1
|
Nagy A, Czitrovszky A, Lehoczki A, Farkas Á, Füri P, Osán J, Groma V, Kugler S, Micsinai A, Horváth A, Ungvári Z, Müller V. Creating respiratory pathogen-free environments in healthcare and nursing-care settings: a comprehensive review. GeroScience 2024:10.1007/s11357-024-01379-7. [PMID: 39392557 DOI: 10.1007/s11357-024-01379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Hospital- and nursing-care-acquired infections are a growing problem worldwide, especially during epidemics, posing a significant threat to older adults in geriatric settings. Intense research during the COVID-19 pandemic highlighted the prominent role of aerosol transmission of pathogens. Aerosol particles can easily adsorb different airborne pathogens, carrying them for a long time. Understanding the dynamics of airborne pathogen transmission is essential for controlling the spread of many well-known pathogens, like the influenza virus, and emerging ones like SARS-CoV-2. Particles smaller than 50 to 100 µm remain airborne and significantly contribute to pathogen transmission. This review explores the journey of pathogen-carrying particles from formation in the airways, through airborne travel, to deposition in the lungs. The physicochemical properties of emitted particles depend on health status and emission modes, such as breathing, speaking, singing, coughing, sneezing, playing wind instruments, and medical interventions. After emission, sedimentation and evaporation primarily determine particle fate. Lung deposition of inhaled aerosol particles can be studied through in vivo, in vitro, or in silico methods. We discuss several numerical lung models, such as the Human Respiratory Tract Model, the LUng Dose Evaluation Program software (LUDEP), the Stochastic Lung Model, and the Computational Fluid Dynamics (CFD) techniques, and real-time or post-evaluation methods for detecting and characterizing these particles. Various air purification methods, particularly filtration, are reviewed for their effectiveness in healthcare settings. In the discussion, we analyze how this knowledge can help create environments with reduced PM2.5 and pathogen levels, enhancing safety in healthcare and nursing-care settings. This is particularly crucial for protecting older adults, who are more vulnerable to infections due to weaker immune systems and the higher prevalence of chronic conditions. By implementing effective airborne pathogen control measures, we can significantly improve health outcomes in geriatric settings.
Collapse
Affiliation(s)
- Attila Nagy
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary.
| | - Aladár Czitrovszky
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Árpád Farkas
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Péter Füri
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - János Osán
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Veronika Groma
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Szilvia Kugler
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | | | - Alpár Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Zoltán Ungvári
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Rupprom K, Thongpanich Y, Sukkham W, Utrarachkij F, Kittigul L. Surveillance of norovirus, SARS-CoV-2, and bocavirus in air samples collected from a tertiary care hospital in Thailand. Sci Rep 2024; 14:22240. [PMID: 39333786 PMCID: PMC11437068 DOI: 10.1038/s41598-024-73369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
This study aims to determine the presence of norovirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and bocavirus in air samples from a tertiary care hospital in Bangkok, Thailand. Air samples were collected in water using the BioSampler and concentrated using speedVac centrifugation. Based on RT-qPCR, norovirus RNA and SARS-CoV-2 RNA were detected in 13/60 (21.7%) and 3/60 (5.0%) of samples, respectively. One air sample had a weak positivity for both norovirus and SARS-CoV-2 RNAs. Detection rate of norovirus genogroup (G) II (13.3%) was higher than norovirus GI (6.7%). One air sample (1.7%) tested positive for GI and GII. The norovirus GI RNA concentration was 6.0 × 102 genome copies/m3. The norovirus GII RNA concentrations ranged from 3.4 × 101 to 5.0 × 103 genome copies/m3. Based on RT-nested PCR, norovirus GII was detected in two (3.3%) samples. All samples tested negative for GI RNA and bocavirus DNA. By phylogenetic analysis, GII.17, which is closely related to the outbreak Kawasaki308/JPN/2015 strain, was found in the RT-nested PCR-positive samples. This study highlights the potential of aerosols for norovirus and SARS-CoV-2 transmission and probably cause gastrointestinal and respiratory illnesses, respectively.
Collapse
Affiliation(s)
- Kitwadee Rupprom
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Yuwanda Thongpanich
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Woravat Sukkham
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Fuangfa Utrarachkij
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Leera Kittigul
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Habibi N, Uddin S, Behbehani M, Mustafa AS, Al-Fouzan W, Al-Sarawi HA, Safar H, Alatar F, Al Sawan RMZ. Aerosol-Mediated Spread of Antibiotic Resistance Genes: Biomonitoring Indoor and Outdoor Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:983. [PMID: 39200594 PMCID: PMC11353316 DOI: 10.3390/ijerph21080983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a conspicuous global public health threat. The World Health Organization (WHO) has launched the "One-Health" approach, which encourages the assessment of antibiotic resistance genes (ARGs) within an environment to constrain and alleviate the development of AMR. The prolonged use and overuse of antibiotics in treating human and veterinary illnesses, and the inability of wastewater treatment plants to remove them have resulted in elevated concentrations of these metabolites in the surroundings. Microbes residing within these settings acquire resistance under selective pressure and circulate between the air-land interface. Initial evidence on the indoor environments of wastewater treatment plants, hospitals, and livestock-rearing facilities as channels of AMR has been documented. Long- and short-range transport in a downwind direction disseminate aerosols within urban communities. Inhalation of such aerosols poses a considerable occupational and public health risk. The horizontal gene transfer (HGT) is another plausible route of AMR spread. The characterization of ARGs in the atmosphere therefore calls for cutting-edge research. In the present review, we provide a succinct summary of the studies that demonstrated aerosols as a media of AMR transport in the atmosphere, strengthening the need to biomonitor these pernicious pollutants. This review will be a useful resource for environmental researchers, healthcare practitioners, and policymakers to issue related health advisories.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Montaha Behbehani
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 13060, Kuwait
| | - Wadha Al-Fouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 13060, Kuwait
| | | | - Hussain Safar
- OMICS-RU, Health Science Centre, Kuwait University, Jabriya 13060, Kuwait
| | - Fatemah Alatar
- Serology and Molecular Microbiology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Kuwait City 13110, Kuwait
| | - Rima M. Z. Al Sawan
- Neonatology Department, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser 92426, Kuwait
| |
Collapse
|
4
|
Alqarni Z, Rezgui Y, Petri I, Ghoroghi A. Viral infection transmission and indoor air quality: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171308. [PMID: 38432379 DOI: 10.1016/j.scitotenv.2024.171308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Respiratory disease transmission in indoor environments presents persistent challenges for health authorities, as exemplified by the recent COVID-19 pandemic. This underscores the urgent necessity to investigate the dynamics of viral infection transmission within indoor environments. This systematic review delves into the methodologies of respiratory infection transmission in indoor settings and explores how the quality of indoor air (IAQ) can be controlled to alleviate this risk while considering the imperative of sustainability. Among the 2722 articles reviewed, 178 were retained based on their focus on respiratory viral infection transmission and IAQ. Fifty eight articles delved into SARS-CoV-2 transmission, 21 papers evaluated IAQ in contexts of other pandemics, 53 papers assessed IAQ during the SARS-CoV-2 pandemic, and 46 papers examined control strategies to mitigate infectious transmission. Furthermore, of the 46 papers investigating control strategies, only nine considered energy consumption. These findings highlight clear gaps in current research, such as analyzing indoor air and surface samples for specific indoor environments, oversight of indoor and outdoor parameters (e.g., temperature, relative humidity (RH), and building orientation), neglect of occupancy schedules, and the absence of considerations for energy consumption while enhancing IAQ. This study distinctly identifies the indoor environmental conditions conducive to the thriving of each respiratory virus, offering IAQ trade-offs to mitigate the risk of dominant viruses at any given time. This study argues that future research should involve digital twins in conjunction with machine learning (ML) techniques. This approach aims to enhance IAQ by analyzing the transmission patterns of various respiratory viruses while considering energy consumption.
Collapse
Affiliation(s)
- Zahi Alqarni
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK; School of Computer Science, King Khalid University, Abha 62529, Saudi Arabia.
| | - Yacine Rezgui
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
| | - Ioan Petri
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
| | - Ali Ghoroghi
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
| |
Collapse
|
5
|
Zhang Y, Shankar SN, Vass WB, Lednicky JA, Fan ZH, Agdas D, Makuch R, Wu CY. Air Change Rate and SARS-CoV-2 Exposure in Hospitals and Residences: A Meta-Analysis. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2024; 58:217-243. [PMID: 38764553 PMCID: PMC11101186 DOI: 10.1080/02786826.2024.2312178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/16/2024] [Indexed: 05/21/2024]
Abstract
As SARS-CoV-2 swept across the globe, increased ventilation and implementation of air cleaning were emphasized by the US CDC and WHO as important strategies to reduce the risk of inhalation exposure to the virus. To assess whether higher ventilation and air cleaning rates lead to lower exposure risk to SARS-CoV-2, 1274 manuscripts published between April 2020 and September 2022 were screened using key words "airborne SARS-CoV-2 or "SARS-CoV-2 aerosol". Ninety-three studies involved air sampling at locations with known sources (hospitals and residences) were selected and associated data were compiled. Two metrics were used to assess exposure risk: SARS-CoV-2 concentration and SARS-CoV-2 detection rate in air samples. Locations were categorized by type (hospital or residence) and proximity to the sampling location housing the isolated/quarantined patient (primary or secondary). The results showed that hospital wards had lower airborne virus concentrations than residential isolation rooms. A negative correlation was found between airborne virus concentrations in primary-occupancy areas and air changes per hour (ACH). In hospital settings, sample positivity rates were significantly reduced in secondary-occupancy areas compared to primary-occupancy areas, but they were similar across sampling locations in residential settings. ACH and sample positivity rates were negatively correlated, though the effect was diminished when ACH values exceeded 8. While limitations associated with diverse sampling protocols exist, data considered by this meta-analysis support the notion that higher ACH may reduce exposure risks to the virus in ambient air.
Collapse
Affiliation(s)
- Yuetong Zhang
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columnia, Canada
| | - Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Environmental & Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - William B. Vass
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - John A. Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Z. Hugh Fan
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Duzgun Agdas
- Engineering School of Sustainable Infrastructure & Environment, University of Florida, Gainesville, Florida, USA
| | - Robert Makuch
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
6
|
Mustafa AS, Habibi N. Spatial Variations in the Nasal Microbiota of Staff Working in a Healthcare-Associated Research Core Facility. Med Princ Pract 2023; 33:66-73. [PMID: 38147830 PMCID: PMC10896616 DOI: 10.1159/000535983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
OBJECTIVE Workers in the healthcare sector are exposed to a multitude of bacterial genera. The location of their work contributes significantly to shaping personal microbiomes. In this study, we investigated the role of the workspace on the nasal bacteriome of staff working in a healthcare-associated research facility. METHODS The anterior nares of 10 staff working in different laboratories on the ground and first floor of the research facility were aseptically swabbed. Genomic DNA from each sample was used to amplify the V3 and V4 regions of the 16S rRNA gene. The amplified products were sequenced using the MiSeq sequencer (Illumina). Operational taxonomic units were filtered through MG-RAST v.3.6. Taxonomic profiling and visualizations were performed in MicrobiomeAnalyst v2.0. RESULTS The Wilcoxson Sum test at median abundances (p < 0.05) indicated that seven taxa (Micromonosporaceae, Micromonospora, Lactobacillaceae, Lactobacillus, Betaproteobacteria, Burkholderiales, Pectobacterium) were significantly diverse between ground-floor and first-floor workers. The analysis of similarity coefficient was 0.412 (p < 0.03) between the ground and the first-floor workers. Random forest analysis predicted 15 features that were significantly different (p < 0.05) in individuals working in different laboratories. Species richness and evenness also differed according to the placement of individuals in respective laboratories. CONCLUSION These findings add to the knowledge that the healthcare support staff are at a speculated occupational risk. A slight shift in the abundances of bacterial genera and species might lead to unwanted consequences. Continual monitoring is thus warranted.
Collapse
Affiliation(s)
- Abu Salim Mustafa
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Nazima Habibi
- OMICS Research Unit and Research Core Facility, College of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
- Current address: Biotechnology Program, Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| |
Collapse
|
7
|
Carrazana E, Ruiz-Gil T, Fujiyoshi S, Tanaka D, Noda J, Maruyama F, Jorquera MA. Potential airborne human pathogens: A relevant inhabitant in built environments but not considered in indoor air quality standards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165879. [PMID: 37517716 DOI: 10.1016/j.scitotenv.2023.165879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Potential airborne human pathogens (PAHPs) may be a relevant component of the air microbiome in built environments. Despite that PAHPs can cause infections, particularly in immunosuppressed patients at medical centers, they are scarcely considered in standards of indoor air quality (IAQ) worldwide. Here, we reviewed the current information on microbial aerosols (bacteria, fungal and viruses) and PAHPs in different types of built environments (e.g., medical center, industrial and non-industrial), including the main factors involved in their dispersion, the methodologies used in their study and their associated biological risks. Our analysis identified the human occupancy and ventilation systems as the primary sources of dispersal of microbial aerosols indoors. We also observed temperature and relative humidity as relevant physicochemical factors regulating the dispersion and viability of some PAHPs. Our analysis revealed that some PAHPs can survive and coexist in different environments while other PAHPs are limited or specific for an environment. In relation to the methodologies (conventional or molecular) the nature of PAHPs and sampling type are pivotal. In this context, indoors air-borne viruses are the less studies because their small size, environmental lability, and absence of efficient sampling techniques and universal molecular markers for their study. Finally, it is noteworthy that PAHPs are not commonly considered and included in IAQ standards worldwide, and when they are included, the total abundance is the single parameter considered and biological risks is excluded. Therefore, we propose a revision, design and establishment of public health policies, regulations and IAQ standards, considering the interactions of diverse factors, such as nature of PAHPs, human occupancy and type of built environments where they develop.
Collapse
Affiliation(s)
- Elizabeth Carrazana
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco, Chile; Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Tay Ruiz-Gil
- Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - So Fujiyoshi
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Microbial Genomics and Ecology, PHIS, The IDEC institute, Hiroshima University, Hiroshima, Japan
| | - Daisuke Tanaka
- School of Science Academic Assembly, University of Toyama, Toyama, Japan
| | - Jun Noda
- Graduate School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Fumito Maruyama
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Microbial Genomics and Ecology, PHIS, The IDEC institute, Hiroshima University, Hiroshima, Japan
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
8
|
Chawla H, Anand P, Garg K, Bhagat N, Varmani SG, Bansal T, McBain AJ, Marwah RG. A comprehensive review of microbial contamination in the indoor environment: sources, sampling, health risks, and mitigation strategies. Front Public Health 2023; 11:1285393. [PMID: 38074709 PMCID: PMC10701447 DOI: 10.3389/fpubh.2023.1285393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
The quality of the indoor environment significantly impacts human health and productivity, especially given the amount of time individuals spend indoors globally. While chemical pollutants have been a focus of indoor air quality research, microbial contaminants also have a significant bearing on indoor air quality. This review provides a comprehensive overview of microbial contamination in built environments, covering sources, sampling strategies, and analysis methods. Microbial contamination has various origins, including human occupants, pets, and the outdoor environment. Sampling strategies for indoor microbial contamination include air, surface, and dust sampling, and various analysis methods are used to assess microbial diversity and complexity in indoor environments. The review also discusses the health risks associated with microbial contaminants, including bacteria, fungi, and viruses, and their products in indoor air, highlighting the need for evidence-based studies that can relate to specific health conditions. The importance of indoor air quality is emphasized from the perspective of the COVID-19 pandemic. A section of the review highlights the knowledge gap related to microbiological burden in indoor environments in developing countries, using India as a representative example. Finally, potential mitigation strategies to improve microbiological indoor air quality are briefly reviewed.
Collapse
Affiliation(s)
- Hitikk Chawla
- Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Purnima Anand
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Kritika Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeru Bhagat
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Shivani G. Varmani
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Tanu Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ruchi Gulati Marwah
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| |
Collapse
|
9
|
Martínez-Espinosa E, Carvajal-Mariscal I. Virus-laden droplet nuclei in vortical structures associated with recirculation zones in indoor environments: A possible airborne transmission of SARS-CoV-2. ENVIRONMENTAL ADVANCES 2023; 12:100376. [PMID: 37193349 PMCID: PMC10163794 DOI: 10.1016/j.envadv.2023.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Droplet nuclei dispersion patterns in indoor environments are reviewed from a physics view to explore the possibility of airborne transmission of SARS-CoV-2. This review analyzes works on particle dispersion patterns and their concentration in vortical structures in different indoor environments. Numerical simulations and experiments reveal the formation of the buildings' recirculation zones and vortex flow regions by flow separation, airflow interaction around objects, internal dispersion of airflow, or thermal plume. These vortical structures showed high particle concentration because particles are trapped for long periods. Then a hypothesis is proposed to explain why some medical studies detect the presence of SARS-CoV-2 and others do not detect the virus. The hypothesis proposes that airborne transmission is possible if virus-laden droplet nuclei are trapped in vortical structures associated with recirculation zones. This hypothesis is reinforced by a numerical study in a restaurant that presented possible evidence of airborne transmission by a large recirculating air zone. Furthermore, a medical study in a hospital is discussed from a physical view for identifying the formation of recirculation zones and their relation with positive tests for viruses. The observations show air sampling site located in this vortical structure is positive for the SARS-CoV-2 RNA. Therefore, the formation of vortical structures associated with recirculation zones should be avoided to minimize the possibility of airborne transmission. This work tries to understand the complex phenomenon of airborne transmission as a way in the prevention of transmission of infectious diseases.
Collapse
Affiliation(s)
- E Martínez-Espinosa
- Industrial and Environmental Processes Department, Instituto de Ingeniería, UNAM, Ciudad Universitaria, Mexico City 04510, México
| | | |
Collapse
|
10
|
Habibi N, Uddin S, Behbehani M, Kishk M, Abdul Razzack N, Zakir F, Shajan A. Antibiotic Resistance Genes in Aerosols: Baseline from Kuwait. Int J Mol Sci 2023; 24:ijms24076756. [PMID: 37047728 PMCID: PMC10095457 DOI: 10.3390/ijms24076756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to human health worldwide. The World Health Organization (WHO, Geneva, Switzerland) has launched the "One-Health" approach, which encourages assessment of antibiotic-resistant genes (ARGs) within environments shared by human-animals-plants-microbes to constrain and alleviate the development of AMR. Aerosols as a medium to disseminate ARGs, have received minimal attention. In the present study, we investigated the distribution and abundance of ARGs in indoor and outdoor aerosols collected from an urban location in Kuwait and the interior of three hospitals. The high throughput quantitative polymerase chain reaction (HT-qPCR) approach was used for this purpose. The results demonstrate the presence of aminoglycoside, beta-lactam, fluoroquinolone, tetracycline, macrolide-lincosamide-streptogramin B (MLSB), multidrug-resistant (MDR) and vancomycin-resistant genes in the aerosols. The most dominant drug class was beta-lactam and the genes were IMP-2-group (0.85), Per-2 group (0.65), OXA-54 (0.57), QnrS (0.50) and OXA-55 (0.55) in the urban non-clinical settings. The indoor aerosols possessed a richer diversity (Observed, Chao1, Shannon's and Pielou's evenness) of ARGs compared to the outdoors. Seasonal variations (autumn vs. winter) in relative abundances and types of ARGs were also recorded (R2 of 0.132 at p < 0.08). The presence of ARGs was found in both the inhalable (2.1 µm, 1.1 µm, 0.7 µm and < 0.3 µm) and respirable (>9.0 µm, 5.8 µm, 4.7 µm and 3.3 µm) size fractions within hospital aerosols. All the ARGs are of pathogenic bacterial origin and are hosted by pathogenic forms. The findings present baseline data and underpin the need for detailed investigations looking at aerosol as a vehicle for ARG dissemination among human and non-human terrestrial biota.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Montaha Behbehani
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Mohamed Kishk
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Nasreem Abdul Razzack
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Farhana Zakir
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Anisha Shajan
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| |
Collapse
|
11
|
Ismail AA, Al-Hajji L, Azad I, Al-Yaqoot A, Habibi N, Alseidi M, Ahmed S. Self-cleaning application of mesoporous ZnO, TiO2 and Fe2O3 films with the accommodation of silver nanoparticles for antibacterial activity. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Hadavi I, Hashemi M, Asadikaram G, Kalantar-Neyestanaki D, Hosseininasab A, Darijani T, Faraji M. Investigation of SARS-CoV-2 Genome in the Indoor Air and High-Touch Surfaces. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2022; 16:103. [PMID: 36267501 PMCID: PMC9568984 DOI: 10.1007/s41742-022-00462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to investigate the presence/absence of SARS-CoV-2 genome in the air and high-touch surfaces. This cross-sectional study was conducted from late-2020 to mid-2021 in the sections of Intensive Care Unit (ICU), emergency, infectious disease ward, and nursing station of the COVID-19 patient reception center in Kerman, Iran. The presence/absence of SARS-CoV-2 genome in the 60 samples of high-touch surfaces and 23 air samples was analyzed by reverse transcription polymerase chain reaction (RT-PCR). Fisher's exact test was used to compare the number of positive samples in different sampling sites. The genome of SARS-CoV-2 was found in the eight samples (13.32%) taken from the high-touch surfaces (two samples in COVID-19 ICU, two samples in general ICU, two samples in emergency ward, and two samples in nursing station) and two air samples (8.70%) (one sample in the general ICU and one sample in the emergency ward). Statistical analysis showed that there was no significant difference between the type of sampling site and the positive cases of SARS-CoV-2 in the surface samples (p value = 0.80) and air samples (p value = 0.22). According to the results, the SARS-CoV-2 can find in the high-touch surfaces and indoor air of the COVID-19 patient reception centers. Therefore, suitable safety and health measures should be taken, including regular and accurate disinfection of surfaces and equipment and proper ventilation to protect healthcare workers and prevent disease transmission. More studies are recommended to investigate the SARS-CoV-2 concentration in the high-touch surfaces and air samples in the similar researches, efficacy of different disinfectants used on the high-touch surfaces and compare the effect of type of ventilation (natural or mechanical) on the viral load.
Collapse
Affiliation(s)
- Iman Hadavi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Department of Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Hosseininasab
- Infectious and Tropical Diseases Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Tooba Darijani
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Faraji
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Perrone MR, Romano S, De Maria G, Tundo P, Bruno AR, Tagliaferro L, Maffia M, Fragola M. Simultaneous monitoring of SARS-CoV-2 and bacterial profiles from the air of hospital environments with COVID-19-affected patients. AEROBIOLOGIA 2022; 38:391-412. [PMID: 36097443 PMCID: PMC9453715 DOI: 10.1007/s10453-022-09754-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED The SARS-CoV-2 presence and the bacterial community profile in air samples collected at the Intensive Care Unit (ICU) of the Operational Unit of Infectious Diseases of Santa Caterina Novella Hospital in Galatina (Lecce, Italy) have been evaluated in this study. Air samplings were performed in different rooms of the ICU ward with and without COVID-19 patients. No sample was found positive to SARS-CoV-2, according to Allplex 2019-nCoV Assay. The airborne bacterial community profiles determined by the 16S rRNA gene metabarcoding approach up to the species level were characterized by richness and biodiversity indices, Spearman correlation coefficients, and Principal Coordinate Analysis. Pathogenic and non-pathogenic bacterial species, also detected in outdoor air samples, were found in all collected indoor samples. Staphylococcus pettenkoferi, Corynebacterium tuberculostearicum, and others coagulase-negative staphylococci, detected at high relative abundances in all the patients' rooms, were the most abundant pathogenic species. The highest mean relative abundance of S. pettenkoferi and C. tuberculostearicum suggested that they were likely the main pathogens of COVID-19 patients at the ICU ward of this study. The identification of nosocomial pathogens representing potential patients' risks in ICU COVID-19 rooms and the still controversial airborne transmission of the SARS-CoV-2 are the main contributions of this study. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10453-022-09754-7.
Collapse
Affiliation(s)
- Maria Rita Perrone
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| | - Salvatore Romano
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| | - Giuseppe De Maria
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Lecce, Italy
| | - Paolo Tundo
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Lecce, Italy
| | - Anna Rita Bruno
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Lecce, Italy
| | - Luigi Tagliaferro
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Mattia Fragola
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
14
|
Silva PG, Branco PTBS, Soares RRG, Mesquita JR, Sousa SIV. SARS-CoV-2 air sampling: A systematic review on the methodologies for detection and infectivity. INDOOR AIR 2022; 32:e13083. [PMID: 36040285 PMCID: PMC9538005 DOI: 10.1111/ina.13083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
This systematic review aims to present an overview of the current aerosol sampling methods (and equipment) being used to investigate the presence of SARS-CoV-2 in the air, along with the main parameters reported in the studies that are essential to analyze the advantages and disadvantages of each method and perspectives for future research regarding this mode of transmission. A systematic literature review was performed on PubMed/MEDLINE, Web of Science, and Scopus to assess the current air sampling methodologies being applied to SARS-CoV-2. Most of the studies took place in indoor environments and healthcare settings and included air and environmental sampling. The collection mechanisms used were impinger, cyclone, impactor, filters, water-based condensation, and passive sampling. Most of the reviewed studies used RT-PCR to test the presence of SARS-CoV-2 RNA in the collected samples. SARS-CoV-2 RNA was detected with all collection mechanisms. From the studies detecting the presence of SARS-CoV-2 RNA, fourteen assessed infectivity. Five studies detected viable viruses using impactor, water-based condensation, and cyclone collection mechanisms. There is a need for a standardized protocol for sampling SARS-CoV-2 in air, which should also account for other influencing parameters, including air exchange ratio in the room sampled, relative humidity, temperature, and lighting conditions.
Collapse
Affiliation(s)
- Priscilla G Silva
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- Epidemiology Research Unit (EPI Unit), Institute of Public Health, University of Porto, Porto, Portugal
| | - Pedro T B S Branco
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Ruben R G Soares
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - João R Mesquita
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Epidemiology Research Unit (EPI Unit), Institute of Public Health, University of Porto, Porto, Portugal
| | - Sofia I V Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Habibi N, Uddin S, Behbehani M, Al Salameen F, Razzack NA, Zakir F, Shajan A, Alam F. Bacterial and fungal communities in indoor aerosols from two Kuwaiti hospitals. Front Microbiol 2022; 13:955913. [PMID: 35966680 PMCID: PMC9366136 DOI: 10.3389/fmicb.2022.955913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
The airborne transmission of COVID-19 has drawn immense attention to bioaerosols. The topic is highly relevant in the indoor hospital environment where vulnerable patients are treated and healthcare workers are exposed to various pathogenic and non-pathogenic microbes. Knowledge of the microbial communities in such settings will enable precautionary measures to prevent any hospital-mediated outbreak and better assess occupational exposure of the healthcare workers. This study presents a baseline of the bacterial and fungal population of two major hospitals in Kuwait dealing with COVID patients, and in a non-hospital setting through targeted amplicon sequencing. The predominant bacteria of bioaerosols were Variovorax (9.44%), Parvibaculum (8.27%), Pseudonocardia (8.04%), Taonella (5.74%), Arthrospira (4.58%), Comamonas (3.84%), Methylibium (3.13%), Sphingobium (4.46%), Zoogloea (2.20%), and Sphingopyxis (2.56%). ESKAPEE pathogens, such as Pseudomonas, Acinetobacter, Staphylococcus, Enterococcus, and Escherichia, were also found in lower abundances. The fungi were represented by Wilcoxinia rehmii (64.38%), Aspergillus ruber (9.11%), Penicillium desertorum (3.89%), Leptobacillium leptobactrum (3.20%), Humicola grisea (2.99%), Ganoderma sichuanense (1.42%), Malassezia restricta (0.74%), Heterophoma sylvatica (0.49%), Fusarium proliferatum (0.46%), and Saccharomyces cerevisiae (0.23%). Some common and unique operational taxonomic units (OTUs) of bacteria and fungi were also recorded at each site; this inter-site variability shows that exhaled air can be a source of this variation. The alpha-diversity indices suggested variance in species richness and abundance in hospitals than in non-hospital sites. The community structure of bacteria varied spatially (ANOSIM r 2 = 0.181-0.243; p < 0.05) between the hospital and non-hospital sites, whereas fungi were more or less homogenous. Key taxa specific to the hospitals were Defluvicoccales, fungi, Ganodermataceae, Heterophoma, and H. sylvatica compared to Actinobacteria, Leptobacillium, L. leptobacillium, and Cordycipitaceae at the non-hospital site (LefSe, FDR q ≤ 0.05). The hospital/non-hospital MD index > 1 indicated shifts in the microbial communities of indoor air in hospitals. These findings highlight the need for regular surveillance of indoor hospital environments to prevent future outbreaks.
Collapse
Affiliation(s)
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | | | | | | | | | | | | |
Collapse
|
16
|
Antibiotic Resistance Genes Associated with Marine Surface Sediments: A Baseline from the Shores of Kuwait. SUSTAINABILITY 2022. [DOI: 10.3390/su14138029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Marine sediments are a sink for antibiotic resistance genes (ARGs) and antibiotic-resistant microbes (ARMs). Wastewater discharge into the aquatic environment is the dominant pathway for pharmaceuticals reaching aquatic organisms. Hence, the characterization of ARGs is a priority research area. This baseline study reports the presence of ARGs in 12 coastal sediment samples covering the urban coastline of Kuwait through whole-genome metagenomic sequencing. The presence of 402 antibiotic resistance genes (ARGs) were recorded in these samples; the most prevalent were patA, adeF, ErmE, ErmF, TaeA, tetX, mphD, bcrC, srmB, mtrD, baeS, Erm30, vanTE, VIM-7, AcrF, ANT4-1a, tet33, adeB, efmA, and rpsL, which showed resistance against 34 drug classes. Maximum resistance was detected against the beta-lactams (cephalosporins and penam), and 46% of genes originated from the phylum Proteobacteria. Low abundances of ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumanii, Pseudomonas aeruginosa, Enterobacter sps., and Escherichia coli) were also recorded. Approximately 42% of ARGs exhibited multiple drug resistance. All the ARGs exhibited spatial variations. The major mode of action was antibiotic efflux, followed by antibiotic inactivation, antibiotic target alteration, antibiotic target protection, and antibiotic target replacement. Our findings supported the occurrence of ARGs in coastal marine sediments and the possibility of their dissemination to surrounding ecosystems.
Collapse
|
17
|
Tao Y, Zhang X, Qiu G, Spillmann M, Ji Z, Wang J. SARS-CoV-2 and other airborne respiratory viruses in outdoor aerosols in three Swiss cities before and during the first wave of the COVID-19 pandemic. ENVIRONMENT INTERNATIONAL 2022; 164:107266. [PMID: 35512527 PMCID: PMC9060371 DOI: 10.1016/j.envint.2022.107266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 05/02/2023]
Abstract
Caused by the SARS-CoV-2 virus, Coronavirus disease 2019 (COVID-19) has been affecting the world since the end of 2019. While virus-laden particles have been commonly detected and studied in the aerosol samples from indoor healthcare settings, studies are scarce on air surveillance of the virus in outdoor non-healthcare environments, including the correlations between SARS-CoV-2 and other respiratory viruses, between viruses and environmental factors, and between viruses and human behavior changes due to the public health measures against COVID-19. Therefore, in this study, we collected airborne particulate matter (PM) samples from November 2019 to April 2020 in Bern, Lugano, and Zurich. Among 14 detected viruses, influenza A, HCoV-NL63, HCoV-HKU1, and HCoV-229E were abundant in air. SARS-CoV-2 and enterovirus were moderately common, while the remaining viruses occurred only in low concentrations. SARS-CoV-2 was detected in PM10 (PM below 10 µm) samples of Bern and Zurich, and PM2.5 (PM below 2.5 µm) samples of Bern which exhibited a concentration positively correlated with the local COVID-19 case number. The concentration was also correlated with the concentration of enterovirus which raised the concern of coinfection. The estimated COVID-19 infection risks of an hour exposure at these two sites were generally low but still cannot be neglected. Our study demonstrated the potential functionality of outdoor air surveillance of airborne respiratory viruses, especially at transportation hubs and traffic arteries.
Collapse
Affiliation(s)
- Yile Tao
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Guangyu Qiu
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Martin Spillmann
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Zheng Ji
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland.
| |
Collapse
|
18
|
Habibi N, Uddin S, Behbehani M, Abdul Razzack N, Zakir F, Shajan A. SARS-CoV-2 in hospital air as revealed by comprehensive respiratory viral panel sequencing. Infect Prev Pract 2022; 4:100199. [PMID: 34977533 PMCID: PMC8711137 DOI: 10.1016/j.infpip.2021.100199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nosocomially acquired severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection has become the most significant pandemic of our lifetime. Though its transmission was essentially attributed to droplets from an infected person, with recent advancements in knowledge, aerosol transmission seems to be a viable pathway, as well. Because of the lower biological load in ambient aerosol, detection of SARS-CoV-2 is challenging. A few recent attempts of sampling large aerosol volumes and using next-generation sequencing (NGS) to detect the presence of SARS-CoV-2 in the air at very low levels gave positive results. These results suggest the potential of using this technique to detect the presence of SARS-CoV-2 and use it as an early warning signal for possible outbreak or recurrence of coronavirus disease 2019 (COVID-19). AIM To assess efficacy of comprehensive respiratory viral panel (CRVP) sequencing and RT-PCR for low-level identification of SARS-CoV-2 and other respiratory viruses in indoor air. METHODS A large volume of indoor aerosol samples from three major hospitals involved in COVID-19 care in Kuwait was collected. Viral RNA was isolated and subjected to comprehensive respiratory viral panel sequencing (CRVP) as per the standard protocol to detect the SARS-CoV-2 and other respiratory viruses in the hospital aerosol and monitor variations within the sequences. RT-PCR was also employed to estimate the viral load of SARS-CoV-2. FINDINGS 13 of 15 (86.7%) samples exhibited SARS-CoV-2 with a relative abundance of 0.2-33.3%. The co-occurrence of human adenoviruses (type C1, C2, C5, C4), respiratory syncytial virus (RSV), influenza B, and non-SARS-CoV-229E were also recorded. Alignment of SARS-CoV-2 sequences against the reference strain of Wuhan China revealed variations in the form of single nucleotide polymorphisms (SNPs-17), insertions and deletions (indels-1). These variations were predicted to create missense (16), synonymous (15), frameshift (1) and stop-gained (1) mutations with a high (2), low (15), and moderate (16) impact. CONCLUSIONS Our results suggest that using CRVP on a large volume aerosol sample was a valuable tool for detecting SARS-CoV-2 in indoor aerosols of health care settings. Owing to its higher sensitivity, it can be employed as a surveillance strategy in the post COVID times to act as an early warning system to possibly control future outbreaks.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Saif Uddin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Montaha Behbehani
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Nasreem Abdul Razzack
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Farhana Zakir
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Anisha Shajan
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| |
Collapse
|
19
|
Dinoi A, Feltracco M, Chirizzi D, Trabucco S, Conte M, Gregoris E, Barbaro E, La Bella G, Ciccarese G, Belosi F, La Salandra G, Gambaro A, Contini D. A review on measurements of SARS-CoV-2 genetic material in air in outdoor and indoor environments: Implication for airborne transmission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151137. [PMID: 34699823 PMCID: PMC8539199 DOI: 10.1016/j.scitotenv.2021.151137] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 05/03/2023]
Abstract
Airborne transmission of SARS-CoV-2 has been object of debate in the scientific community since the beginning of COVID-19 pandemic. This mechanism of transmission could arise from virus-laden aerosol released by infected individuals and it is influenced by several factors. Among these, the concentration and size distribution of virus-laden particles play an important role. The knowledge regarding aerosol transmission increases as new evidence is collected in different studies, even if it is not yet available a standard protocol regarding air sampling and analysis, which can create difficulties in the interpretation and application of results. This work reports a systematic review of current knowledge gained by 73 published papers on experimental determination of SARS-CoV-2 RNA in air comparing different environments: outdoors, indoor hospitals and healthcare settings, and public community indoors. Selected papers furnished 77 datasets: outdoor studies (9/77, 11.7%) and indoor studies (68/77. 88.3%). The indoor datasets in hospitals were the vast majority (58/68, 85.3%), and the remaining (10/68, 14.7%) were classified as community indoors. The fraction of studies having positive samples, as well as positivity rates (i.e. ratios between positive and total samples) are significantly larger in hospitals compared to the other typologies of sites. Contamination of surfaces was more frequent (in indoor datasets) compared to contamination of air samples; however, the average positivity rate was lower compared to that of air. Concentrations of SARS-CoV-2 RNA in air were highly variables and, on average, lower in outdoors compared to indoors. Among indoors, concentrations in community indoors appear to be lower than those in hospitals and healthcare settings.
Collapse
Affiliation(s)
- Adelaide Dinoi
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC-CNR), Str. Prv. Lecce-Monteroni km 1.2, Lecce, Italy
| | - Matteo Feltracco
- Istituto di Scienze Polari (ISP-CNR), Via Torino 155, Venice, Mestre, Italy; Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari di Venezia, Via Torino 155, Venezia, Mestre, Italy
| | - Daniela Chirizzi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Via Manfredonia 20, Foggia, Italy
| | - Sara Trabucco
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC-CNR), Via Gobetti 101, Bologna, Italy
| | - Marianna Conte
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC-CNR), Str. Prv. Lecce-Monteroni km 1.2, Lecce, Italy; Laboratory for Observations and Analyses of Earth and Climate, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Elena Gregoris
- Istituto di Scienze Polari (ISP-CNR), Via Torino 155, Venice, Mestre, Italy; Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari di Venezia, Via Torino 155, Venezia, Mestre, Italy
| | - Elena Barbaro
- Istituto di Scienze Polari (ISP-CNR), Via Torino 155, Venice, Mestre, Italy; Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari di Venezia, Via Torino 155, Venezia, Mestre, Italy
| | - Gianfranco La Bella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Via Manfredonia 20, Foggia, Italy
| | - Giuseppina Ciccarese
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Via Manfredonia 20, Foggia, Italy
| | - Franco Belosi
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC-CNR), Via Gobetti 101, Bologna, Italy
| | - Giovanna La Salandra
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZSPB), Via Manfredonia 20, Foggia, Italy
| | - Andrea Gambaro
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari di Venezia, Via Torino 155, Venezia, Mestre, Italy
| | - Daniele Contini
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC-CNR), Str. Prv. Lecce-Monteroni km 1.2, Lecce, Italy.
| |
Collapse
|
20
|
Behbehani M, Carvalho FP, Uddin S, Habibi N. Enhanced Polonium Concentrations in Aerosols from the Gulf Oil Producing Region and the Role of Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13309. [PMID: 34948917 PMCID: PMC8705287 DOI: 10.3390/ijerph182413309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022]
Abstract
This study provides the first data set of 210Po and 210Pb activity concentrations in the organic and inorganic components of several particle size classes of aerosols collected at two sampling stations in Kuwait. The 210Po concentrations in the aerosols (Bq/g) were similar in all of the particle size classes, but as most (91%) of the aerosol load was made of fine fraction particles of PM0.39-2.5 µm, most of the 210Po activity was carried by this aerosol fraction. At the two sampling stations, the 210Po/210Pb activity concentration ratios in the aerosols were similar, stable around the year, and averaged 1.5 (range 1.2-1.9), much higher than the typical activity concentration ratios of these radionuclides in unmodified (background) aerosols, with Po/Pb < 0.1. The aerosol enrichment in 210Po was likely originated from the oil industry, specifically by gas flaring and oil refining in the Gulf region. Radionuclide analysis in the organic and inorganic components of aerosols showed that the 210Po concentration in the organic component was one order of magnitude higher than the 210Po concentration in the inorganic component, in contrast with 210Pb, which displayed similar concentrations in both organic and inorganic aerosol components. The 210Po carrying organic component of aerosols was investigated and it was found to be largely composed of microorganisms with high microbial and fungi diversity, with the phyla Proteobacteria, Ascomycota, and Basidiomycota being dominant among the bacteria and with Zygomycota being dominant among the fungi. Therefore, we are facing an active concentration process of the atmospheric 210Po carried out by microorganisms, which underlies the 210Po enrichment process in the organic component of aerosols. This bioconcentration of polonium in bioaerosols was unknown.
Collapse
Affiliation(s)
- Montaha Behbehani
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (M.B.); (N.H.)
| | | | - Saif Uddin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (M.B.); (N.H.)
| | - Nazima Habibi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait; (M.B.); (N.H.)
| |
Collapse
|
21
|
Abstract
Airborne particles play a significant role in the spread of bacterial communities. The prevalence of both pathogenic and non-pathogenic forms in the inhalable fractions of aerosols is known. The abundance of microorganisms in the aerosols heightens the likely health hazards due to inhalation since they serve as carriers for pathogens and allergens, often acting as a vector for pulmonary/respiratory infections. Not much information is available on the occurrence and prevalence of bacterial communities in different size-fractionated aerosols in Kuwait. A high-volume air sampler with a six-stage cascade impactor was deployed for sample collection at two sites representing a remote and an urban site. A total volume of 815 ± 5 m3 of air was passed through the filters to trap the particulate matter ranging from 0.39 to >10.2 μm in size (Stage 1 to Stage 5 and base filter). Aeromonas dominated all the stages at the urban site and Stage 5 at the remote site, whereas Sphingobium was prevalent at Stages, 2, 3 and 4 at the remote site. Brevundimonas were found at Stages 1 and 5, and the base filter at the remote site. These results show that the bacterial community is altered in different size fractions of aerosols. Stages 1–4 form the respirable fraction, whereas Stage 5 and particles on the base filter are the inhalable fractions. Many species of Aeromonas cause disease, and hence their presence in inhalable fractions is a health concern, meaning that species-level identification is warranted.
Collapse
|
22
|
Habibi N, Mustafa AS, Khan MW. Composition of nasal bacterial community and its seasonal variation in health care workers stationed in a clinical research laboratory. PLoS One 2021; 16:e0260314. [PMID: 34818371 PMCID: PMC8612574 DOI: 10.1371/journal.pone.0260314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022] Open
Abstract
The microorganisms at the workplace contribute towards a large portion of the biodiversity a person encounters in his or her life. Health care professionals are often at risk due to their frontline nature of work. Competition and cooperation between nasal bacterial communities of individuals working in a health care setting have been shown to mediate pathogenic microbes. Therefore, we investigated the nasal bacterial community of 47 healthy individuals working in a clinical research laboratory in Kuwait. The taxonomic profiling and core microbiome analysis identified three pre-dominant genera as Corynebacterium (15.0%), Staphylococcus (10.3%) and, Moraxella (10.0%). All the bacterial genera exhibited seasonal variations in summer, winter, autumn and spring. SparCC correlation network analysis revealed positive and negative correlations among the classified genera. A rich set of 16 genera (q < 0.05) were significantly differentially abundant (LEfSe) across the four seasons. The highest species counts, richness and evenness (P < 0.005) were recorded in autumn. Community structure profiling indicated that the entire bacterial population followed a seasonal distribution (R2-0.371; P < 0.001). Other demographic factors such as age, gender and, ethnicity contributed minimally towards community clustering in a closed indoor laboratory setting. Intra-personal diversity also witnessed rich species variety (maximum 6.8 folds). Seasonal changes in the indoor working place in conjunction with the outdoor atmosphere seems to be important for the variations in the nasal bacterial communities of professionals working in a health care setting.
Collapse
Affiliation(s)
- Nazima Habibi
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| | - Abu Salim Mustafa
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| | - Mohd Wasif Khan
- OMICS Research Unit and Research Core Facility, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| |
Collapse
|