1
|
Franz S, Torregrossa M, Anderegg U, Ertel A, Saalbach A. Dysregulated S100A9 Expression Impairs Matrix Deposition in Chronic Wounds. Int J Mol Sci 2024; 25:9980. [PMID: 39337466 PMCID: PMC11432490 DOI: 10.3390/ijms25189980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic non-healing wounds are characterized by persistent inflammation, excessive matrix-degrading proteolytic activity and compromised extracellular matrix (ECM) synthesis. Previous studies showed that S100A8/A9 are strongly dysregulated in delayed wound healing and impair the proper function of immune cells. Here, we demonstrate an unrecognized pathological function of S100A9 overexpression in wounds with impaired healing that directly affects ECM functions in fibroblasts. S100A9 was analyzed in two different mouse models mimicking the features of the two most prominent types of non-healing wounds in humans. Db/db mice were used as a model for diabetes-associated impaired wound healing. Iron-overloaded mice were used to mimic the conditions of impaired wound healing in chronic venous leg ulcers. The skin wounds of both mouse models are characterized by delayed wound closure, high and sustained expression of pro-inflammatory mediators and a substantially decreased ECM deposition, all together the hallmarks of non-healing wounds in humans. The wounds of both mouse models also present a solid and prolonged expression of S100A8 and S100A9 that coincides with a compromised ECM deposition and that was confirmed in chronic wounds in humans. Mechanistically, we reveal that S100A9 directly affects ECM deposition by shifting the balance of expression of ECM proteins and ECM degrading enzymes in fibroblasts via toll-like-receptor 4-dependent signaling. Consequently, blocking S100A9 during delayed wound healing in db/db mice restores fibroblast ECM functions eliciting increased matrix deposition. Our data indicate that the dysregulation of S100A9 directly contributes to a compromised ECM deposition in chronic wounds and further suggests S100A9 as a promising therapeutic target to improve tissue repair in chronic wounds.
Collapse
Affiliation(s)
| | | | | | | | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology, Max Bürger Research Centre, Medical Faculty, University Leipzig, Johannisallee 30, 04103 Leipzig, Germany; (S.F.); (M.T.); (U.A.); (A.E.)
| |
Collapse
|
2
|
Yan L, Wang Y, Feng J, Ni Y, Zhang T, Cao Y, Zhou M, Zhao C. Mechanism and application of fibrous proteins in diabetic wound healing: a literature review. Front Endocrinol (Lausanne) 2024; 15:1430543. [PMID: 39129915 PMCID: PMC11309995 DOI: 10.3389/fendo.2024.1430543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Diabetic wounds are more complex than normal chronic wounds because of factors such as hypoxia, reduced local angiogenesis, and prolonged inflammation phase. Fibrous proteins, including collagen, fibrin, laminin, fibronectin, elastin etc., possess excellent inherent properties that make them highly advantageous in the area of wound healing. Accumulating evidence suggests that they contribute to the healing process of diabetic wounds by facilitating the repair and remodel of extracellular matrix, stimulating the development of vascular and granulation tissue, and so on. However, there is currently a lack of a comprehensive review of the application of these proteins in diabetes wounds. An overview of fibrous protein characteristics and the alterations linked to diabetic wounds is given in this article's initial section. Next is a summary of the advanced applications of fibrous proteins in the last five years, including acellular dermal matrix, hydrogel, foam, scaffold, and electrospun nanofibrous membrane. These dressings have the ability to actively promote healing in addition to just covering wounds compared to traditional wound dressings like gauze or bandage. Research on fibrous proteins and their role in diabetic wound healing may result in novel therapeutic modalities that lower the incidence of diabetic wounds and thereby enhance the health of diabetic patients.
Collapse
Affiliation(s)
- Lilin Yan
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Arora B, Kulkarni A, Markus MA, Ströbel P, Bohnenberger H, Alves F, Ramos-Gomes F. Label-free quantification of imaging features in the extracellular matrix of left and right-sided colon cancer tissues. Sci Rep 2024; 14:7510. [PMID: 38553551 PMCID: PMC10980747 DOI: 10.1038/s41598-024-58231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
The molecular pathogenesis of colorectal cancer is known to differ between the right and left side of the colon. Several previous studies have focussed on the differences in clinicopathological features, proteomic and genetic biomarkers, the composition of gut microbiota, response to therapy, and the characteristics of the tumour microenvironment. However, the morphology and density of collagen in the extracellular matrix (ECM) have not been studied intensively. In this study, we employed 2-photon laser scanning microscopy (2PLSM) to visualise the intrinsic second-harmonic generation (SHG) signal emitted by collagen fibres in the heterogeneous ECM of human colon tumour tissues. Through texture analysis of the SHG signal, we quantitatively distinguished the imaging features generated by structural differences of collagen fibres in healthy colon and cancers and found marked differences. The fibres inside of tumours exhibited a loss of organisation, particularly pronounced in right-sided colon cancer (RSCC), where the chaotic regions were significantly increased. In addition, a higher collagen content was found in left-sided colon cancer (LSCC). In future, this might aid in subclassification and therapeutic decisions or even in designing new therapy regimens by taking into account the differences between collagen fibres features between colon tumours located at different sides.
Collapse
Affiliation(s)
- B Arora
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein-Straße 3, 37075, Göttingen, Germany
| | - A Kulkarni
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein-Straße 3, 37075, Göttingen, Germany
| | - M A Markus
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein-Straße 3, 37075, Göttingen, Germany
| | - P Ströbel
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - H Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - F Alves
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein-Straße 3, 37075, Göttingen, Germany
- Clinic for Haematology and Medical Oncology, Institute of Interventional and Diagnostic Radiology, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Göttingen, Germany
| | - F Ramos-Gomes
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein-Straße 3, 37075, Göttingen, Germany.
| |
Collapse
|
4
|
Khatib S, Mahdi I, Drissi B, Fahsi N, Bouissane L, Sobeh M. Tetraclinis articulata (Vahl) Mast.: Volatile constituents, antioxidant, antidiabetic and wound healing activities of its essential oil. Heliyon 2024; 10:e24563. [PMID: 38317922 PMCID: PMC10839871 DOI: 10.1016/j.heliyon.2024.e24563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/16/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic syndrome known to contribute to impaired wound healing. This condition can be further worsened by excessive melanin production, elastin degradation, and chronic infections at the wound site, potentially leading to melasma and diabetic dermopathy. The purpose of this study was to investigate the phytochemical profile and inhibitory effects of Tetraclinis articulata essential oil (TAEO) on target enzymes involved in diabetes pathogenesis and chronic wound remodeling, namely α-amylase, α-glucosidase, tyrosinase, and elastase, as well as its in vitro antibacterial activity. Gas chromatography and mass spectrometry (GC-MS) analysis of TAEO led to the identification of 46 volatile compounds, representing 96.61 % of TAEO. The major metabolites were bornyl acetate (29.48 %), α-pinene (8.96 %), germacrene D (7.70 %), and d-limonene (5.90 %). TAEO exhibited limited scavenging activity against DPPH free radicals, whereas the FRAP and ABTS assays indicated a relatively higher antioxidant activity. Remarkably, TAEO disclosed a promising in vitro antidiabetic activity against α-glucosidase with an IC50 value of 178 ± 1.6 μg/mL, which is comparable to the standard inhibitor acarbose (IC50 = 143 ± 1.1 μg/mL). In silico, molecular docking analysis against α-glucosidase identified 15 compounds that interacted with the enzyme's active site, whereas skin permeability and sensitization assessments indicated that 26 out of the 44 identified volatile compounds were predicted to be free from any skin sensitivity risk. On the other hand, moderate inhibitory activity was recorded against α-amylase, tyrosinase, and elastase. Notably, TAEO at 5 % significantly suppressed biofilm formation by P. aeruginosa, S. aureus, and E. faecalis, common skin pathogens associated with wound infections, and reduced their swarming motility. Our findings suggest that TAEO may hold the potential as a natural remedy for type 2 diabetes and its associated co-morbidities, especially chronic wounds.
Collapse
Affiliation(s)
- Sohaib Khatib
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Ismail Mahdi
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Badreddine Drissi
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Nidal Fahsi
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| |
Collapse
|
5
|
Li A, Lin X, Mao X, Sun Q. Efficacy and Safety of Extracellular Matrix on Wound Healing After Picosecond Laser Therapy. Dermatol Surg 2023; 49:S22-S26. [PMID: 37115996 DOI: 10.1097/dss.0000000000003773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
BACKGROUND Extracellular matrix (ECM), a material with tissue repair function, is applied to treat various wounds. However, the role of ECM in facilitating wound healing after facial laser treatment remains elusive. OBJECTIVE To assess the efficacy and safety of ECM in promoting wound healing after picosecond laser therapy (PLT). MATERIALS AND METHODS Eighteen female subjects with benign pigmentation disorders were randomly assigned to the ECM (n = 9) and control groups (n = 9). After PLT, the ECM and control groups were treated with ECM and facial moisturizer in the first 7 days, respectively. The severity of erythema and edema was assessed using photographs. The duration of erythema, edema, scab shedding, postinflammatory hyperpigmentation incidence (PIH), and adverse events was documented in detail. RESULTS Compared with the control group, the ECM group had a shorter duration of erythema, edema, and scab shedding after PLT (p < .01). A significantly decreased severity of erythema (p < .05) and edema (p < .01) was found in the ECM group versus the control group, respectively. The PIH incidence in the ECM group was lower than in controls, albeit without statistical significance. No serious adverse events were observed during the follow-up. CONCLUSION Extracellular matrix is an effective and safe dressing for promoting wound healing after PLT.
Collapse
Affiliation(s)
- Anqi Li
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinwen Lin
- Hunan Drug Inspection Center, Changsha, Hunan, China
| | - Xuming Mao
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qiuning Sun
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Tan MLL, Chin JS, Madden L, Becker DL. Challenges faced in developing an ideal chronic wound model. Expert Opin Drug Discov 2023; 18:99-114. [PMID: 36573018 DOI: 10.1080/17460441.2023.2158809] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Chronic wounds are a major drain on healthcare resources and can lead to substantial reductions in quality of life for those affected. Moreover, they often precede serious events such as limb amputations and premature death. In the long run, this burden is likely to escalate with an ageing population and lifestyle diseases such as obesity. Thus far, the identification of beneficial therapeutics against chronic wounds have been hindered by the lack of an ideal chronic wound animal model. Although animal models of delayed healing have been developed, none of these models fully recapitulate the complexity of the human chronic wound condition. Furthermore, most animals do not develop chronic wounds. Only the thoroughbred racehorse develops chronic ulcers. AREAS COVERED In this review, the different characteristics of chronic wounds that highlight its complexity are described. In addition, currently available models reflecting different aspects of chronic wound pathology and their relevance to human chronic wounds are discussed. This article concludes by listing relevant features representative of an ideal chronic wound model. Additionally, alternative approaches for the development of chronic wound models are discussed. EXPERT OPINION Delayed models of healing, including the streptozotocin diabetic model, skin flap model and magnet-induced IR models have emerged. While these models have been widely adopted for preclinical therapeutic testing, their relevance towards human chronic wounds remains debatable. In particular, current delayed healing models often fail to fully incorporate the key characteristics of chronic ulcers. Ultimately, more representative models are required to expedite the advancement of novel therapeutics to the clinic.
Collapse
Affiliation(s)
- Mandy Li Ling Tan
- Nanyang Institute of Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Jiah Shin Chin
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Leigh Madden
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - David L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore.,Skin Research Institute Singapore, Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore.,National Skin Centre, Mandalay Road, Singapore
| |
Collapse
|
7
|
Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022; 11:cells11152439. [PMID: 35954282 PMCID: PMC9367945 DOI: 10.3390/cells11152439] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients’ quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.
Collapse
|
8
|
Holzer-Geissler JCJ, Schwingenschuh S, Zacharias M, Einsiedler J, Kainz S, Reisenegger P, Holecek C, Hofmann E, Wolff-Winiski B, Fahrngruber H, Birngruber T, Kamolz LP, Kotzbeck P. The Impact of Prolonged Inflammation on Wound Healing. Biomedicines 2022; 10:biomedicines10040856. [PMID: 35453606 PMCID: PMC9025535 DOI: 10.3390/biomedicines10040856] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
The treatment of chronic wounds still challenges modern medicine because of these wounds’ heterogenic pathophysiology. Processes such as inflammation, ischemia and bacterial infection play major roles in the progression of a chronic wound. In recent years, preclinical wound models have been used to understand the underlying processes of chronic wound formation. However, the wound models used to investigate chronic wounds often lack translatability from preclinical models to patients, and often do not take exaggerated inflammation into consideration. Therefore, we aimed to investigate prolonged inflammation in a porcine wound model by using resiquimod, a TLR7 and TLR8 agonist. Pigs received full thickness excisional wounds, where resiquimod was applied daily for 6 days, and untreated wounds served as controls. Dressing change, visual documentation and wound scoring were performed daily. Biopsies were collected for histological as well as gene expression analysis. Resiquimod application on full thickness wounds induced a visible inflammation of wounds, resulting in delayed wound healing compared to non-treated control wounds. Gene expression analysis revealed high levels of IL6, MMP1 and CD68 expression after resiquimod application, and histological analysis showed increased immune cell infiltration. By using resiquimod, we were able to show that prolonged inflammation delayed wound healing, which is often observed in chronic wounds in patients. The model we used shows the importance of inflammation in wound healing and gives an insight into the progression of chronic wounds.
Collapse
Affiliation(s)
- Judith C. J. Holzer-Geissler
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.C.J.H.-G.); (E.H.); (L.-P.K.)
- COREMED-Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria;
| | - Simon Schwingenschuh
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.S.); (S.K.); (P.R.); (C.H.); (T.B.)
| | - Martin Zacharias
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Johanna Einsiedler
- COREMED-Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria;
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Sonja Kainz
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.S.); (S.K.); (P.R.); (C.H.); (T.B.)
| | - Peter Reisenegger
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.S.); (S.K.); (P.R.); (C.H.); (T.B.)
| | - Christian Holecek
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.S.); (S.K.); (P.R.); (C.H.); (T.B.)
| | - Elisabeth Hofmann
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.C.J.H.-G.); (E.H.); (L.-P.K.)
- COREMED-Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria;
| | | | | | - Thomas Birngruber
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; (S.S.); (S.K.); (P.R.); (C.H.); (T.B.)
| | - Lars-Peter Kamolz
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.C.J.H.-G.); (E.H.); (L.-P.K.)
- COREMED-Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria;
| | - Petra Kotzbeck
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.C.J.H.-G.); (E.H.); (L.-P.K.)
- COREMED-Cooperative Centre for Regenerative Medicine, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria;
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- Correspondence: or ; Tel.: +43-316-876-6000
| |
Collapse
|
9
|
Membrane curvature and connective fiber alignment in guinea pig round window membrane. Acta Biomater 2021; 136:343-362. [PMID: 34563725 DOI: 10.1016/j.actbio.2021.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The round window membrane (RWM) covers an opening between the perilymph fluid-filled inner ear space and the air-filled middle ear space. As the only non-osseous barrier between these two spaces, the RWM is an ideal candidate for aspiration of perilymph for diagnostics purposes and delivery of medication for treatment of inner ear disorders. Routine access across the RWM requires the development of new surgical tools whose design can only be optimized with a thorough understanding of the RWM's structure and properties. The RWM possesses a layer of collagen and elastic fibers so characterization of the distribution and orientation of these fibers is essential. Confocal and two-photon microscopy were conducted on intact RWMs in a guinea pig model to characterize the distribution of collagen and elastic fibers. The fibers were imaged via second-harmonic-generation, autofluorescence, and Rhodamine B staining. Quantitative analyses of both fiber orientation and geometrical properties of the RWM uncovered a significant correlation between mean fiber orientations and directions of zero curvature in some portions of the RWM, with an even more significant correlation between the mean fiber orientations and linear distance along the RWM in a direction approximately parallel to the cochlear axis. The measured mean fiber directions and dispersions can be incorporated into a generalized structure tensor for use in the development of continuum anisotropic mechanical constitutive models that in turn will enable optimization of surgical tools to access the cochlea. STATEMENT OF SIGNIFICANCE: The Round Window Membrane (RWM) is the only non-osseous barrier separating the middle and inner ear spaces, and thus is an ideal portal for medical access to the cochlea. An understanding of RWM structure and mechanical response is necessary to optimize the design of surgical tools for this purpose. The RWM geometry and the connective fiber orientation and dispersion are measured via confocal and 2-photon microscopy. A region of the RWM geometry is characterized as a hyperbolic paraboloid and another region as a tapered parabolic cylinder. Predominant fiber directions correlate well with directions of zero curvature in the hyperbolic paraboloid region. Overall fiber directions correlate well with position along a line approximately parallel to the central axis of the cochlea's spiral.
Collapse
|
10
|
Extracellular matrix and cellular senescence in venous leg ulcers. Sci Rep 2021; 11:20168. [PMID: 34635751 PMCID: PMC8505655 DOI: 10.1038/s41598-021-99643-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
High prevalence of non-healing chronic wounds contributes to a huge healthcare burden across the world. Early treatment interventions for non-healing wounds are vital. It was previously shown that accumulation of 15% or more of senescent cells in a chronic wound edge is an indicator that the wound is unlikely to heal. However, determining the presence of senescent cells would require invasive procedures such as tissue biopsies to be taken. In this study, we found a strong correlation between decreased collagen area and presence of senescent cells in human chronic wounds i.e. venous leg ulcer (VLU), diabetic foot ulcer (DFU) and pressure ulcer (PRU). We also report that the lowest collagen levels were found in VLU patients less than 60 years of age, with a persistent wound of > 24 months. Elevated levels of senescent cells were also found in VLU of males. Second harmonic imaging of collagen at the edge of chronic wounds with a handheld multiphoton device could be used to predict the number of senescent cells, indicating if the wound is on a healing trajectory or not. Our data support the use of collagen imaging in cutaneous wound assessment for a faster and non-invasive method to predict cellular senescence and determining wound trajectory of healing.
Collapse
|
11
|
Rasouli M, Rahimi A, Soleimani M, keshel SH. The interplay between extracellular matrix and progenitor/stem cells during wound healing: Opportunities and future directions. Acta Histochem 2021; 123:151785. [PMID: 34500185 DOI: 10.1016/j.acthis.2021.151785] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/31/2021] [Accepted: 08/27/2021] [Indexed: 01/11/2023]
Abstract
Skin wound healing, a dynamic physiological process, progresses through coordinated overlapping phases to restore skin integrity. In some pathological conditions such as diabetes, wounds become chronic and hard-to-heal resulting in substantial morbidity and healthcare costs. Despite much advancement in understanding mechanisms of wound healing, chronic and intractable wounds are still a considerable challenge to nations' health care systems. Extracellular matrix (ECM) components play pivotal roles in all phases of wound healing. Therefore, a better understanding of their roles during wound healing can help improve wound care approaches. The ECM provides a 3D structure and forms the stem cell niche to support stem cell adhesion and survival and to regulate stem cell behavior and fate. Also, this dynamic structure reserves growth factors, regulates their bioavailability and provides biological signals. In various diseases, the composition and stiffness of the ECM is altered, which as a result, disrupts bidirectional cell-ECM interactions and tissue regeneration. Hence, due to the impact of ECM changes on stem cell fate during wound healing and the possibility of exploring new strategies to treat chronic wounds through manipulation of these interactions, in this review, we will discuss the importance/impact of ECM in the regulation of stem cell function and behavior to find ideal wound repair and regeneration strategies. We will also shed light on the necessity of using ECM in future wound therapy and highlight the potential roles of various biomimetic and ECM-based scaffolds as functional ECM preparations to mimic the native stem cell niche.
Collapse
|
12
|
Strauss G, Koria P. Hybrid fusion protein as a dual protease inhibitor for the healing of chronic wounds. Biotechnol Prog 2021; 37:e3209. [PMID: 34486249 DOI: 10.1002/btpr.3209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/07/2022]
Abstract
Diseases bring about the need for interventions that pinpoint each specific aspect of the illness. Commonly, remission of a complex disease is accomplished by mixing treatments, medications, and therapeutics together in a fashion where they may negatively interact with each other or never arrive at the diseased site as a systemic heterogeneous mixture. Chronic wounds display intricacy as they are very localized and have their own environment where tissue deconstruction due to high levels of numerous proteases outweighs normal tissue reconstruction. This idea leads to the necessity of a protein that contains low diffusivity rates for localized treatment, strength against high concentrations of proteolytic species that lead to degradation of short chain peptides, while encompassing broad inhibitory effects against multiple proteases. Elastin-like peptides are an attractive, thermoresponsive, protein-based drug delivery partner as they contain low diffusivity and serve as a stable architecture for short chain peptide fusion. In this project, a novel elastin-like peptide-based protein has been created to target the inhibition of both human neutrophil elastase and matrix metalloprotease-2. As a biologic, this is unique as it is a protein with specific biological activities against multiple proteases, ultimately displaying the potential to mix and match differing biologically active peptides within one amino acid sequence.
Collapse
Affiliation(s)
- Graham Strauss
- Department of Chemical, Biological & Materials Engineering, University of South Florida, Tampa, Florida, USA
| | - Piyush Koria
- Department of Chemical, Biological & Materials Engineering, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
13
|
Deptuła M, Brzezicka A, Skoniecka A, Zieliński J, Pikuła M. Adipose-derived stromal cells for nonhealing wounds: Emerging opportunities and challenges. Med Res Rev 2021; 41:2130-2171. [PMID: 33522005 PMCID: PMC8247932 DOI: 10.1002/med.21789] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Wound healing complications affect thousands of people each year, thus constituting a profound economic and medical burden. Chronic wounds are a highly complex problem that usually affects elderly patients as well as patients with comorbidities such as diabetes, cancer (surgery, radiotherapy/chemotherapy) or autoimmune diseases. Currently available methods of their treatment are not fully effective, so new solutions are constantly being sought. Cell-based therapies seem to have great potential for use in stimulating wound healing. In recent years, much effort has been focused on characterizing of adipose-derived mesenchymal stromal cells (AD-MSCs) and evaluating their clinical use in regenerative medicine and other medical fields. These cells are easily obtained in large amounts from adipose tissue and show a high proregenerative potential, mainly through paracrine activities. In this review, the process of healing acute and nonhealing (chronic) wounds is detailed, with a special attention paid to the wounds of patients with diabetes and cancer. In addition, the methods and technical aspects of AD-MSCs isolation, culture and transplantation in chronic wounds are described, and the characteristics, genetic stability and role of AD-MSCs in wound healing are also summarized. The biological properties of AD-MSCs isolated from subcutaneous and visceral adipose tissue are compared. Additionally, methods to increase their therapeutic potential as well as factors that may affect their biological functions are summarized. Finally, their therapeutic potential in the treatment of diabetic and oncological wounds is also discussed.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| | | | - Aneta Skoniecka
- Department of Embryology, Faculty of MedicineMedical University of GdanskGdańskPoland
| | - Jacek Zieliński
- Department of Oncologic SurgeryMedical University of GdanskGdańskPoland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| |
Collapse
|
14
|
Arthe R, Arivuoli D, Ravi V. Preparation and characterization of bioactive silk fibroin/paramylon blend films for chronic wound healing. Int J Biol Macromol 2020; 154:1324-1331. [DOI: 10.1016/j.ijbiomac.2019.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/03/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
|
15
|
Huang Y, Kyriakides TR. The role of extracellular matrix in the pathophysiology of diabetic wounds. Matrix Biol Plus 2020; 6-7:100037. [PMID: 33543031 PMCID: PMC7852307 DOI: 10.1016/j.mbplus.2020.100037] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
Impaired healing leading to the formation of ulcerated wounds is a critical concern in patients with diabetes. Abnormalities in extracellular matrix (ECM) production and remodeling contribute to tissue dysfunction and delayed healing. Specifically, diabetes-induced changes in the expression and/or activity of structural proteins, ECM-modifying enzymes, proteoglycans, and matricellular proteins have been reported. In this review, we provide a summary of the key ECM molecules and associated changes in skin and diabetic wounds. Such information should allow for new insights in the understanding of impaired wound healing and lead to the development of ECM-based therapeutic strategies.
Collapse
Affiliation(s)
- Yaqing Huang
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA.,Department of Pathology, Yale University, New Haven, CT 06519, USA
| | - Themis R Kyriakides
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06519, USA.,Department of Pathology, Yale University, New Haven, CT 06519, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA
| |
Collapse
|
16
|
Armstrong DG, Orgill DP, Galiano RD, Glat PM, Kaufman JP, Carter MJ, Zelen CM. An observational pilot study using a purified reconstituted bilayer matrix to treat non-healing diabetic foot ulcers. Int Wound J 2020; 17:966-973. [PMID: 32266774 PMCID: PMC7384195 DOI: 10.1111/iwj.13353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetic foot ulcers (DFUs) have significant clinical impact and carry a substantial economic burden. Patients with DFUs that are refractory to standard wound care are at risk for major complications, including infection and amputation and have an increased risk of mortality. This study evaluated the safety and preliminary efficacy of a novel decellularised purified reconstituted bilayer matrix (PRBM) in treating DFUs. Ten diabetic patients with refractory wounds that failed to heal after at least 4 weeks of standard wound care were studied in this Institutional Review Board approved trial. Ten consecutive wounds were treated weekly with the PRBM for up to 12 weeks. At each weekly visit, the wound was evaluated, photographed, and cleaned, followed by application of new graft if not completely epithelialised. Assessment included measurement of the wound area and inspection of the wound site for signs of complications. The primary outcome measure was wound closure, as adjudicated by independent reviewers. Secondary outcomes included assessment of overall adverse events, time to closure, percent area reduction, and the cost of product(s) used. Nine of 10 patients achieved complete wound closure within 4 weeks, and 1 did not heal completely within 12 weeks. The mean time to heal was 2.7 weeks. The mean wound area reduction at 12 weeks was 99%. No adverse events nor wound complications were observed. These early clinical findings suggest that the PRBM may be an effective tool in the treatment of diabetic foot ulcers.
Collapse
Affiliation(s)
- David G Armstrong
- Division of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Robert D Galiano
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Paul M Glat
- Professor of Surgery and Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania, USA
| | - Jarrod P Kaufman
- Department of Surgery, Temple University School of Medicine and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Charles M Zelen
- Professional Education and Research Institute, Roanoke, Virginia, USA
| |
Collapse
|
17
|
Surrounding skin management in venous leg ulcers: A systematic review. J Tissue Viability 2020; 29:169-175. [PMID: 32151489 DOI: 10.1016/j.jtv.2020.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/21/2019] [Accepted: 02/08/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Chronic venous insufficiency may lead to the development of venous leg ulcers, the most common form of chronic wounds in the lower extremity. Key to venous leg ulcer care is the maintenance of healthy skin surrounding the ulcer, as failure to maintain skin integrity may influence the healing outcome. We thus reviewed the scientific literature looking for assessment and management instruments regarding this common but often neglected issue. METHOD The search included all studies published between 2000 and May 2019. Keywords used were: "peri-wound skin care", "surrounding skin venous ulcers", "surrounding skin management leg ulcers", and "peri-lesional skin management". RESULTS Management of moisture-balance with the selection of appropriate dressings is the most important target in surrounding-wound skin care. Moreover, contact dermatitis related to products and the dressings themselves is a neglected problem in patients with chronic leg ulcers which clinicians increasingly have to manage. The literature search revealed that there is an increasing interest in the use of noninvasive assessment tools in the field of wound care, and focusing on the surrounding-wound skin plays a role in assessing the potential of wound healing. Transepidermal water loss measurement (TEWL) and ultrasonography are two of the measurement techniques available. CONCLUSION The integrity of the surrounding skin is necessary for wound healing, and appropriate management is needed to address this aspect which is part of an overall approach to treating wounds.
Collapse
|
18
|
Barrett DW, John RK, Thrasivoulou C, Mata A, Deprest JA, Becker DL, David AL, Chowdhury TT. Targeting mechanotransduction mechanisms and tissue weakening signals in the human amniotic membrane. Sci Rep 2019; 9:6718. [PMID: 31040291 PMCID: PMC6491562 DOI: 10.1038/s41598-019-42379-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 03/29/2019] [Indexed: 11/24/2022] Open
Abstract
Mechanical and inflammatory signals in the fetal membrane play an important role in extracellular matrix (ECM) remodelling in order to dictate the timing of birth. We developed a mechanical model that mimics repetitive stretching of the amniotic membrane (AM) isolated from regions over the placenta (PAM) or cervix (CAM) and examined the effect of cyclic tensile strain (CTS) on mediators involved in mechanotransduction (Cx43, AKT), tissue remodelling (GAGs, elastin, collagen) and inflammation (PGE2, MMPs). In CAM and PAM specimens, the application of CTS increased GAG synthesis, PGE2 release and MMP activity, with concomitant reduction in collagen and elastin content. Co-stimulation with CTS and pharmacological agents that inhibit either Cx43 or AKT, differentially influenced collagen, GAG and elastin in a tissue-dependent manner. SHG confocal imaging of collagen fibres revealed a reduction in SHG intensity after CTS, with regions of disorganisation dependent on tissue location. CTS increased Cx43 and AKT protein and gene expression and the response could be reversed with either CTS, the Cx43 antisense or AKT inhibitor. We demonstrate that targeting Cx43 and AKT prevents strain-induced ECM damage and promotes tissue remodelling mechanisms in the AM. We speculate that a combination of inflammatory and mechanical factors could perturb typical mechanotransduction processes mediated by Cx43 signalling. Cx43 could therefore be a potential therapeutic target to prevent inflammation and preterm premature rupture of the fetal membranes.
Collapse
Affiliation(s)
- David W Barrett
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Rebecca K John
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Christopher Thrasivoulou
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alvaro Mata
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Jan A Deprest
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - David L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Anna L David
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Tina T Chowdhury
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
19
|
Abstract
Cell migration is an adaptive process that depends on and responds to physical and molecular triggers. Moving cells sense and respond to tissue mechanics and induce transient or permanent tissue modifications, including extracellular matrix stiffening, compression and deformation, protein unfolding, proteolytic remodelling and jamming transitions. Here we discuss how the bi-directional relationship of cell-tissue interactions (mechanoreciprocity) allows cells to change position and contributes to single-cell and collective movement, structural and molecular tissue organization, and cell fate decisions.
Collapse
|