature T cells are generated in the thymus. Thymic epithelial cells (TECs) provide the essential microenvironment for T cell development and maturation. According to their function and localization, TECs are roughly divided into cortical TECs (cTECs) and medullary TECs (mTECs), which are responsible for positive and negative selection, respectively. This review summarizes the current understanding of TEC biology, the identification of fetal and adult bipotent TEC progenitors, and the signaling pathways that control the development and maturation of TECs. The understanding of the ontogeny, differentiation, maturation and function of cTECs lags behind that of mTECs. Better understanding TEC biology will provide clues about TEC development and the applications of thymus engineering.
Collapse
Affiliation(s)
- Rong Luan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liguang Sun
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Baez NS, Cerbán F, Savid-Frontera C, Hodge DL, Tosello J, Acosta-Rodriguez E, Almada L, Gruppi A, Viano ME, Young HA, Rodriguez-Galan MC. Thymic expression of IL-4 and IL-15 after systemic inflammatory or infectious Th1 disease processes induce the acquisition of "innate" characteristics during CD8+ T cell development. PLoS Pathog 2019; 15:e1007456. [PMID: 30608984 PMCID: PMC6319713 DOI: 10.1371/journal.ppat.1007456] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/05/2018] [Indexed: 01/28/2023] Open
Abstract
Innate CD8+ T cells express a memory-like phenotype and demonstrate a strong cytotoxic capacity that is critical during the early phase of the host response to certain bacterial and viral infections. These cells arise in the thymus and depend on IL-4 and IL-15 for their development. Even though innate CD8+ T cells exist in the thymus of WT mice in low numbers, they are highly enriched in KO mice that lack certain kinases, leading to an increase in IL-4 production by thymic NKT cells. Our work describes that in C57BL/6 WT mice undergoing a Th1 biased infectious disease, the thymus experiences an enrichment of single positive CD8 (SP8) thymocytes that share all the established phenotypical and functional characteristics of innate CD8+ T cells. Moreover, through in vivo experiments, we demonstrate a significant increase in survival and a lower parasitemia in mice adoptively transferred with SP8 thymocytes from OT I—T. cruzi-infected mice, demonstrating that innate CD8+ thymocytes are able to protect against a lethal T. cruzi infection in an Ag-independent manner. Interestingly, we obtained similar results when using thymocytes from systemic IL-12 + IL-18-treated mice. This data indicates that cytokines triggered during the acute stage of a Th1 infectious process induce thymic production of IL-4 along with IL-15 expression resulting in an adequate niche for development of innate CD8+ T cells as early as the double positive (DP) stage. Our data demonstrate that the thymus can sense systemic inflammatory situations and alter its conventional CD8 developmental pathway when a rapid innate immune response is required to control different types of pathogens. Murine innate CD8+ T cells demonstrate strong cytotoxic capacity during the early phase of certain bacterial and viral infections. Such cells have been reported to be present in both mice and humans but many questions remain as to their differentiation and maturation process. Innate CD8+ T cells arise in the thymus and depend on IL-4 and IL-15 for their development. A description of the cellular and molecular mechanisms involved during their thymic development has been obtained from KO mice that lack kinases and transcription factors important for TCR signaling. In these mice, SP8 thymocytes with an innate phenotype are highly enriched over the conventional SP8 cells. Our work describes, for the first time, that in WT mice, thymic IL-4 and IL-15 expression triggered by Th1 infectious processes induce an adequate niche for development of innate rather than conventional CD8+ T cells. Our data show that the thymus is able to sense a systemic inflammatory response (probably mediated by systemic IL-12 and IL-18 production) and alter its ontogeny when pathogen control is needed.
Collapse
Affiliation(s)
- Natalia S. Baez
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fabio Cerbán
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Savid-Frontera
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Deborah L. Hodge
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Jimena Tosello
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Eva Acosta-Rodriguez
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Almada
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana Gruppi
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Estefania Viano
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Howard A. Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Maria Cecilia Rodriguez-Galan
- Inmunología. CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
22
|
Tajima A, Pradhan I, Geng X, Trucco M, Fan Y. Construction of Thymus Organoids from Decellularized Thymus Scaffolds. Methods Mol Biol 2019; 1576:33-42. [PMID: 27730537 PMCID: PMC5389928 DOI: 10.1007/7651_2016_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One of the hallmarks of modern medicine is the development of therapeutics that can modulate immune responses, especially the adaptive arm of immunity, for disease intervention and prevention. While tremendous progress has been made in the past decades, manipulating the thymus, the primary lymphoid organ responsible for the development and education of T lymphocytes, remains a challenge. One of the major obstacles is the difficulty to reproduce its unique extracellular matrix (ECM) microenvironment that is essential for maintaining the function and survival of thymic epithelial cells (TECs), the predominant population of cells in the thymic stroma. Here, we describe the construction of functional thymus organoids from decellularized thymus scaffolds repopulated with isolated TECs. Thymus decellularization was achieved by freeze-thaw cycles to induce intracellular ice crystal formation, followed by detergent-induced cell lysis. Cellular debris was removed with extensive wash. The decellularized thymus scaffolds can largely retain the 3D extracellular matrix (ECM) microenvironment that can support the recolonization of TECs. When transplanted into athymic nude mice, the reconstructed thymus organoids can effectively promote the homing of bone marrow-derived lymphocyte progenitors and support the development of a diverse and functional T cell repertoire. Bioengineering of thymus organoids can be a promising approach to rejuvenate/modulate the function of T-cell mediated adaptive immunity in regenerative medicine.
Collapse
Affiliation(s)
- Asako Tajima
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, USA
| | - Isha Pradhan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, USA
| | - Xuehui Geng
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Microbiology and Immunology, Medical College of Drexel University, Philadelphia, PA, USA
| | - Yong Fan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Microbiology and Immunology, Medical College of Drexel University, Philadelphia, PA, USA.
- Institute of Cellular Therapeutics, Allegheny Health Network, Room 1107 South Tower, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
23
|
Abusarah J, Khodayarian F, Cui Y, El-Kadiry AEH, Rafei M. Thymic Rejuvenation: Are We There Yet? Gerontology 2018. [DOI: 10.5772/intechopen.74048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
24
|
Kernfeld EM, Genga RMJ, Neherin K, Magaletta ME, Xu P, Maehr R. A Single-Cell Transcriptomic Atlas of Thymus Organogenesis Resolves Cell Types and Developmental Maturation. Immunity 2018; 48:1258-1270.e6. [PMID: 29884461 DOI: 10.1016/j.immuni.2018.04.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
Thymus development is critical to the adaptive immune system, yet a comprehensive transcriptional framework capturing thymus organogenesis at single-cell resolution is still needed. We applied single-cell RNA sequencing (RNA-seq) to capture 8 days of thymus development, perturbations of T cell receptor rearrangement, and in vitro organ cultures, producing profiles of 24,279 cells. We resolved transcriptional heterogeneity of developing lymphocytes, and genetic perturbation confirmed T cell identity of conventional and non-conventional lymphocytes. We characterized maturation dynamics of thymic epithelial cells in vivo, classified cell maturation state in a thymic organ culture, and revealed the intrinsic capacity of thymic epithelium to preserve transcriptional regularity despite exposure to exogenous retinoic acid. Finally, by integrating the cell atlas with human genome-wide association study (GWAS) data and autoimmune-disease-related genes, we implicated embryonic thymus-resident cells as possible participants in autoimmune disease etiologies. This resource provides a single-cell transcriptional framework for biological discovery and molecular analysis of thymus organogenesis.
Collapse
Affiliation(s)
- Eric M Kernfeld
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ryan M J Genga
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kashfia Neherin
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Margaret E Magaletta
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ping Xu
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - René Maehr
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
25
|
Jia HL, Zeng XQ, Huang F, Liu YM, Gong BS, Zhang KZ, Zeng JH, Guo DG, Wang ZY, Li YG. Integrated microRNA and mRNA sequencing analysis of age-related changes to mouse thymic epithelial cells. IUBMB Life 2018; 70:678-690. [DOI: 10.1002/iub.1864] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/06/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Hong-Ling Jia
- College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Xiao-Qin Zeng
- Guangzhou Women and Children's Medical Center; Guangzhou Guangdong China
| | - Feng Huang
- Guangzhou Women and Children's Medical Center; Guangzhou Guangdong China
| | - Ya-Meng Liu
- College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Bi-Shuang Gong
- College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Kai-Zhao Zhang
- College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Jiang-Hui Zeng
- Department of Clinical Laboratory; The Third Affiliated Hospital of Guangxi Medical University; Nanning Guangxi Zhuang Autonomous Region China
| | - Dong-Guang Guo
- Biotechnology Research Center, School of Life Science and Technology; Xinxiang University; Xinxiang Henan Province China
| | - Zhuo-Ya Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Courses; Guangdong Pharmaceutical University; Guangzhou Guangdong China
| | - Yu-Gu Li
- College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| |
Collapse
|
26
|
Liu Z, Su DM, Yu ZL, Wu F, Liu RF, Luo SQ, Lv ZY, Zeng X, Sun X, Wu ZD. Soluble antigens from the neurotropic pathogen Angiostrongylus cantonensis directly induce thymus atrophy in a mouse model. Oncotarget 2018; 8:48575-48590. [PMID: 28548945 PMCID: PMC5564709 DOI: 10.18632/oncotarget.17836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/02/2017] [Indexed: 11/25/2022] Open
Abstract
The nematode Angiostrongylus cantonensis (A.C.) is a neurotropic pathogen; stage-III larva invade the human (non-permissive host) central nervous system (CNS) to cause eosinophilic meningitis or meningoencephalitis accompanied by immunosuppression. In an A.C.-infectedmouse (another non-permissive host) model, CNS damage-associated T cell immune deficiency and severe inflammation were proposed to result from activation of the hypothalamic-pituitary-adrenal (HPA) axis. However, glucocorticoids are anti-inflammatory agents. Additionally, while defects in thymic stromal/epithelial cells (TECs) are the major reason for thymic atrophy, TECs do not express the glucocorticoid receptor. Therefore, activation of the HPA axis cannot fully explain the thymic atrophy and inflammation. Using an A.C.-infected mouse model, we found that A.C.-infected mice developed severe thymic atrophy with dramatic impairments in thymocytes and TECs, particularly cortical TECs, which harbor CD4+CD8+ double-positive thymocytes. The impairments resulted from soluble antigens (sAgs) from A.C. in the thymuses of infected mice, as intrathymic injection of these sAgs into live mice and the addition of these sAgs to thymic cell culture resulted in thymic atrophy and cellular apoptosis, respectively. Therefore, in addition to an indirect effect on thymocytes through the HPA axis, our study reveals a novel mechanism by which A.C. infection in non-permissive hosts directly induces defects in both thymocytes and TECs via soluble antigens.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Dong-Ming Su
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Zi-Long Yu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Feng Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Rui-Feng Liu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Qi Luo
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Zhi-Yue Lv
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Xin Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| | - Zhong-Dao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Diseases-Vectors Control, Guangzhou, China
| |
Collapse
|
27
|
Apert C, Romagnoli P, van Meerwijk JPM. IL-2 and IL-15 dependent thymic development of Foxp3-expressing regulatory T lymphocytes. Protein Cell 2018; 9:322-332. [PMID: 28540653 PMCID: PMC5876181 DOI: 10.1007/s13238-017-0425-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022] Open
Abstract
Immunosuppressive regulatory T lymphocytes (Treg) expressing the transcription factor Foxp3 play a vital role in the maintenance of tolerance of the immune-system to self and innocuous non-self. Most Treg that are critical for the maintenance of tolerance to self, develop as an independent T-cell lineage from common T cell precursors in the thymus. In this organ, their differentiation requires signals from the T cell receptor for antigen, from co-stimulatory molecules, as well as from cytokine-receptors. Here we focus on the cytokines implicated in thymic development of Treg, with a particular emphasis on the roles of interleukin-2 (IL-2) and IL-15. The more recently appreciated involvement of TGF-β in thymic Treg development is also briefly discussed. Finally, we discuss how cytokine-dependence of Treg development allows for temporal, quantitative, and potentially qualitative modulation of this process.
Collapse
Affiliation(s)
- Cécile Apert
- CPTP, Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Paola Romagnoli
- CPTP, Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France.
| | | |
Collapse
|
28
|
Sakata M, Ohigashi I, Takahama Y. Cellularity of Thymic Epithelial Cells in the Postnatal Mouse. THE JOURNAL OF IMMUNOLOGY 2018; 200:1382-1388. [PMID: 29298829 DOI: 10.4049/jimmunol.1701235] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022]
Abstract
The molecular and cellular biology of thymic epithelial cells (TECs) often relies on the analysis of TECs isolated in enzymatically digested single-cell suspensions derived from mouse thymus. Many independent studies have reported that the estimated cellularity of total TECs isolated from one adult mouse is on the order of up to 105 However, these numbers appear extremely small given that the cellularity of total thymocytes exceeds 108 and that TECs play multiple roles in thymocyte development and repertoire formation. In the present study, we aimed to measure the numbers of β5t-expressing cortical TECs and Aire-expressing medullary TECs in postnatal mouse thymus in situ without enzymatic digestion. The numbers of these TECs were manually counted in individual thymic sections and were three-dimensionally summed throughout the entire thymic lobes. The results show that the cellularity of total TECs in one 5-wk-old female mouse exceeds 106, containing ∼9 × 105 β5t+ cortical TECs and ∼1.1 × 106 Aire+ medullary TECs. These results suggest that the use of conventional enzymatic digestion methods for the isolation of TECs may have resulted in the underestimation of the cellularity, and possibly the biology, of TECs.
Collapse
Affiliation(s)
- Mie Sakata
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| |
Collapse
|
29
|
Michel C, Miller CN, Küchler R, Brors B, Anderson MS, Kyewski B, Pinto S. Revisiting the Road Map of Medullary Thymic Epithelial Cell Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3488-3503. [PMID: 28993517 DOI: 10.4049/jimmunol.1700203] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/08/2017] [Indexed: 11/19/2022]
Abstract
The basic two-step terminal differentiation model of the medullary thymic epithelial cell (mTEC) lineage from immature MHC class II (MHCII)lo to mature MHCIIhi mTECs has recently been extended to include a third stage, namely the post-Aire MHCIIlo subset as identified by lineage-tracing models. However, a suitable surface marker distinguishing the phenotypically overlapping pre- from the post-Aire MHCIIlo stage has been lacking. In this study, we introduce the lectin Tetragonolobus purpureas agglutinin (TPA) as a novel cell surface marker that allows for such delineation. Based on our data, we derived the following sequence of mTEC differentiation: TPAloMHCIIlo → TPAloMHCIIhi → TPAhiMHCIIhi → TPAhiMHCIIlo Surprisingly, in the steady-state postnatal thymus TPAloMHCIIlo pre-Aire rather than terminally differentiated post-Aire TPAhiMHCIIlo mTECs were marked for apoptosis at an exceptionally high rate of ∼70%. Hence, only the minor cycling fraction of the MHCIIlo subset (<20%) potentially qualified as mTEC precursors. FoxN1 expression inversely correlated with the fraction of slow cycling and apoptotic cells within the four TPA subsets. TPA also further subdivided human mTECs, although with different subset distribution. Our revised road map emphazises close parallels of terminal mTEC development with that of skin, undergoing an alternative route of cell death, namely cornification rather than apoptosis. The high rate of apoptosis in pre-Aire MHCIIlo mTECs points to a "quality control" step during early mTEC differentiation.
Collapse
Affiliation(s)
- Chloé Michel
- Division of Developmental Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Corey N Miller
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143
| | - Rita Küchler
- Division of Developmental Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg 69120, Germany
- National Center for Tumor Diseases, Heidelberg 69120, Germany; and
- German Cancer Consortium, Heidelberg 69120, Germany
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143
| | - Bruno Kyewski
- Division of Developmental Immunology, German Cancer Research Center, Heidelberg 69120, Germany;
| | - Sheena Pinto
- Division of Developmental Immunology, German Cancer Research Center, Heidelberg 69120, Germany;
| |
Collapse
|
30
|
Takaba H, Takayanagi H. The Mechanisms of T Cell Selection in the Thymus. Trends Immunol 2017; 38:805-816. [PMID: 28830733 DOI: 10.1016/j.it.2017.07.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022]
Abstract
T cells undergo positive and negative selection in the thymic cortex and medulla, respectively. A promiscuous expression of a wide array of self-antigens in the thymus is essential for the negative selection of self-reactive T cells and the establishment of central tolerance. Aire was originally thought to be the exclusive factor regulating the expression of tissue-restricted antigens, but Fezf2 recently emerged as a critical transcription factor in this regulatory activity. Fezf2 is selectively expressed in thymic medullary epithelial cells, regulates a large number of tissue-restricted antigens and suppresses the onset of autoimmune responses. Here, we discuss novel findings on the transcriptional mechanisms of tissue restricted-antigen expression in the medullary thymic epithelial cells and its effects on T cell selection.
Collapse
Affiliation(s)
- Hiroyuki Takaba
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
31
|
A critical epithelial survival axis regulated by MCL-1 maintains thymic function in mice. Blood 2017; 130:2504-2515. [PMID: 28972012 DOI: 10.1182/blood-2017-03-771576] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022] Open
Abstract
T-cell differentiation is governed by interactions with thymic epithelial cells (TECs) and defects in this process undermine immune function and tolerance. To uncover new strategies to restore thymic function and adaptive immunity in immunodeficiency, we sought to determine the molecular mechanisms that control life and death decisions in TECs. Guided by gene expression profiling, we created mouse models that specifically deleted prosurvival genes in TECs. We found that although BCL-2 and BCL-XL were dispensable for TEC homeostasis, MCL-1 deficiency impacted on TECs as early as embryonic day 15.5, resulting in early thymic atrophy and T-cell lymphopenia, with near complete loss of thymic tissue by 2 months of age. MCL-1 was not necessary for TEC differentiation but was continually required for the survival of mature cortical and medullary TECs and the maintenance of thymic architecture. A screen of TEC trophic factors in organ cultures showed that epidermal growth factor upregulated MCL-1 via MAPK/ERK kinase activity, providing a molecular mechanism for the support of TEC survival. This signaling axis governing TEC survival and thymic function represents a new target for strategies for thymic protection and regeneration.
Collapse
|
32
|
Lucas B, White AJ, Parnell SM, Henley PM, Jenkinson WE, Anderson G. Progressive Changes in CXCR4 Expression That Define Thymocyte Positive Selection Are Dispensable For Both Innate and Conventional αβT-cell Development. Sci Rep 2017; 7:5068. [PMID: 28698642 PMCID: PMC5505955 DOI: 10.1038/s41598-017-05182-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/24/2017] [Indexed: 11/09/2022] Open
Abstract
The ordered migration of immature thymocytes through thymic microenvironments generates both adaptive MHC restricted αβT-cells and innate CD1d-restricted iNKT-cells. While several chemokine receptors and ligands control multiple stages of this process, their involvement during early thymocyte development often precludes direct analysis of potential roles during later developmental stages. For example, because of early lethality of CXCR4-/- mice, and stage-specific requirements for CXCR4 in thymus colonisation and pre-TCR mediated selection, its role in thymic positive selection is unclear. Here we have examined CXCR4-CXCL12 interactions during the maturation of CD4+CD8+ thymocytes, including downstream stages of iNKT and αβT-cell development. We show CXCL12 expression is a common feature of cortical thymic epithelial cells, indicating widespread availability throughout the cortex. Moreover, CXCR4 expression by CD4+CD8+ pre-selection thymocytes is progressively downregulated following both MHC and CD1d-restricted thymic selection events. However, using CD4Cre-mediated deletion to bypass its involvement in CD4-CD8- thymocyte development, we show CXCR4 is dispensable for the maintenance and intrathymic positioning of CD4+CD8+ thymocytes, and their ability to generate mature αβT-cells and CD1d-restricted iNKT-cells. Collectively, our data define dynamic changes in CXCR4 expression as a marker for intrathymic selection events, and show its role in T-cell development is restricted to pre-CD4+CD8+ stages.
Collapse
Affiliation(s)
- Beth Lucas
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, England
| | - Andrea J White
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, England
| | - Sonia M Parnell
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, England
| | - Peter M Henley
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, England
| | - William E Jenkinson
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, England
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, England.
| |
Collapse
|
33
|
Thymic homing of activated CD4 + T cells induces degeneration of the thymic epithelium through excessive RANK signaling. Sci Rep 2017; 7:2421. [PMID: 28546567 PMCID: PMC5445095 DOI: 10.1038/s41598-017-02653-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/25/2017] [Indexed: 11/09/2022] Open
Abstract
Activated T cells have been shown to be able to recirculate into the thymus from the periphery. The present study was aimed to elucidate the functional consequences of thymic homing of activated T cells upon developing thymocytes and thymic epithelial cells (TEC). In the presence of activated T cells, especially CD4+ T cells, T cell development was found to be inhibited in thymic organ cultures with markedly reduced cellularity. Thymic transplantation demonstrated that the inhibitory effect was most likely due to a defective microenvironment. As the major component of the thymic stroma, the TEC compartment was severely disturbed after prolonged exposure to the activated T cells. In addition to reduced cell proliferation, TEC differentiation was heavily skewed to the mTEC lineage. Furthermore, we demonstrated that RANKL highly expressed by activated CD4+ T cells was primarily responsible for the detrimental effects. Presumably, excessive RANK signaling drove overproduction of mTECs and possibly exhaustion of epithelial progenitors, thereby facilitating the deterioration of the epithelial structures. These findings not only reveal a novel activity of activated T cells re-entering the thymus, but also provide a new perspective for understanding the mechanism underlying thymic involution.
Collapse
|
34
|
Brunk F, Michel C, Holland-Letz T, Slynko A, Kopp-Schneider A, Kyewski B, Pinto S. Dissecting and modeling the emergent murine TEC compartment during ontogeny. Eur J Immunol 2017; 47:1153-1159. [DOI: 10.1002/eji.201747006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Fabian Brunk
- Division of Developmental Immunology; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Chloé Michel
- Division of Developmental Immunology; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Tim Holland-Letz
- Division of Biostatistics; German Cancer Research Center; Heidelberg Germany
| | - Alla Slynko
- Department of Mathematics; Natural and Economic Sciences; University of Applied Sciences; Ulm Germany
| | | | - Bruno Kyewski
- Division of Developmental Immunology; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Sheena Pinto
- Division of Developmental Immunology; German Cancer Research Center (DKFZ); Heidelberg Germany
| |
Collapse
|
35
|
Kondo K, Takada K, Takahama Y. Antigen processing and presentation in the thymus: implications for T cell repertoire selection. Curr Opin Immunol 2017; 46:53-57. [PMID: 28477557 DOI: 10.1016/j.coi.2017.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/29/2017] [Indexed: 01/25/2023]
Abstract
The processing and presentation of major histocompatibility complex (MHC)-associated antigens depend on the intracellular digestion of self- and nonself-proteins, the loading of digested peptides onto MHC molecules, and the traffic of peptide-MHC complexes to plasma membrane surface for display to interacting T cells. Recent studies have revealed unique machineries for antigen processing and presentation in thymic antigen-presenting cells that display self-antigens to developing thymocytes for the formation of functionally competent yet self-tolerant T cell repertoire. Here, we briefly summarize those machineries, focusing on the biology of cortical and medullary thymic epithelial cells.
Collapse
Affiliation(s)
- Kenta Kondo
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kensuke Takada
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan; Laboratory of Molecular Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, N18W9 Kita-ku, Sapporo 060-0818, Japan
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, 3-18-15 Kuramoto, Tokushima 770-8503, Japan.
| |
Collapse
|
36
|
Takahama Y, Ohigashi I, Baik S, Anderson G. Generation of diversity in thymic epithelial cells. Nat Rev Immunol 2017; 17:295-305. [PMID: 28317923 DOI: 10.1038/nri.2017.12] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the thymus, diverse populations of thymic epithelial cells (TECs), including cortical and medullary TECs and their subpopulations, have distinct roles in coordinating the development and repertoire selection of functionally competent and self-tolerant T cells. Here, we review the expanding diversity in TEC subpopulations in relation to their functions in T cell development and selection as well as their origins and development.
Collapse
Affiliation(s)
- Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Song Baik
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Graham Anderson
- Institute for Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
37
|
Wu W, Shi Y, Xia H, Chai Q, Jin C, Ren B, Zhu M. Epithelial LTβR signaling controls the population size of the progenitors of medullary thymic epithelial cells in neonatal mice. Sci Rep 2017; 7:44481. [PMID: 28290551 PMCID: PMC5349570 DOI: 10.1038/srep44481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
The establishment of T cell central tolerance critically relies on the development and maintenance of the medullary thymic epithelial cells (mTECs). Disrupted signaling of lymphotoxin beta receptor (LTβR) results in dramatically reduced mTEC population. However, whether LTβR directly or indirectly control mTECs remains undetermined; how LTβR controls this process also remain unclear. In this study, by utilizing K14-Cre × Ltbrfl/fl conditional knockout (cKO) mice, we show that epithelial intrinsic LTβR was essential for the mTEC development postnatally. Mechanistically, LTβR did not directly impact the proliferation or survival of mTECs; the maturation of mTECs from MHC-IIlo to MHC-IIhi stage was also unaltered in the absence of LTβR; interestingly, the number of mTEC progenitors (Cld3,4hiSSEA-1+) was found significantly reduced in LTβR cKO mice at the neonatal stage, but not at E18.5. Consequently, epithelial deficiency of LTβR resulted in significant defect of thymic negative selection as demonstrated using OT-I and RIP-OVA transgenic mouse system. In summary, our study clarifies the epithelial intrinsic role of LTβR on mTEC development and function; more importantly, it reveals a previously unrecognized function of LTβR on the control of the size of mTEC progenitor population.
Collapse
Affiliation(s)
- Weiwei Wu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoyao Shi
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huan Xia
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Chai
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Caiwei Jin
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boyang Ren
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
38
|
Boehm T. Form follows function, function follows form: how lymphoid tissues enable and constrain immune reactions. Immunol Rev 2016; 271:4-9. [PMID: 27088903 DOI: 10.1111/imr.12420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|