1
|
Reikvam H, Hatfield K, Sandnes M, Bruserud Ø. Future biomarkers for acute graft-versus-host disease: potential roles of nucleic acids, metabolites, and immune cell markers. Expert Rev Clin Immunol 2024:1-17. [PMID: 39670445 DOI: 10.1080/1744666x.2024.2441246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/04/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Acute graft versus host disease (aGVHD) is a potentially lethal complication after allogeneic stem cell transplantation. Biomarkers are used to estimate the risk of aGVHD and evaluate response to treatment. The most widely used biomarkers are systemic levels of various protein mediators involved in immunoregulation or reflecting tissue damage. However, systemic levels of other molecular markers such as nucleic acids or metabolites, levels of immunocompetent cells or endothelial cell markers may also be useful biomarkers in aGVHD. AREAS COVERED This review is based on selected articles from the PubMed database. We review and discuss the scientific basis for further studies to evaluate nucleic acids, metabolites, circulating immunocompetent cell subsets or endothelial markers as biomarkers in aGVHD. EXPERT OPINION A wide range of interacting and communicating cells are involved in the complex pathogenesis of aGVHD. Both nucleic acids and metabolites function as soluble mediators involved in communication between various subsets of immunocompetent cells and between immunocompetent cells and other neighboring cells. Clinical and experimental studies suggest that both neutrophils, monocytes, and endothelial cells are involved in the early stages of aGVHD pathogenesis. In our opinion, the possible clinical use of these molecular and cellular biomarkers warrants further investigation.
Collapse
Affiliation(s)
- Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kimberley Hatfield
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Miriam Sandnes
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Xiao C, Feng X, Zhao Z, Ding G, Gao Y. Global research trends and focus on the link between neutrophil extracellular traps and tumor: a bibliometric and visualization analysis from 2006 to 2024. Front Immunol 2024; 15:1452104. [PMID: 39381001 PMCID: PMC11459091 DOI: 10.3389/fimmu.2024.1452104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Background Neutrophil extracellular traps (NETs) have long been consistently considered an innate immune defense against foreign pathogens, but this oversimplified view has decelerated the progression of perceiving NET biology in chronic diseases. It is now increasingly accepted that NETs are not exclusive to anti-infection responses, but are also central players with a double-edged sword role in cancer progression. NETs have gradually emerged as tumor diagnostic, predictive, and prognostic biomarkers, and strenuous endeavors have been devoted to tapping their potential as new therapeutic targets. Correspondingly, the boom in studies on NETs and tumors in recent years has achieved a series of scientific outputs, which opens up a new perspective for perceiving the sophisticated landscapes of the tumor immune microenvironment. However, there is still much room to translate NET-targeted immunotherapies into clinical practice. Therefore, it is necessary to explore the knowledge structure and latent hotspots of the links between NETs and tumors using bibliometric analysis. Methods NETs and tumor publications from 2006 to 2024 were extracted from the Web of Science Core Collection. Bibliometric analysis and visualization were conducted using Microsoft Excel, VOSviewer, CiteSpace, and R-bibliometrix. Results The analysis included 1,339 publications authored by 7,747 scholars affiliated with 1,926 institutions across 70 countries/regions with relevant articles published in 538 journals. Despite China's maximum number of publications, the United States has continued to dominate the field as a global cooperation center with overwhelming citation counts. Frontiers in Immunology published the most number of publications, whereas Blood was the most cited journal. Wagner, Denisa D. and Kaplan, Mariana J. are concurrently in both the top 10 most prolific authors and cited author lists. Tumor microenvironment and immunotherapy will likely be the focus of future research. Conclusions A comprehensive bibliometric analysis was first conducted to map the current landscape and knowledge structure of the link between NETs and tumors in the hope of providing guidance and fresh perspectives for further research in this field. NETs are promising antitumor targets, and perhaps the eventual destination in the realm is to translate NET-targeted immunotherapies into clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Yawen Gao
- Department of Oncology, The Second Xiangya Hospital, Central South
University, Changsha, China
| |
Collapse
|
3
|
Chen C, Zhang J, Liu X, Zhuang Q, Lu H, Hou J. A platelet-related signature for predicting the prognosis and immunotherapy benefit in bladder cancer based on machine learning combinations. Transl Androl Urol 2024; 13:1472-1485. [PMID: 39280688 PMCID: PMC11399026 DOI: 10.21037/tau-24-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/26/2024] [Indexed: 09/18/2024] Open
Abstract
Background Bladder cancer carries a large societal burden, with over 570,000 newly diagnosed cases and 210,000 deaths globally each year. Platelets play vital functions in tumor progression and therapy benefits. We aimed to construct a platelet-related signature (PRS) for the clinical outcome of bladder cancer cases. Methods Ten machine learning techniques were used in the integrative operations to build PRS using the datasets from The Cancer Genome Atlas (TCGA), gene series expression (GSE)13507, GSE31684, GSE32894 and GSE48276. A number of immunotherapy datasets and prediction scores, including GSE91061, GSE78220, and IMvigor210, were utilized to assess how well the PRS predicted the benefit of immunotherapy. Vitro experiment was performed to verify the role of α1C-tubulin (TUBA1C) in bladder cancer. Results Enet (alpha =0.4) algorithm-based PRS had the highest average C-index of 0.73 and it was suggested as the optimal PRS. PRS acted as an independent risk factor for bladder cancer and patients with high PRS score portended a worse overall survival rate, with the area under the curve of 1-, 3- and 5-year operating characteristic curve being 0.754, 0.779 and 0.806 in TCGA dataset. A higher level of immune-activated cells, cytolytic function and T cell co-stimulation was found in the low PRS score group. Low PRS score demonstrated a higher tumor mutation burden score and programmed cell death protein 1 & cytotoxic T-lymphocyte associated protein 4 immunophenoscore, lower tumor immune dysfunction and exclusion score, intratumor heterogeneity score and immune escape score in bladder cancer, suggesting the PRS as an indicator for predicting immunotherapy benefits. Vitro experiment showed that TUBA1C was upregulated in bladder cancer and knockdown of TUBA1C obviously suppressed tumor cell proliferation. Conclusions The present study developed an ideal PRS for bladder cancer, which may be used as a predictor of prognosis, a risk classification system, and a therapy guide.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Zhang
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoshuang Liu
- Department of General Surgery, Shuguang Hospital, Shanghai University of traditional Chinese Medicine, Shanghai, China
| | - Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hao Lu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jianquan Hou
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, China
| |
Collapse
|
4
|
Jin Y, Christenson ES, Zheng L, Li K. Neutrophils in pancreatic ductal adenocarcinoma: bridging preclinical insights to clinical prospects for improved therapeutic strategies. Expert Rev Clin Immunol 2024; 20:945-958. [PMID: 38690749 DOI: 10.1080/1744666x.2024.2348605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by a dismal five-year survival rate of less than 10%. Neutrophils are key components of the innate immune system, playing a pivotal role in the PDAC immune microenvironment. AREAS COVERED This review provides a comprehensive survey of the pivotal involvement of neutrophils in the tumorigenesis and progression of PDAC. Furthermore, it synthesizes preclinical and clinical explorations aimed at targeting neutrophils within the milieu of PDAC, subsequently proposing a conceptual framework to propel further inquiry focused on enhancing the therapeutic efficacy of PDAC through neutrophil-targeted strategies. PubMed and Web of Science databases were utilized for researching neutrophils in pancreatic cancer publications prior to 2024. EXPERT OPINION Neutrophils play roles in promoting tumor growth and metastasis in PDAC and are associated with poor prognosis. However, the heterogeneity and plasticity of neutrophils and their complex relationships with other immune cells and extracellular matrix also provide new insights for immunotherapy targeting neutrophils to achieve a better prognosis for PDAC.
Collapse
Affiliation(s)
- Yi Jin
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Eric S Christenson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Skip Viragh Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Zhang M, Li Z, Yin Y. Association of effective dose to immune cells and vertebral marrow dose with hematologic toxicity during neoadjuvant chemoradiotherapy in esophageal squamous cell carcinoma. BMC Cancer 2024; 24:779. [PMID: 38943075 PMCID: PMC11212421 DOI: 10.1186/s12885-024-12531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/17/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND To explore the correlation between effective dose to immune cells (EDIC) and vertebral bone marrow dose and hematologic toxicity (HT) for esophageal squamous cell carcinoma (ESCC) during neoadjuvant chemoradiotherapy (nCRT). METHODS The study included 106 ESCC patients treated with nCRT. We collected dosimetric parameters, including vertebral body volumes receiving 10-40 Gy (V10, V20, V30, V40) and EDIC and complete blood counts. Associations of the cell nadir and dosimetric parameters were examined by linear and logistic regression analysis. The receiver operating characteristic (ROC) curves were used to determine the cutoff values for the dosimetric parameters. RESULTS During nCRT, the incidence of grade 3-4 lymphopenia, leukopenia, and neutropenia was 76.4%, 37.3%, and 37.3%, respectively. Patients with EDIC ≤ 4.63 Gy plus V10 ≤ 140.3 ml were strongly associated with lower risk of grade 3-4 lymphopenia (OR, 0.050; P < 0.001), and patients with EDIC ≤ 4.53 Gy plus V10 ≤ 100.9 ml were strongly associated with lower risk of grade 3-4 leukopenia (OR, 0.177; P = 0.011), and patients with EDIC ≤ 5.79 Gy were strongly associated with lower risk of grade 3-4 neutropenia (OR, 0.401; P = 0.031). Kaplan-Meier analysis showed that there was a significant difference among all groups for grade 3-4 lymphopenia, leukopenia, and neutropenia (P < 0.05). CONCLUSION The dose of vertebral bone marrow irradiation and EDIC were significantly correlated with grade 3-4 leukopenia and lymphopenia, and EDIC was significantly correlated with grade 3-4 neutropenia. Reducing vertebral bone marrow irradiation and EDIC effectively reduce the incidence of HT.
Collapse
Affiliation(s)
- Meng Zhang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenjiang Li
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Yong Yin
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China.
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
6
|
Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, Assis J, Pereira D, Medeiros R. Haemostatic Gene Expression in Cancer-Related Immunothrombosis: Contribution for Venous Thromboembolism and Ovarian Tumour Behaviour. Cancers (Basel) 2024; 16:2356. [PMID: 39001418 PMCID: PMC11240748 DOI: 10.3390/cancers16132356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Ovarian cancer (OC) is the deadliest gynaecological malignancy. Identifying new prognostic biomarkers is an important research field. Haemostatic components together with leukocytes can drive cancer progression while increasing the susceptibility to venous thromboembolism (VTE) through immunothrombosis. Unravelling the underlying complex interactions offers the prospect of uncovering relevant OC prognostic biomarkers, predictors of cancer-associated thrombosis (CAT), and even potential targets for cancer therapy. Thus, this study evaluated the expression of F3, F5, F8, F13A1, TFPI1, and THBD in peripheral blood cells (PBCs) of 52 OC patients. Those with VTE after tumour diagnosis had a worse overall survival (OS) compared to their counterparts (mean OS of 13.8 ± 4.1 months and 47.9 ± 5.7 months, respectively; log-rank test, p = 0.001). Low pre-chemotherapy F3 and F8 expression levels were associated with a higher susceptibility for OC-related VTE after tumour diagnosis (χ2, p < 0.05). Regardless of thrombogenesis, patients with low baseline F8 expression had a shorter progression-free survival (PFS) than their counterparts (adjusted hazard ratio (aHR) = 2.54; p = 0.021). Among those who were not under platelet anti-aggregation therapy, low F8 levels were also associated with a shorter OS (aHR = 6.16; p = 0.006). Moving forward, efforts should focus on external validation in larger cohorts.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
| | - Joana Savva-Bordalo
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Mariana Rei
- Department of Gynaecology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - Joana Liz-Pimenta
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508 Vila Real, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
| | - Deolinda Pereira
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
7
|
Yao W, Wu J, Kong Y, Xu F, Zhou Y, Sun Q, Gao Q, Cai Z, Yang C, Huang Y. Associations of systemic immune-inflammation index with high risk for prostate cancer in middle-aged and older US males: A population-based study. Immun Inflamm Dis 2024; 12:e1327. [PMID: 38923408 PMCID: PMC11194977 DOI: 10.1002/iid3.1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Systemic immune-inflammation index (SII) provides convincing evaluation of systemic immune and inflammatory condition in human body. Its correlation with prostate cancer (PCa) risk remains uncharted. The principal objective of this investigation was to elucidate the association between SII and the risk for PCa in middle-aged and elderly males. MATERIALS AND METHODS Analysis entailed multivariate linear and logistic regression, generalized additive model, and smoothing curve fitting using resource from 2007 to 2010 National Health and Nutrition Examination Survey (NHANES). To ascertain robustness and consistency of this association across different demographic strata, we conducted rigorous subgroup analyses and interaction tests. RESULTS Among 3359 participants, those with elevated SII displayed higher total prostate-specific antigen (tPSA) levels, higher risk for PCa, and lower free/total PSA (f/t PSA) ratio. Specifically, each unit increase of log2 (SII) was associated with a 0.22 ng/mL increase in tPSA (β: 0.22, 95% confidence intervals [CI] 0.05-0.38), a 2.22% decline in f/t PSA ratio (β: -2.22, 95% CI -3.20 to -1.23), and a 52% increased odds of being at high risk for PCa (odds ratio [OR]: 1.52, 95% CI 1.13-2.04). People in the top quartile of log2 (SII) exhibited 0.55 ng/mL increased tPSA (β: 0.55, 95% CI 0.19-0.90), 4.39% reduced f/t PSA ratio (β: -4.39, 95% CI -6.50 to -2.27), and 168% increased odds of being at high risk for PCa (OR: 2.68, 95% CI 1.32-5.46) compared to those in the bottom quartile. CONCLUSION Systemic immune and inflammatory condition, as represented by SII, is independently and positively associated with tPSA levels and the risk for PCa, as well as independently and negatively associated with f/t PSA ratio among middle-aged and older US males. These findings may enhance the effectiveness of PCa screening in predicting positive biopsy results.
Collapse
Affiliation(s)
- Wentao Yao
- Department of UrologyThe First Affiliated Hospital of Soochow UniversityChina
- Department of UrologySuzhou TCM Hospital Affiliated to Nanjing University of Chinese MedicineChina
| | - Jiacheng Wu
- Department of UrologyThe First Affiliated Hospital of Soochow UniversityChina
- Department of UrologyAffiliated Tumor Hospital of Nantong University & Nantong Tumor HospitalChina
| | - Ying Kong
- Department of UrologyThe First Affiliated Hospital of Soochow UniversityChina
| | - Feng Xu
- Department of UrologySuzhou TCM Hospital Affiliated to Nanjing University of Chinese MedicineChina
| | - Yinyi Zhou
- Department of UrologySuzhou TCM Hospital Affiliated to Nanjing University of Chinese MedicineChina
| | - Qing Sun
- Department of UrologySuzhou TCM Hospital Affiliated to Nanjing University of Chinese MedicineChina
| | - Qingqing Gao
- Department of Preventive MedicineSuzhou TCM Hospital Affiliated to Nanjing University of Chinese MedicineChina
| | - Zhenyu Cai
- Department of UrologySuzhou TCM Hospital Affiliated to Nanjing University of Chinese MedicineChina
| | - Chendi Yang
- Department of UrologySuzhou TCM Hospital Affiliated to Nanjing University of Chinese MedicineChina
| | - Yuhua Huang
- Department of UrologyThe First Affiliated Hospital of Soochow UniversityChina
| |
Collapse
|
8
|
Zhao J, Li X, Li L, Chen B, Xu W, He Y, Chen X. Identification of neutrophil extracellular trap-driven gastric cancer heterogeneity and C5AR1 as a therapeutic target. Acta Biochim Biophys Sin (Shanghai) 2024; 56:538-550. [PMID: 38425243 DOI: 10.3724/abbs.2023290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are implicated in gastric cancer (GC) growth, metastatic dissemination, cancer-associated thrombosis, etc. This work is conducted to elucidate the heterogeneity of NETs in GC. The transcriptome heterogeneity of NETs is investigated in TCGA-STAD via a consensus clustering algorithm, with subsequent external verification in the GSE88433 and GSE88437 cohorts. Clinical and molecular traits, the immune microenvironment, and drug response are characterized in the identified NET-based clusters. Based upon the feature genes of NETs, a classifier is built for estimating NET-based clusters via machine learning. Multiple experiments are utilized to verify the expressions and implications of the feature genes in GC. A novel NET-based classification system is proposed for reflecting the heterogeneity of NETs in GC. Two NET-based clusters have unique and heterogeneous clinical and molecular features, immune microenvironments, and responses to targeted therapy and immunotherapy. A logistic regression model reliably differentiates the NET-based clusters. The feature genes C5AR1, CSF1R, CSF2RB, CYBB, HCK, ITGB2, LILRB2, MNDA, MPEG1, PLEK, SRGN, and STAB1 are proven to be aberrantly expressed in GC cells. Specific knockdown of C5AR1 effectively hinders GC cell growth and elicits intracellular ROS accumulation. In addition, its suppression suppresses the aggressiveness and EMT phenotype of GC cells. In all, NETs are the main contributors to intratumoral heterogeneity and differential drug sensitivity in GC, and C5AR1 has been shown to trigger GC growth and metastatic spread. These findings collectively provide a theoretical basis for the use of anti-NETs in GC treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Xiangyu Li
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Liming Li
- Department of Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Weifeng Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Yunduan He
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
9
|
Trivanović D, Mojsilović S, Bogosavljević N, Jurišić V, Jauković A. Revealing profile of cancer-educated platelets and their factors to foster immunotherapy development. Transl Oncol 2024; 40:101871. [PMID: 38134841 PMCID: PMC10776659 DOI: 10.1016/j.tranon.2023.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Among multiple hemostasis components, platelets hyperactivity plays major roles in cancer progression by providing surface and internal components for intercellular crosstalk as well as by behaving like immune cells. Since platelets participate and regulate immunity in homeostatic and disease states, we assumed that revealing platelets profile might help in conceiving novel anti-cancer immune-based strategies. The goal of this review is to compile and discuss the most recent reports on the nature of cancer-associated platelets and their interference with immunotherapy. An increasing number of studies have emphasized active communication between cancer cells and platelets, with platelets promoting cancer cell survival, growth, and metastasis. The anti-cancer potential of platelet-directed therapy has been intensively investigated, and anti-platelet agents may prevent cancer progression and improve the survival of cancer patients. Platelets can (i) reduce antitumor activity; (ii) support immunoregulatory cells and factors generation; (iii) underpin metastasis and, (iv) interfere with immunotherapy by expressing ligands of immune checkpoint receptors. Mediators produced by tumor cell-induced platelet activation support vein thrombosis, constrain anti-tumor T- and natural killer cell response, while contributing to extravasation of tumor cells, metastatic potential, and neovascularization within the tumor. Recent studies showed that attenuation of immunothrombosis, modulation of platelets and their factors have a good perspective in immunotherapy optimization. Particularly, blockade of intra-tumoral platelet-associated programmed death-ligand 1 might promote anti-tumor T cell-induced cytotoxicity. Collectively, these findings suggest that platelets might represent the source of relevant cancer staging biomarkers, as well as promising targets and carriers in immunotherapeutic approaches for combating cancer.
Collapse
Affiliation(s)
- Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia.
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia
| | | | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia
| |
Collapse
|
10
|
Yang L, Fu M, Yu L, Wang H, Chen X, Sun H. Value of markers of systemic inflammation for the prediction of postoperative progression in patients with pancreatic neuroendocrine tumors. Front Endocrinol (Lausanne) 2024; 15:1293842. [PMID: 38370351 PMCID: PMC10870645 DOI: 10.3389/fendo.2024.1293842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Background Non-invasive prognostic predictors for rare pancreatic neuroendocrine tumors (PNETs) are lacking. We aimed to approach the prognostic value of preoperative systemic inflammatory markers in patients with PNETs. Methods The clinical data of 174 patients with PNETs undergoing surgical treatment were retrospectively analyzed to explore the correlation of neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), lymphocyte to monocyte ratio (LMR), and platelet to white blood cell ratio (PWR) with clinicopathological parameters and the progression of tumor after the operation. The optimal cutoff values for predictors and the area under the curve (AUC) of the receiver operating characteristic (ROC) were estimated. Univariate and multivariate Cox proportional hazards models were used to assess the relation between NLR, LMR, PLR, and progression-free survival (PFS), examined by the Kaplan-Meier and log-rank tests. Results The scores of the NLR (P = 0.039) and PLR (P = 0.011) in the progression group were significantly higher than those in the progression-free group, and the LMR was significantly lower than those in the progression-free group (P = 0.001). The best cutoff values of NLR, LMR, and PLR before operation were 2.28, 4.36, and 120.91. The proportions of tumor progression in the high NLR group (P = 0.007) and high PLR group (P = 0.013) obviously increased, and the proportion of tumor development in the low LMR group was higher than that in the high LMR group (P < 0.001). The K-M survival curve showed that the progression-free survival rate was lower in the high NLR group (P = 0.004), the low LMR group (P < 0.001), and the high PLR group (P = 0.018). The results of the multivariate Cox proportional hazards model suggested that preoperative LMR (HR = 3.128, 95% CI: 1.107~8.836, P = 0.031) was an independent predictor of PFS. Conclusion The markers of systemic inflammation, especially LMR, can predict the postoperative progression of PNETs.
Collapse
Affiliation(s)
- Liu Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Department of Endocrinology, Union Hospital, Wuhan, China
| | - Mengfei Fu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Department of Endocrinology, Union Hospital, Wuhan, China
| | - Li Yu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanyu Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Department of Endocrinology, Union Hospital, Wuhan, China
| | - Xiao Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Department of Endocrinology, Union Hospital, Wuhan, China
| | - Hui Sun
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Department of Endocrinology, Union Hospital, Wuhan, China
| |
Collapse
|
11
|
Thind MK, Uhlig HH, Glogauer M, Palaniyar N, Bourdon C, Gwela A, Lancioni CL, Berkley JA, Bandsma RHJ, Farooqui A. A metabolic perspective of the neutrophil life cycle: new avenues in immunometabolism. Front Immunol 2024; 14:1334205. [PMID: 38259490 PMCID: PMC10800387 DOI: 10.3389/fimmu.2023.1334205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Neutrophils are the most abundant innate immune cells. Multiple mechanisms allow them to engage a wide range of metabolic pathways for biosynthesis and bioenergetics for mediating biological processes such as development in the bone marrow and antimicrobial activity such as ROS production and NET formation, inflammation and tissue repair. We first discuss recent work on neutrophil development and functions and the metabolic processes to regulate granulopoiesis, neutrophil migration and trafficking as well as effector functions. We then discuss metabolic syndromes with impaired neutrophil functions that are influenced by genetic and environmental factors of nutrient availability and usage. Here, we particularly focus on the role of specific macronutrients, such as glucose, fatty acids, and protein, as well as micronutrients such as vitamin B3, in regulating neutrophil biology and how this regulation impacts host health. A special section of this review primarily discusses that the ways nutrient deficiencies could impact neutrophil biology and increase infection susceptibility. We emphasize biochemical approaches to explore neutrophil metabolism in relation to development and functions. Lastly, we discuss opportunities and challenges to neutrophil-centered therapeutic approaches in immune-driven diseases and highlight unanswered questions to guide future discoveries.
Collapse
Affiliation(s)
- Mehakpreet K Thind
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Celine Bourdon
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Agnes Gwela
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Christina L Lancioni
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - James A Berkley
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Robert H J Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Amber Farooqui
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Omega Laboratories Inc, Mississauga, ON, Canada
| |
Collapse
|
12
|
Shen P, Cheng P, Li Y, Zong G, Deng R, Qian C, Zhao Y, Wei Z, Lu Y. Unveiling the covert interaction between gut microbiota and neutrophils to drive colorectal cancer metastasis. Eur J Pharmacol 2024; 962:176217. [PMID: 38036200 DOI: 10.1016/j.ejphar.2023.176217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
The formation of the microenvironment preceding liver metastasis is intricately linked to the intestinal tract. In recent years, mounting evidence has revealed the significant involvement of neutrophil extracellular traps (NETs) in tumor metastasis, particularly in liver metastasis. Disruption of the intestinal barrier can lead to the translocation of bacteria and their metabolites, such as lipopolysaccharide, into the liver. As the primary defense against pathogens, NETs help eliminate gut-derived toxins and shape the liver's inflammatory and immunosuppressive environment. However, this double-edged sword effect can potentially stimulate tumor metastasis by creating a fertile ground for the growth of intestinal tumor cells due to impaired liver tissue and reduced activity of killer immune cells. This comprehensive review systematically describes the influence factors and mechanisms of NETs in colon cancer metastasis and explores their potential as biomarkers and therapeutic targets for liver metastasis.
Collapse
Affiliation(s)
- Peiliang Shen
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peng Cheng
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanan Li
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Gangfan Zong
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui Deng
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
13
|
Hu Y, Wang H, Liu Y. NETosis: Sculpting tumor metastasis and immunotherapy. Immunol Rev 2024; 321:263-279. [PMID: 37712361 DOI: 10.1111/imr.13277] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
The process of neutrophil extracellular traps (NETs) formation, called NETosis, is a peculiar death modality of neutrophils, which was first observed as an immune response against bacterial infection. However, recent work has revealed the unique biology of NETosis in facilitating tumor metastatic process. Neutrophil extracellular traps released by the tumor microenvironment (TME) shield tumor cells from cytotoxic immunity, leading to impaired tumor clearance. Besides, tumor cells tapped by NETs enable to travel through vessels and subsequently seed distant organs. Targeted ablation of NETosis has been proven to be beneficial in potentiating the efficacy of cancer immunotherapy in the metastatic settings. This review outlines the impact of NETosis at almost all stages of tumor metastasis. Furthermore, understanding the multifaceted interplay between NETosis and the TME components is crucial for supporting the rational development of highly effective combination immunotherapeutic strategies with anti-NETosis for patients with metastatic disease.
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Houhong Wang
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, China
| | - Yang Liu
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
14
|
Bouti P, Blans C, Klein BJAM, Shome D, Nadafi R, Van Houdt M, Schornagel K, Verkuijlen PJJH, Roos V, Reijmers RM, Van Bruggen R, Kuijpers TW, Matlung HL. SIGLEC-5/14 Inhibits CD11b/CD18 Integrin Activation and Neutrophil-Mediated Tumor Cell Cytotoxicity. Int J Mol Sci 2023; 24:17141. [PMID: 38138970 PMCID: PMC10742634 DOI: 10.3390/ijms242417141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Since the successful introduction of checkpoint inhibitors targeting the adaptive immune system, monoclonal antibodies inhibiting CD47-SIRPα interaction have shown promise in enhancing anti-tumor treatment efficacy. Apart from SIRPα, neutrophils express a broad repertoire of inhibitory receptors, including several members of the sialic acid-binding receptor (SIGLEC) family. Here, we demonstrate that interaction between tumor cell-expressed sialic acids and SIGLEC-5/14 on neutrophils inhibits antibody-dependent cellular cytotoxicity (ADCC). We observed that conjugate formation and trogocytosis, both essential processes for neutrophil ADCC, were limited by the sialic acid-SIGLEC-5/14 interaction. During neutrophil-tumor cell conjugate formation, we found that inhibition of the interaction between tumor-expressed sialic acids and SIGLEC-5/14 on neutrophils increased the CD11b/CD18 high affinity conformation. By dynamic acoustic force measurement, the binding between tumor cells and neutrophils was assessed. The interaction between SIGLEC-5/14 and the sialic acids was shown to inhibit the CD11b/CD18-regulated binding between neutrophils and antibody-opsonized tumor cells. Moreover, the interaction between sialic acids and SIGLEC-5/14-consequently hindered trogocytosis and tumor cell killing. In summary, our results provide evidence that the sialic acid-SIGLEC-5/14 interaction is an additional target for innate checkpoint blockade in the tumor microenvironment.
Collapse
Affiliation(s)
- Panagiota Bouti
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Colin Blans
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Bart J. A. M. Klein
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Debarati Shome
- LUMICKS, Paalbergweg 3, 1105 AG Amsterdam, The Netherlands
| | - Reza Nadafi
- LUMICKS, Paalbergweg 3, 1105 AG Amsterdam, The Netherlands
| | - Michel Van Houdt
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Karin Schornagel
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Paul J. J. H. Verkuijlen
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Virginie Roos
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | | | - Robin Van Bruggen
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Taco W. Kuijpers
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
- Department of Pediatric Immunology and Infectious Diseases, Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Hanke L. Matlung
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
15
|
Huang K, Lin Y, Qiu G, Wang S, Feng L, Zheng Z, Gao Y, Fan X, Zheng W, Zhuang J, Luo F, Feng S. Comprehensive characterization of pyroptosis phenotypes with distinct tumor immune profiles in gastric cancer to aid immunotherapy. Aging (Albany NY) 2023; 15:8113-8136. [PMID: 37595258 PMCID: PMC10497016 DOI: 10.18632/aging.204958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Pyroptosis is a form of programmed cell death that is essential for immunity. Herein, this study was conducted to uncover the implication of pyroptosis in immunomodulation and tumor microenvironment (TME) in gastric cancer. METHODS Prognostic pyroptosis-related genes were extracted to identify different pyroptosis phenotypes and pyroptosis genomic phenotypes via unsupervised clustering analysis in the gastric cancer meta-cohort cohort (GSE15459, GSE62254, GSE84437, GSE26253 and TCGA-STAD). The activation of hallmark gene sets was quantified by GSVA and immune cell infiltration was estimated via ssGSEA and CIBERSORT. Through PCA algorithm, pyroptosis score was conducted. The predictors of immune response (TMB and IPS) and genetic mutations were evaluated. The efficacy of pyroptosis score in predicting immune response was verified in two anti-PD-1 therapy cohorts. RESULTS Three different pyroptosis phenotypes with different prognosis, biological pathways and tumor immune microenvironment were established among 1275 gastric cancer patients, corresponding to three immune phenotypes: immune-inflamed, immune-desert, and immune-excluded. According to the pyroptosis score, patients were separated into high and low pyroptosis score groups. Low pyroptosis score indicated favorable survival outcomes, enhanced immune responses, and increased mutation frequency. Moreover, low pyroptosis score patients displayed more clinical benefits from anti-PD-1 and prolonged survival time. CONCLUSION Our findings uncovered a nonnegligible role of pyroptosis in immunomodulation and TME multiformity and complicacy in gastric cancer. Quantifying the pyroptosis score in individual tumors may tailor more effective immunotherapeutic strategies.
Collapse
Affiliation(s)
- Kaida Huang
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Yubiao Lin
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Guoqin Qiu
- Chenggong Hospital Affiliated to Xiamen University, Xiamen 361003, Fujian, China
| | - Shengyu Wang
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Lihua Feng
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Zhigao Zheng
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Yingqin Gao
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Xin Fan
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Wenhui Zheng
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Jianmin Zhuang
- Department of General Surgery, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
| | - Fanghong Luo
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361102, China
| | - Shuitu Feng
- Department of Oncology, Xiamen Haicang Hospital, Xiamen 361026, Fujian, China
- Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen 361000, Fujian, China
| |
Collapse
|
16
|
Mazzio E, Barnes A, Badisa R, Council S, Soliman KFA. Plants against cancer: the immune-boosting herbal microbiome: not of the plant, but in the plant. Basic concepts, introduction, and future resource for vaccine adjuvant discovery. Front Oncol 2023; 13:1180084. [PMID: 37588095 PMCID: PMC10426289 DOI: 10.3389/fonc.2023.1180084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 08/18/2023] Open
Abstract
The presence of microorganism communities (MOCs) comprised of bacteria, fungi, archaea, algae, protozoa, viruses, and the like, are ubiquitous in all living tissue, including plant and animal. MOCs play a significant role in establishing innate and acquired immunity, thereby influencing susceptibility and resistance to disease. This understanding has fostered substantial advancements in several fields such as agriculture, food science/safety, and the development of vaccines/adjuvants, which rely on administering inactivated-attenuated MOC pathogens. Historical evidence dating back to the 1800s, including reports by Drs Busch, Coley, and Fehleisen, suggested that acute febrile infection in response to "specific microbes" could trigger spontaneous tumor remission in humans. This discovery led to the purposeful administration of the same attenuated strains, known as "Coley's toxin," marking the onset of the first microbial (pathogen) associated molecular pattern (MAMPs or PAMPs)-based tumor immunotherapy, used clinically for over four decades. Today, these same MAMPS are consumed orally by billions of consumers around the globe, through "specific" mediums (immune boosting "herbal supplements") as carriers of highly concentrated MOCs accrued in roots, barks, hulls, sea algae, and seeds. The American Herbal Products Association (AHPA) mandates microbial reduction in botanical product processing but does not necessitate the removal of dead MAMP laden microbial debris, which we ingest. Moreover, while existing research has focused on the immune-modulating role of plant phytochemicals, the actual immune-boosting properties might instead reside solely in the plant's MOC MAMP laden biomass. This assertion is logical, considering that antigenic immune-provoking epitopes, not phytochemicals, are known to stimulate immune response. This review explores a neglected area of research regarding the immune-boosting effects of the herbal microbiome - a presence which is indirectly corroborated by various peripheral fields of study and poses a fundamental question: Given that food safety focuses on the elimination of harmful pathogens and crop science acknowledges the existence of plant microbiomes, what precisely are the immune effects of ingesting MAMPs of diverse structural composition and concentration, and where are these distributed in our botanicals? We will discuss the topic of concentrated edible MAMPs as acid and thermally stable motifs found in specific herbs and how these would activate cognate pattern recognition receptors (PPRs) in the upper gut-associated lymphoid tissue (GALT), including Peyer's patches and the lamina propria, to boost antibody titers, CD8+ and CD4+ T cells, NK activity, hematopoiesis, and facilitating M2 to M1 macrophage phenotype transition in a similar manner as vaccines. This new knowledge could pave the way for developing bioreactor-grown/heat-inactivated MOC therapies to boost human immunity against infections and improve tumor surveillance.
Collapse
Affiliation(s)
- Elizabeth Mazzio
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| | - Andrew Barnes
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| | - Ramesh Badisa
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| | - Stevie Council
- John Gnabre Science Research Institute, Baltimore, MD, United States
| | - Karam F. A. Soliman
- Divison of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A & M University, Tallahassee, FL, United States
| |
Collapse
|
17
|
Ding L, Sheriff S, Sontz RA, Merchant JL. Schlafen4 +-MDSC in Helicobacter-induced gastric metaplasia reveals role for GTPases. Front Immunol 2023; 14:1139391. [PMID: 37334372 PMCID: PMC10272601 DOI: 10.3389/fimmu.2023.1139391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction MDSCs express SCHLAFEN 4 (SLFN4) in Helicobacter-infected stomachs coincident with spasmolytic polypeptide-expressing metaplasia (SPEM), a precursor of gastric cancer. We aimed to characterize SLFN4+ cell identity and the role of Slfn4 in these cells. Methods Single-cell RNA sequencing was performed on immune cells sorted from PBMCs and stomachs prepared from uninfected and 6-month H. felis-infected mice. Knockdown of Slfn4 by siRNA or PDE5/6 inhibition by sildenafil were performed in vitro. Intracellular ATP/GTP levels and GTPase activity of immunoprecipitated Slfn4 complexes were measured using the GTPase-Glo assay kit. The intracellular level of ROS was quantified by the DCF-DA fluorescent staining, and apoptosis was determined by cleaved Caspase-3 and Annexin V expression. Gli1CreERT2 x Slfn4 fl/fl mice were generated and infected with H. felis. Sildenafil was administered twice over 2 weeks by gavaging H. felis infected mice ~4 months after inoculation once SPEM had developed. Results Slfn4 was highly induced in both monocytic and granulocytic MDSCs from infected stomachs. Both Slfn4 +-MDSC populations exhibited strong transcriptional signatures for type-I interferon responsive GTPases and exhibited T cell suppressor function. SLFN4-containing protein complexes immunoprecipitated from myeloid cell cultures treated with IFNa exhibited GTPase activity. Knocking down Slfn4 or PDE5/6 inhibition with sildenafil blocked IFNa induction of GTP, SLFN4 and NOS2. Moreover, IFNa induction of Slfn +-MDSC function was inhibited by inducing their reactive oxygen species (ROS) production and apoptosis through protein kinase G activation. Accordingly, in vivo disruption of Slfn4 in Gli1CreERT2 x Slfn4 fl/fl mice or pharmacologic inhibition by sildenafil after Helicobacter infection also suppressed SLFN4 and NOS2, reversed T cell suppression and mitigated SPEM development. Conclusion Taken together, SLFN4 regulates the activity of the GTPase pathway in MDSCs and precludes these cells from succumbing to the massive ROS generation when they acquire MDSC function.
Collapse
Affiliation(s)
| | | | | | - Juanita L. Merchant
- Department of Medicine-Gastroenterology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
18
|
Gankema AAF, Furumaya C, Fernández-Hermira S, Hoogenboezem M, Matlung HL, van Bruggen R, Kuijpers TW. Efficient complement-mediated clearance of immunosuppressed T cells by macrophages. Front Immunol 2023; 14:1183180. [PMID: 37261342 PMCID: PMC10228723 DOI: 10.3389/fimmu.2023.1183180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Treatment outcome is largely dictated by the tumor type, disease stage, and treatment success rates, but also by the variation among patients in endogenous anti-tumor responses. Studies indicate that the presence of neutrophils in the tumor microenvironment is associated with a worse patient outcome due to their ability to suppress local anti-tumor T cell activity. Our previous studies investigated the mechanisms by which neutrophils suppress and damage T cells to become smaller in size (small T cells), debilitating their effector activities. Several studies indicate a role for tumor-associated macrophages in scavenging damaged or dead cells. We hypothesized that the observed lack of small T cells in the TME by confocal microscopy is due to immediate uptake by macrophages. In this study, we confirmed that indeed only the smaller, damaged T cells are taken up by macrophages, once serum-opsonized. Damaged T cells opsonized with complement factor C3 fragments were phagocytosed by macrophages, resulting in almost instantaneous and highly efficient uptake of these small T cells. Inhibition of the complement receptors CR1, CR3 and CR4 expressed by macrophages completely blocked phagocytosis. By contrast, actively proliferating T cells (large T cells) were neither impaired in neutrophil-MDSC activity nor opsonized for phagocytosis by macrophages. Rapid removal of damaged T cells suggests a role of complement and macrophages within the tumor microenvironment to clear suppressed T cells in cancer patients.
Collapse
Affiliation(s)
- Angela A. F. Gankema
- Department of Molecular Hematology, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Charita Furumaya
- Department of Molecular Hematology, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Sara Fernández-Hermira
- Department of Molecular Hematology, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Mark Hoogenboezem
- Department of Research Facilities, Sanquin Research, Amsterdam, Netherlands
| | - Hanke L. Matlung
- Department of Molecular Hematology, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Department of Molecular Hematology, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Department of Molecular Hematology, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Zhang C, Fei Y, Wang H, Hu S, Liu C, Hu R, Du Q. CAFs orchestrates tumor immune microenvironment—A new target in cancer therapy? Front Pharmacol 2023; 14:1113378. [PMID: 37007004 PMCID: PMC10064291 DOI: 10.3389/fphar.2023.1113378] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
Cancer immunotherapy has opened a new landscape in cancer treatment, however, the poor specificity and resistance of most targeted therapeutics have limited their therapeutic efficacy. In recent years, the role of CAFs in immune regulation has been increasingly noted as more evidence has been uncovered regarding the link between cancer-associated fibroblasts (CAFs) and the evolutionary process of tumor progression. CAFs interact with immune cells to shape the tumor immune microenvironment (TIME) that favors malignant tumor progression, a crosstalk process that leads to the failure of cancer immunotherapies. In this review, we outline recent advances in the immunosuppressive function of CAFs, highlight the mechanisms of CAFs-immune cell interactions, and discuss current CAF-targeted therapeutic strategies for future study.
Collapse
Affiliation(s)
- Chunxue Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuxiang Fei
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hui Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Sheng Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Qianming Du, ; Rong Hu, ; Chao Liu,
| | - Rong Hu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu Nanjing, China
- *Correspondence: Qianming Du, ; Rong Hu, ; Chao Liu,
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Qianming Du, ; Rong Hu, ; Chao Liu,
| |
Collapse
|
20
|
Cassatella MA, Nauseef WM. Neutrophils and their friends. Immunol Rev 2023; 314:6-12. [PMID: 36693675 DOI: 10.1111/imr.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - William M Nauseef
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
21
|
Ding Y, Chu L, Cao Q, Lei H, Li X, Zhuang Q. A meta-validated immune infiltration-related gene model predicts prognosis and immunotherapy sensitivity in HNSCC. BMC Cancer 2023; 23:45. [PMID: 36639648 PMCID: PMC9837972 DOI: 10.1186/s12885-023-10532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Tumor microenvironment (TME) is of great importance to regulate the initiation and advance of cancer. The immune infiltration patterns of TME have been considered to impact the prognosis and immunotherapy sensitivity in Head and Neck squamous cell carcinoma (HNSCC). Whereas, specific molecular targets and cell components involved in the HNSCC tumor microenvironment remain a twilight zone. METHODS Immune scores of TCGA-HNSCC patients were calculated via ESTIMATE algorithm, followed by weighted gene co-expression network analysis (WGCNA) to filter immune infiltration-related gene modules. Univariate, the least absolute shrinkage and selection operator (LASSO), and multivariate cox regression were applied to construct the prognostic model. The predictive capacity was validated by meta-analysis including external dataset GSE65858, GSE41613 and GSE686. Model candidate genes were verified at mRNA and protein levels using public database and independent specimens of immunohistochemistry. Immunotherapy-treated cohort GSE159067, TIDE and CIBERSORT were used to evaluate the features of immunotherapy responsiveness and immune infiltration in HNSCC. RESULTS Immune microenvironment was significantly associated with the prognosis of HNSCC patients. Total 277 immune infiltration-related genes were filtered by WGCNA and involved in various immune processes. Cox regression identified nine prognostic immune infiltration-related genes (MORF4L2, CTSL1, TBC1D2, C5orf15, LIPA, WIPF1, CXCL13, TMEM173, ISG20) to build a risk score. Most candidate genes were highly expressed in HNSCC tissues at mRNA and protein levels. Survival meta-analysis illustrated high prognostic accuracy of the model in the discovery cohort and validation cohort. Higher proportion of progression-free outcomes, lower TIDE scores and higher expression levels of immune checkpoint genes indicated enhanced immunotherapy responsiveness in low-risk patients. Decreased memory B cells, CD8+ T cells, follicular helper T cells, regulatory T cells, and increased activated dendritic cells and activated mast cells were identified as crucial immune cells in the TME of high-risk patients. CONCLUSIONS The immune infiltration-related gene model was well-qualified and provided novel biomarkers for the prognosis of HNSCC.
Collapse
Affiliation(s)
- Yinghe Ding
- grid.216417.70000 0001 0379 7164Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Ling Chu
- grid.216417.70000 0001 0379 7164Department of Pathology, The 3rd Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Qingtai Cao
- grid.216417.70000 0001 0379 7164Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Hanyu Lei
- grid.216417.70000 0001 0379 7164Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Xinyu Li
- grid.216417.70000 0001 0379 7164Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Quan Zhuang
- grid.216417.70000 0001 0379 7164Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, 410013 Hunan China ,Research Center of National Health Ministry on Transplantation Medicine, Changsha, 410013 Hunan China
| |
Collapse
|