1
|
Rincón R, Perales R, Palmer RF, Forster JF, Hernandez JF, Bayles B, Grimes C, Jaén CR, Miller CS. Environmental house calls can reduce symptoms of chemical intolerance: a demonstration of personalized exposure medicine. Prim Health Care Res Dev 2024; 25:e53. [PMID: 39434594 DOI: 10.1017/s146342362400046x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
AIM The goals of this investigation were to 1) identify and measure exposures inside homes of individuals with chemical intolerance (CI), 2) provide guidance for reducing these exposures, and 3) determine whether our environmental house calls (EHCs) intervention could reduce both symptoms and measured levels of indoor air contaminants. BACKGROUND CI is an international public health and clinical concern, but few resources are available to address patients' often disabling symptoms. Numerous studies show that levels of indoor air pollutants can be two to five (or more) times higher than outdoor levels. Fragranced consumer products, including cleaning supplies, air fresheners, and personal care products, are symptom triggers commonly reported by susceptible individuals. METHODS A team of professionals trained and led by a physician/industrial hygienist and a certified indoor air quality specialist conducted a series of 5 structured EHCs in 37 homes of patients reporting CI. RESULTS We report three case studies demonstrating that an appropriately structured home intervention can teach occupants how to reduce indoor air exposures and associated symptoms. Symptom improvement, documented using the Quick Environmental Exposure and Sensitivity Inventory Symptom Star, corresponded with the reduction of indoor air volatile organic compounds, most notably fragrances. These results provide a deeper dive into 3 of the 37 cases described previously in Perales et al. (2022). DISCUSSION We address the long-standing dilemma that worldwide reports of fragrance sensitivity have not previously been confirmed by human or animal challenge studies. Our ancient immune systems' 'first responders', mast cells, which evolved 500 million years ago, can be sensitized by synthetic organic chemicals whose production and use have grown exponentially since World War II. We propose that these chemicals, which include now-ubiquitous fragrances, trigger mast cell degranulation and inflammatory mediator release in the olfactory-limbic tract, thus altering cerebral blood flow and impairing mood, memory, and concentration (often referred to as 'brain fog'). The time has come to translate these research findings into clinical and public health practice.
Collapse
Affiliation(s)
- Rodolfo Rincón
- Department of Family and Community Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Roger Perales
- Department of Family and Community Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Raymond F Palmer
- Department of Family and Community Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Jackie F Forster
- Department of Family and Community Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Jessica F Hernandez
- Department of Family and Community Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Bryan Bayles
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA
| | | | - Carlos R Jaén
- Department of Family and Community Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Claudia S Miller
- Department of Family and Community Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| |
Collapse
|
2
|
Lee WR, Dangal P, Cormier S, Lomnicki S, Sly PD, Vilcins D. Household characteristics associated with environmentally persistent free radicals in house dust in two Australian locations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.22.23297367. [PMID: 37961661 PMCID: PMC10635157 DOI: 10.1101/2023.10.22.23297367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The association between air pollution and adverse health outcomes has been extensively studied, and while oxidative stress in likely to be involved, the underlying mechanism(s) remain unclear. Recent studies propose environmentally persistent free radicals (EPFRs) as the missing connection between air pollution and detrimental health impacts. However, the indoor environment is rarely considered in EPFR research. We measured EPFRs in household dust from two locations in Australia and investigated household characteristics associated with EPFRs. Random forest models were built to identify important household characteristics through variable importance plots and the associations were analysed using Spearman's rho test. We found that age of house, type of garage, house outer wall material, heating method used in home, frequency of extractor fan use when cooking, traffic related air pollution, frequency of cleaning and major house renovation were important household characteristics associated with EPFRs in Australian homes. The direction of association between household characteristics and EPFRs differ between the locations. Hence, further research is warranted to determine the generalisability of our results.
Collapse
|
3
|
Baeza_Romero MT, Dudzinska MR, Amouei Torkmahalleh M, Barros N, Coggins AM, Ruzgar DG, Kildsgaard I, Naseri M, Rong L, Saffell J, Scutaru AM, Staszowska A. A review of critical residential buildings parameters and activities when investigating indoor air quality and pollutants. INDOOR AIR 2022; 32:e13144. [PMID: 36437669 PMCID: PMC9828800 DOI: 10.1111/ina.13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Indoor air in residential dwellings can contain a variety of chemicals, sometimes present at concentrations or in combinations which can have a negative impact on human health. Indoor Air Quality (IAQ) surveys are often required to characterize human exposure or to investigate IAQ concerns and complaints. Such surveys should include sufficient contextual information to elucidate sources, pathways, and the magnitude of exposures. The aim of this review was to investigate and describe the parameters that affect IAQ in residential dwellings: building location, layout, and ventilation, finishing materials, occupant activities, and occupant demography. About 180 peer-reviewed articles, published from 01/2013 to 09/2021 (plus some important earlier publications), were reviewed. The importance of the building parameters largely depends on the study objectives and whether the focus is on a specific pollutant or to assess health risk. When considering classical pollutants such as particulate matter (PM) or volatile organic compounds (VOCs), the building parameters can have a significant impact on IAQ, and detailed information of these parameters needs to be reported in each study. Research gaps and suggestions for the future studies together with recommendation of where measurements should be done are also provided.
Collapse
Affiliation(s)
- María Teresa Baeza_Romero
- Universidad de Castilla‐La Mancha. Dpto. Química‐Física, Escuela de Ingeniería Industrial y AeroespacialToledoSpain
| | | | - Mehdi Amouei Torkmahalleh
- Division of Environmental and Occupational Health Sciences, School of Public HealthUniversity of Illinois ChicagoChicagoIllinoisUSA
- Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
| | - Nelson Barros
- UFP Energy, Environment and Health Research Unit (FP‐ENAS)University Fernando PessoaPortoPortugal
| | - Ann Marie Coggins
- School of Natural Sciences & Ryan InstituteNational University of IrelandGalwayIreland
| | - Duygu Gazioglu Ruzgar
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Metallurgical and Materials Engineering DepartmentBursa Technical UniversityBursaTurkey
| | | | - Motahareh Naseri
- Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
| | - Li Rong
- Department of Civil and Architectural EngineeringAarhus UniversityAarhus CDenmark
| | | | | | - Amelia Staszowska
- Faculty of Environmental EngineeringLublin University of TechnologyLublinPoland
| |
Collapse
|
4
|
Szczepanik-Scislo N. Improving Household Safety via a Dynamic Air Terminal Device in Order to Decrease Carbon Monoxide Migration from a Gas Furnace. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031676. [PMID: 35162698 PMCID: PMC8834751 DOI: 10.3390/ijerph19031676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/29/2022]
Abstract
The airtightness of buildings is continuing to grow and impact the indoor environment. Its aim is to conserve energy, but this may influence the indoor air quality and increase contaminant accumulation by limiting the amount of fresh air that infiltrates the building. The goal of this study was to quantify how the contaminants from a faulty gas furnace in a household could impact the occupants. The gas furnace was located in an attached garage and leaked carbon monoxide (CO). Multizone and CFD simulations were caried out to determine if an air terminal device (ATD) with a changing geometry could improve the air quality. The goal of the ATD was to maintain a steady air throw in the garage, while the air flow in the ventilation system would change. A steady air throw should help to remove the carbon monoxide generated from the furnace and prevent infiltration into the household. The results show that with the use of the new ATD, it was possible to maintain a steady air throw and the infiltration of CO was lowered.
Collapse
Affiliation(s)
- Nina Szczepanik-Scislo
- Faculty of Environmental and Power Engineering, Cracow University of Technology, 31-155 Cracow, Poland
| |
Collapse
|
5
|
Lau CJ, Loebel Roson M, Klimchuk KM, Gautam T, Zhao B, Zhao R. Particulate matter emitted from ultrasonic humidifiers-Chemical composition and implication to indoor air. INDOOR AIR 2021; 31:769-782. [PMID: 33108019 DOI: 10.1111/ina.12765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 05/04/2023]
Abstract
Household humidification is widely practiced to combat dry indoor air. While the benefits of household humidification are widely perceived, its implications to the indoor air have not been critically appraised. In particular, ultrasonic humidifiers are known to generate fine particulate matter (PM). In this study, we first conducted laboratory experiments to investigate the size, quantity, and chemical composition of PM generated by an ultrasonic humidifier. The mass of PM generated showed a correlation with the total alkalinity of charge water, suggesting that CaCO3 is likely making a major contribution to PM. Ion chromatography analysis revealed a large amount of SO42- in PM, representing a previously unrecognized indoor source. Preliminary results of organic compounds being present in humidifier PM are also presented. A whole-house experiment was further conducted at an actual residential house, with five low-cost sensors (AirBeam) monitoring PM in real time. Operation of a single ultrasonic humidifier resulted in PM2.5 concentrations up to hundreds of μg m-3 , and its influence extended across the entire household. The transport and loss of PM2.5 depended on the rate of air circulation and ventilation. This study emphasizes the need to further investigate the impact of humidifier operation, both on human health and on the indoor atmospheric chemistry, for example, partitioning of acidic and basic compounds.
Collapse
Affiliation(s)
- Chester J Lau
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Max Loebel Roson
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Keifer M Klimchuk
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Tania Gautam
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Boyang Zhao
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Ran Zhao
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Comparison of CFD and Multizone Modeling from Contaminant Migration from a Household Gas Furnace. ATMOSPHERE 2021. [DOI: 10.3390/atmos12010079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In Central and Eastern Europe, a growing popularity of gas heaters as the main source of heat and domestic hot water can be observed. This is the result of new laws and strategies for funding that have been put in place to encourage households to stop using coal and replace it with cleaner energy sources. However, there is a growing concern that gas furnaces are prone to malfunction and can be a threat to occupants through CO (carbon monoxide) generation. To see how a faulty gas furnace with a clogged exhaust may affect a household, a series of multizone and computational fluid dynamics (CFD) simulations were carried out using the CONTAM software and CFD0 editor created by the National Institute of Standards and Technology (NIST). The simulations presented different placements of the furnace and ventilation outlet in an attached garage. The results showed how the placement influenced contaminant migration and occupant exposure to CO. It changed the amount of CO that infiltrated to the attached house and influenced occupant exposure. The results may be used by future users to minimize the risk of CO poisoning by using the proper natural ventilation methods together with optimal placement of the header in the household.
Collapse
|
7
|
A Clean Air Plan for Sydney: An Overview of the Special Issue on Air Quality in New South Wales. ATMOSPHERE 2019. [DOI: 10.3390/atmos10120774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This paper presents a summary of the key findings of the special issue of Atmosphere on Air Quality in New South Wales and discusses the implications of the work for policy makers and individuals. This special edition presents new air quality research in Australia undertaken by (or in association with) the Clean Air and Urban Landscapes hub, which is funded by the National Environmental Science Program on behalf of the Australian Government’s Department of the Environment and Energy. Air pollution in Australian cities is generally low, with typical concentrations of key pollutants at much lower levels than experienced in comparable cities in many other parts of the world. Australian cities do experience occasional exceedances in ozone and PM2.5 (above air pollution guidelines), as well as extreme pollution events, often as a result of bushfires, dust storms, or heatwaves. Even in the absence of extreme events, natural emissions play a significant role in influencing the Australian urban environment, due to the remoteness from large regional anthropogenic emission sources. By studying air quality in Australia, we can gain a greater understanding of the underlying atmospheric chemistry and health risks in less polluted atmospheric environments, and the health benefits of continued reduction in air pollution. These conditions may be representative of future air quality scenarios for parts of the Northern Hemisphere, as legislation and cleaner technologies reduce anthropogenic air pollution in European, American, and Asian cities. However, in many instances, current legislation regarding emissions in Australia is significantly more lax than in other developed countries, making Australia vulnerable to worsening air pollution in association with future population growth. The need to avoid complacency is highlighted by recent epidemiological research, reporting associations between air pollution and adverse health outcomes even at air pollutant concentrations that are lower than Australia’s national air quality standards. Improving air quality is expected to improve health outcomes at any pollution level, with specific benefits projected for reductions in long-term exposure to average PM2.5 concentrations.
Collapse
|
8
|
Alabdulhadi A, Ramadan A, Devey P, Boggess M, Guest M. Inhalation exposure to volatile organic compounds in the printing industry. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:1142-1169. [PMID: 31184550 DOI: 10.1080/10962247.2019.1629355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 05/25/2023]
Abstract
This study reports on the occupational inhalation exposure to VOCs of workers in the Kuwaiti printing industry. Using the evacuated canister methodology, we targeted 72 VOCs in three printeries and compared the concentrations to previous reports and relevant occupational exposure levels (OELs). We found that recent efforts in the printing industry to reduce VOC usage had been successful, as concentrations of key hazardous VOCs were substantially lower than anticipated. On the other hand, nearly all target VOCs were found. Non-production areas were sampled along with the offset printing areas, another strength of this study, and revealed exposures to hazardous VOCs among administers and digital printer and CTP operators. Exposure to ototoxic VOCs amounted to 1-3% of the OEL, consisting mostly of ethylbenzene, which was likely in use in two of the study printeries. Exposure to carcinogenic or probably carcinogenic VOCs was 15-20% of the OEL at four locations across the three printeries, consisting mostly of vinyl chloride and benzyl chloride. Vinyl chloride VOC was partially sourced from outdoors, but was also likely used inside the study printeries. Interestingly, concentrations of vinyl chloride were similar in most sampling locations to that of CFC-114, a CFC banned by the Montreal Protocol and not commonly used as a refrigerant. This unexpected finding suggests further study is warranted to identify the use of these VOCs in printeries. Exposure to hazardous VOCs up to nearly 50% of the OEL, consisting largely of bromoform and vinyl chloride. Bromoform was found in all the study printeries, sourced partially from outdoor air. The higher concentrations found inside the study printeries likely resulted from the use of the desalinated water for washing. This finding raises of emissions from sources other than blanket washes, and inks, etc. adding to the total VOC load in printery indoor air. Implications: Results from this study indicate that efforts to reduce worker exposure to VOCs particularly dangerous to human health in recent years have been successful, but there is still much to be done to protect workers. Exposures to ototoxic and carcinogenic VOCs were identified, among both production and non-production workers. Unexpected findings included the apparent use in printing activities of the carcinogen vinyl chloride and CFC-114, banned under the Montreal Protocol. Observed lapses in safety procedures included failure to utilize ventilation systems and closing doors between work areas, indicating management and worker education should remain a priority.
Collapse
Affiliation(s)
- Abdullah Alabdulhadi
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle , Callaghan , NSW , Australia
- Public Authority of Applied Education and Training , Shuwaikh , Kuwaitu
| | - Ashraf Ramadan
- Kuwait Institute of Scientific Research , Safat , Kuwait
| | - Peter Devey
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle , Callaghan , NSW , Australia
| | - May Boggess
- School of Mathematical and Statistical Sciences, Arizona State University , Tempe , AZ , USA
| | - Maya Guest
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle , Callaghan , NSW , Australia
| |
Collapse
|
9
|
Zhou S, Young CJ, VandenBoer TC, Kowal SF, Kahan TF. Time-Resolved Measurements of Nitric Oxide, Nitrogen Dioxide, and Nitrous Acid in an Occupied New York Home. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8355-8364. [PMID: 29973042 DOI: 10.1021/acs.est.8b01792] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Indoor oxidizing capacity in occupied residences is poorly understood. We made simultaneous continuous time-resolved measurements of ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), and nitrous acid (HONO) for two months in an occupied detached home with gas appliances in Syracuse, NY. Indoor NO and HONO mixing ratios were higher than those outdoors, whereas O3 was much lower (sub-ppbv) indoors. Cooking led to peak NO, NO2, and HONO levels 20-100 times greater than background levels; HONO mixing ratios of up to 50 ppbv were measured. Our results suggest that many reported NO2 levels may have a large positive bias due to HONO interference. Nitrous acid, NO2, and NO were removed from indoor air more rapidly than CO2, indicative of reactive removal processes or surface uptake. We measured spectral irradiance from sunlight entering the residence through glass doors; hydroxyl radical (OH) production rates of (0.8-10) × 107 molecules cm-3 s-1 were calculated in sunlit areas due to HONO photolysis, in some cases exceeding rates expected from ozone-alkene reactions. Steady-state nitrate radical (NO3) mixing ratios indoors were predicted to be lower than 1.65 × 104 molecules cm-3. This work will help constrain the temporal nature of oxidant concentrations in occupied residences and will improve indoor chemistry models.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Chemistry , Syracuse University , Syracuse , New York 13244 , United States
| | - Cora J Young
- Department of Chemistry , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Trevor C VandenBoer
- Department of Chemistry , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Shawn F Kowal
- Department of Chemistry , Syracuse University , Syracuse , New York 13244 , United States
| | - Tara F Kahan
- Department of Chemistry , Syracuse University , Syracuse , New York 13244 , United States
| |
Collapse
|
10
|
Chambers D, Reese C, Thornburg L, Sanchez E, Rafson J, Blount B, Ruhl J, De Jesús V. Distinguishing Petroleum (Crude Oil and Fuel) From Smoke Exposure within Populations Based on the Relative Blood Levels of Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), Styrene and 2,5-Dimethylfuran by Pattern Recognition Using Artificial Neural Networks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:308-316. [PMID: 29216422 PMCID: PMC5750095 DOI: 10.1021/acs.est.7b05128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Studies of exposure to petroleum (crude oil/fuel) often involve monitoring benzene, toluene, ethylbenzene, xylenes (BTEX), and styrene (BTEXS) because of their toxicity and gas-phase prevalence, where exposure is typically by inhalation. However, BTEXS levels in the general U.S. population are primarily from exposure to tobacco smoke, where smokers have blood levels on average up to eight times higher than nonsmokers. This work describes a method using partition theory and artificial neural network (ANN) pattern recognition to classify exposure source based on relative BTEXS and 2,5-dimethylfuran blood levels. A method using surrogate signatures to train the ANN was validated by comparing blood levels among cigarette smokers from the National Health and Nutrition Examination Survey (NHANES) with BTEXS and 2,5-dimethylfuran signatures derived from the smoke of machine-smoked cigarettes. Classification agreement for an ANN model trained with relative VOC levels was up to 99.8% for nonsmokers and 100.0% for smokers. As such, because there is limited blood level data on individuals exposed to crude oil/fuel, only surrogate signatures derived from crude oil and fuel were used for training the ANN. For the 2007-2008 NHANES data, the ANN model assigned 7 out of 1998 specimens (0.35%) and for the 2013-2014 NHANES data 12 out of 2906 specimens (0.41%) to the crude oil/fuel signature category.
Collapse
Affiliation(s)
- D.M. Chambers
- Corresponding author: 4770 Buford Hwy., NE, Mail Stop F-47, Atlanta, GA 30341,
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Dai K, Yu Q, Zhang Z, Wang Y, Wang X. Aromatic hydrocarbons in a controlled ecological life support system during a 4-person-180-day integrated experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:905-911. [PMID: 28830050 DOI: 10.1016/j.scitotenv.2017.08.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
Indoor air quality is vital to the health and comfort of people who live inside a controlled ecological life support system (CELSS) built for long-term space explorations. Here we measured aromatic hydrocarbons to assess their sources and health risks during a 4-person-180-day integrated experiment inside a CELSS with four cabins for growing crops, vegetables and fruits and other two cabins for working, accommodations and resources management. During the experiment, the average concentrations of benzene, ethylbenzene, m,p-xylenes and o-xylene were found to decrease exponentially from 7.91±3.72, 37.2±35.2, 100.8±111.7 and 46.8±44.1μg/m3 to 0.39±0.34, 1.4±0.5, 2.8±0.7 and 2.1±0.9μg/m3, with half-lives of 25.3, 44.8, 44.7 and 69.3days, respectively. Toluene to benzene ratios indicated emission from construction materials or furniture to be a dominant source for toluene, and concentrations of toluene fluctuated during the experiment largely due to the changing sorption by growing plants. The cancer and no-cancer risks based on exposure pattern of the crews were insignificant in the end of the experiment. This study also suggested that using low-emitting materials/furniture, growing plants and purifying air actively would all help to lower hazardous air pollutants inside CELSS. Broadly, the results would benefit not only the development of safe and comfort life support systems for space exploration but also the understanding of interactions between human and the total environment in closed systems.
Collapse
Affiliation(s)
- Kun Dai
- National Key Laboratory of Human Engineering, Astronaut Center of China, Beijing, China
| | - Qingni Yu
- National Key Laboratory of Human Engineering, Astronaut Center of China, Beijing, China.
| | - Zhou Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yuan Wang
- Space Institute of Southern China (Shenzhen), Shenzhen, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|