1
|
Yang J, Xu L. Electrospun Nanofiber Membranes with Various Structures for Wound Dressing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6021. [PMID: 37687713 PMCID: PMC10488510 DOI: 10.3390/ma16176021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Electrospun nanofiber membranes (NFMs) have high porosity and a large specific surface area, which provide a suitable environment for the complex and dynamic wound healing process and a large number of sites for carrying wound healing factors. Further, the design of the nanofiber structure can imitate the structure of the human dermis, similar to the natural extracellular matrix, which better promotes the hemostasis, anti-inflammatory and healing of wounds. Therefore, it has been widely studied in the field of wound dressing. This review article overviews the development of electrospinning technology and the application of electrospun nanofibers in wound dressings. It begins with an introduction to the history, working principles, and transformation of electrospinning, with a focus on the selection of electrospun nanofiber materials, incorporation of functional therapeutic factors, and structural design of nanofibers and nanofiber membranes. Moreover, the wide application of electrospun NFMs containing therapeutic factors in wound healing is classified based on their special functions, such as hemostasis, antibacterial and cell proliferation promotion. This article also highlights the structural design of electrospun nanofibers in wound dressing, including porous structures, bead structures, core-shell structures, ordered structures, and multilayer nanofiber membrane structures. Finally, their advantages and limitations are discussed, and the challenges faced in their application for wound dressings are analyzed to promote further research in this field.
Collapse
Affiliation(s)
- Jiahao Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Re-Duction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Matharu RK, Ahmed J, Seo J, Karu K, Golshan MA, Edirisinghe M, Ciric L. Antibacterial Properties of Honey Nanocomposite Fibrous Meshes. Polymers (Basel) 2022; 14:polym14235155. [PMID: 36501550 PMCID: PMC9740266 DOI: 10.3390/polym14235155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Natural substances are increasingly being developed for use in health-related applications. Honey has attracted significant interest, not only for its physical and chemical properties, but also for its antibacterial activity. For the first time, suspensions of Black Forest honeydew honey and manuka honey UMF 20+ were examined for their antibacterial properties against Escherichia coli and Staphylococcus epidermidis using flow cytometry. The inhibitory effect of honey on bacterial growth was evident at concentrations of 10, 20 and 30 v/v%. The minimum inhibitory effects of both honey types against each bacterium were also investigated and reported. Electrospray ionisation (ESI) mass spectrometry was performed on both Black Forest honeydew honey and manuka honey UMF 20+. Manuka honey had a gluconic concentration of 2519 mg/kg, whilst Black Forest honeydew honey had a concentration of 2195 mg/kg. Manuka honey demonstrated the strongest potency when compared to Black Forest honeydew honey; therefore, it was incorporated into nanofiber scaffolds using pressurised gyration and 10, 20 and 30 v/v% manuka honey-polycaprolactone solutions. Composite fibres were analysed for their morphology and topography using scanning electron microscopy. The average fibre diameter of the manuka honey-polycaprolactone scaffolds was found to range from 437 to 815 nm. The antibacterial activity of the 30 v/v% scaffolds was studied using S. epidermidis. Strong antibacterial activity was observed with a bacterial reduction rate of over 90%. The results show that honey composite fibres formed using pressurised gyration can be considered a natural therapeutic agent for various medicinal purposes, including wound-healing applications.
Collapse
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
- Correspondence:
| | - Jubair Ahmed
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Jegak Seo
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Kersti Karu
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Mitra Ashrafi Golshan
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Lena Ciric
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
3
|
Antimicrobial Fibrous Bandage-like Scaffolds Using Clove Bud Oil. J Funct Biomater 2022; 13:jfb13030136. [PMID: 36135571 PMCID: PMC9501437 DOI: 10.3390/jfb13030136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Wounds are characterised by an anatomical disruption of the skin; this leaves the body exposed to opportunistic pathogens which contribute to infections. Current wound healing bandages do little to protect against this and when they do, they can often utilise harmful additions. Historically, plant-based constituents have been extensively used for wound treatment and are proven beneficial in such environments. In this work, the essential oil of clove bud (Syzygium aromaticum) was incorporated in a polycaprolactone (PCL) solution, and 44.4% (v/v) oil-containing fibres were produced through pressurised gyration. The antimicrobial activity of these bandage-like fibres was analysed using in vitro disk diffusion and the physical fibre properties were also assessed. The work showed that advantageous fibre morphologies were achieved with diameters of 10.90 ± 4.99 μm. The clove bud oil fibres demonstrated good antimicrobial properties. They exhibited inhibition zone diameters of 30, 18, 11, and 20 mm against microbial colonies of C. albicans, E. coli, S. aureus, and S. pyogenes, respectively. These microbial species are commonly problematic in environments where the skin barrier is compromised. The outcomes of this study are thus very promising and suggest that clove bud oil is highly suitable to be applied as a natural sustainable alternative to modern medicine.
Collapse
|
4
|
Antimicrobial Biomaterial on Sutures, Bandages and Face Masks with Potential for Infection Control. Polymers (Basel) 2022; 14:polym14101932. [PMID: 35631817 PMCID: PMC9143446 DOI: 10.3390/polym14101932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/10/2022] Open
Abstract
Antimicrobial resistance (AMR) is a challenge for the survival of the human race. The steady rise of resistant microorganisms against the common antimicrobials results in increased morbidity and mortality rates. Iodine and a plethora of plant secondary metabolites inhibit microbial proliferation. Antiseptic iodophors and many phytochemicals are unaffected by AMR. Surgical site and wound infections can be prevented or treated by utilizing such compounds on sutures and bandages. Coating surgical face masks with these antimicrobials can reduce microbial infections and attenuate their burden on the environment by re-use. The facile combination of Aloe Vera Barbadensis Miller (AV), Trans-cinnamic acid (TCA) and Iodine (I2) encapsulated in a polyvinylpyrrolidone (PVP) matrix seems a promising alternative to common antimicrobials. The AV-PVP-TCA-I2 formulation was impregnated into sterile discs, medical gauze bandages, surgical sutures and face masks. Morphology, purity and composition were confirmed by several analytical methods. Antimicrobial activity of AV-PVP-TCA-I2 was investigated by disc diffusion methods against ten microbial strains in comparison to gentamycin and nystatin. AV-PVP-TCA-I2 showed excellent antifungal and strong to intermediate antibacterial activities against most of the selected pathogens, especially in bandages and face masks. The title compound has potential use for prevention or treatment of surgical site and wound infections. Coating disposable face masks with AV-PVP-TCA-I2 may be a sustainable solution for their re-use and waste management.
Collapse
|
5
|
The Effect of Solvent and Pressure on Polycaprolactone Solutions for Particle and Fibre Formation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Cinnamon and its possible impact on COVID-19: The viewpoint of traditional and conventional medicine. Biomed Pharmacother 2021; 143:112221. [PMID: 34563952 PMCID: PMC8452493 DOI: 10.1016/j.biopha.2021.112221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
The COVID-19 global epidemic caused by coronavirus has affected the health and other aspects of life for more than one year. Despite the current pharmacotherapies, there is still no specific treatment, and studies are in progress to find a proper therapy with high efficacy and low side effects. In this way, Traditional Persian Medicine (TPM), due to its holistic view, can provide recommendations for the prevention and treatment of new diseases such as COVID-19. The muco-obstruction of the airway, which occurs in SARS-CoV-2, has similar features in TPM textbooks that can lead us to new treatment approaches. Based on TPM and pharmacological studies, Cinnamomum verum (Darchini)'s potential effective functions can contribute to SARS-CoV-2 infection treatment and has been known to be effective in corona disease in Public beliefs. From the viewpoint of TPM theories, Cinnamon can be effective in SARS-CoV-2 improvement and treatment through its anti-obstructive, diuretic, tonic and antidote effects. In addition, there is pharmacological evidence on anti-viral, anti-inflammatory, antioxidant, organ-o-protective and anti-depression effects of Cinnamon that are in line with the therapeutic functions mentioned in TPM.Overall, Cinnamon and its ingredients can be recommended for SARS-CoV2 management due to multi-targeting therapies. This review provides basic information for future studies on this drug's effectiveness in preventing and treating COVID-19 and similar diseases.
Collapse
|
7
|
Mehta P, Rasekh M, Patel M, Onaiwu E, Nazari K, Kucuk I, Wilson PB, Arshad MS, Ahmad Z, Chang MW. Recent applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics. Adv Drug Deliv Rev 2021; 175:113823. [PMID: 34089777 DOI: 10.1016/j.addr.2021.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Advancements in technology and material development in recent years has led to significant breakthroughs in the remit of fiber engineering. Conventional methods such as wet spinning, melt spinning, phase separation and template synthesis have been reported to develop fibrous structures for an array of applications. However, these methods have limitations with respect to processing conditions (e.g. high processing temperatures, shear stresses) and production (e.g. non-continuous fibers). The materials that can be processed using these methods are also limited, deterring their use in practical applications. Producing fibrous structures on a nanometer scale, in sync with the advancements in nanotechnology is another challenge met by these conventional methods. In this review we aim to present a brief overview of conventional methods of fiber fabrication and focus on the emerging fiber engineering techniques namely electrospinning, centrifugal spinning and pressurised gyration. This review will discuss the fundamental principles and factors governing each fabrication method and converge on the applications of the resulting spun fibers; specifically, in the drug delivery remit and in regenerative medicine.
Collapse
Affiliation(s)
- Prina Mehta
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, Middlesex UB8 3PH, UK
| | - Mohammed Patel
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ekhoerose Onaiwu
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - I Kucuk
- Institute of Nanotechnology, Gebze Technical University, 41400 Gebze, Turkey
| | - Philippe B Wilson
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Southwell NG25 0QF, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey, Northern Ireland BT37 0QB, UK.
| |
Collapse
|
8
|
Wahid F, Zhao XJ, Zhao XQ, Ma XF, Xue N, Liu XZ, Wang FP, Jia SR, Zhong C. Fabrication of Bacterial Cellulose-Based Dressings for Promoting Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32716-32728. [PMID: 34227797 DOI: 10.1021/acsami.1c06986] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial cellulose (BC) holds several unique properties such as high water retention capability, flexibility, biocompatibility, and high absorption capacity. All these features make it a potential material for wound healing applications. However, it lacks antibacterial properties, which hampers its applications for infectious wound healings. This study reported BC-based dressings containing ε-polylysine (ε-PL), cross-linked by a biocompatible and mussel-inspired polydopamine (PDA) for promoting infectious wound healing. BC membranes were coated with PDA by a simple self-polymerization process, followed by treating with different contents of ε-PL. The resulted membranes showed strong antibacterial properties against tested bacteria by both in vitro and in vivo evaluations. The membranes also exhibited hemocompatibility and cytocompatibility by in vitro investigations. Moreover, the functionalized membranes promoted infected wound healing using Sprague-Dawley rats as a model animal. A complete wound healing was observed in the group treated with functionalized membranes, while wounds were still open for control and pure BC groups in the same duration. Histological investigations indicated that the thickness of newborn skin was greater and smoother in the groups treated with modified membranes in comparison to neat BC or control groups. These results revealed that the functionalized membranes have great potential as a dressing material for infected wounds in future clinical applications.
Collapse
Affiliation(s)
- Fazli Wahid
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300222, P.R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300222, P.R. China
| | - Xiang-Jun Zhao
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300222, P.R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300222, P.R. China
| | - Xue-Qing Zhao
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300222, P.R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300222, P.R. China
| | - Xiao-Fang Ma
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300222, PR China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, The Fifth Central Hospital of Tianjin, Tianjin 300222, PR China
| | - Na Xue
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300222, PR China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, The Fifth Central Hospital of Tianjin, Tianjin 300222, PR China
| | - Xiao-Zhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300222, PR China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, The Fifth Central Hospital of Tianjin, Tianjin 300222, PR China
| | - Feng-Ping Wang
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300222, P.R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300222, P.R. China
| | - Shi-Ru Jia
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300222, P.R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300222, P.R. China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science & Technology, Tianjin 300222, P.R. China
- Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300222, P.R. China
| |
Collapse
|
9
|
6-deoxy-aminocellulose derivatives embedded soft gelatin methacryloyl (GelMA) hydrogels for improved wound healing applications: In vitro and in vivo studies. Int J Biol Macromol 2021; 185:419-433. [PMID: 34166695 DOI: 10.1016/j.ijbiomac.2021.06.112] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
Hydrogels were prepared by mixing protein and carbohydrate-based biopolymers to increase the mechanical properties and efficient cell adhesion and proliferation for wound healing applications. Microcrystalline cellulose (MCC) and its 6-deoxy-aminocellulose derivatives (6-deoxy-6-hydrazide Cellulose (Cell-Hyd), 6-deoxy-6-diethylamide Cellulose (Cell-DEA), and 6-deoxy-6-diethyltriamide Cellulose (Cell-DETA)) were embedded in methacrylated gelatin (GelMA). GelMA and 6-deoxy-aminocellulose derivatives were synthesized and characterized by spectroscopic techniques. MCC and cellulose derivatives embedded GelMA gels were characterized by FTIR, SEM and Tensile mechanical testing. SEM images revealed that, porosity of the amine MCC incorporated GelMA was decreased compared to GelMA and MCC incorporated GelMA. Tensile strain of GelMA 61.30% at break was increased to 64.3% in case of GelMA/Cell-HYD. In vitro cytocompatibility and cell proliferation using NIH-3T3 cell lines showed cell density trend on scaffold as GelMA/Cell-DETA>GelMA/Cell-Hyd > GelMA. Scratch assay for wound healing revealed that GelMA/Cell-DETA showed complete wound closure, while GelMA/Cell-Hyd and GelMA exhibited 85.7%, and 66.1% wound healing, respectively in 8 h. In vivo tests on rats revealed that GelMA/Cell-DETA exhibited 98% wound closure on day 9, whereas GelMA/Cell-Hyd exhibited 97.7% and GelMA 66.1% wound healing on day 14. Our findings revealed that GelMA embedded amine MCC derivatives hydrogels can be applied for achieving accelerated wound healing.
Collapse
|
10
|
Ahmed J, Gultekinoglu M, Bayram C, Kart D, Ulubayram K, Edirisinghe M. Alleviating the toxicity concerns of antibacterial cinnamon-polycaprolactone biomaterials for healthcare-related biomedical applications. MedComm (Beijing) 2021; 2:236-246. [PMID: 34766144 PMCID: PMC8491196 DOI: 10.1002/mco2.71] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 01/06/2023] Open
Abstract
Fibrous constructs with incorporated cinnamon-extract have previously been shown to have potent antifungal abilities. The question remains to whether these constructs are useful in the prevention of bacterial infections in fiber form and what the antimicrobial effects means in terms of toxicity to the native physiological cells. In this work, cinnamon extract containing poly (ε-caprolactone) (PCL) fibers were successfully manufactured by pressurized gyration and had an average size of ∼2 μm. Cinnamon extract containing PCL fibers were tested against Escherichia coli, Staphylococcus aureus, Methicillin resistant staphylococcus aureus, and Enterococcus faecalis bacterial species to assess their antibacterial capacity; it was found that these fibers were able to reduce viable cell numbers of the bacterial species up to two orders of magnitude lower than the control group. The results of the antibacterial tests were assessed by scanning electron microscopy (SEM). The constructs were also tested under indirect MTT tests where they showed little to no toxicity, similar to the control groups. Additionally, cell viability fluorescent imaging displayed no significant toxicity issues with the fibers, even at their highest tested concentration. Here we present a viable method for the production the non-toxic and naturally abundant cinnamon extracted fibers for numerous biomedical applications.
Collapse
Affiliation(s)
- Jubair Ahmed
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical SciencesFaculty of PharmacyHacettepe UniversityAnkaraTurkey
| | - Cem Bayram
- Department of Nanotechnology & Nanomedicine DivisionInstitute for Graduate Studies in Science & Engineering Hacettepe UniversityAnkaraTurkey
| | - Didem Kart
- Department of Pharmaceutical MicrobiologyFaculty of PharmacyHacettepe UniversityAnkaraTurkey
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical SciencesFaculty of PharmacyHacettepe UniversityAnkaraTurkey
- Department of Nanotechnology & Nanomedicine DivisionInstitute for Graduate Studies in Science & Engineering Hacettepe UniversityAnkaraTurkey
| | - Mohan Edirisinghe
- Department of Mechanical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
11
|
Ahmed J, Tabish TA, Zhang S, Edirisinghe M. Porous Graphene Composite Polymer Fibres. Polymers (Basel) 2020; 13:E76. [PMID: 33375518 PMCID: PMC7795706 DOI: 10.3390/polym13010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/13/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Since the isolation of graphene, there have been boundless pursuits to exploit the many superior properties that this material possesses; nearing the two-decade mark, progress has been made, but more is yet to be done for it to be truly exploited at a commercial scale. Porous graphene (PG) has recently been explored as a promising membrane material for polymer composite fibres. However, controlling the incorporation of high surface area PG into polymer fibres remain largely unexplored. Additionally, most polymer-graphene composites suffer from low production rates and yields. In this paper, graphene-loaded microfibres, which can be produced at a very high rate and yield have been formed with a carrier polymer, polycaprolactone. For the first time, PG has been incorporated into polymer matrices produced by a high-output manufacturing process and analysed via multiple techniques; scanning electron microscopy (SEM), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Raman spectra showed that single layer graphene structures were achieved, evidence for which was also backed up by the other techniques. Fibres with an average diameter ranging from 3-8 μm were produced with 3-5 wt% PG. Here, we show how PG can be easily processed into polymeric fibres, allowing for widespread use in electrical and ultrafiltration systems.
Collapse
Affiliation(s)
- Jubair Ahmed
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK;
| | - Tanveer A. Tabish
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
- UCL Cancer Institute, University College London, London WC1E 6DD, UK;
| | - Shaowei Zhang
- UCL Cancer Institute, University College London, London WC1E 6DD, UK;
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK;
| |
Collapse
|
12
|
Shafique M, Sohail M, Minhas MU, Khaliq T, Kousar M, Khan S, Hussain Z, Mahmood A, Abbasi M, Aziz HC, Shah SA. Bio-functional hydrogel membranes loaded with chitosan nanoparticles for accelerated wound healing. Int J Biol Macromol 2020; 170:207-221. [PMID: 33359612 DOI: 10.1016/j.ijbiomac.2020.12.157] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Wounds are often recalcitrant to traditional wound dressings and a bioactive and biodegradable wound dressing using hydrogel membranes can be a promising approach for wound healing applications. The present research aimed to design hydrogel membranes based on hyaluronic acid, pullulan and polyvinyl alcohol and loaded with chitosan based cefepime nanoparticles for potential use in cutaneous wound healing. The developed membranes were evaluated using dynamic light scattering, proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The results indicated the novel crosslinking and thermal stability of the fabricated hydrogel membrane. The in vitro analysis demonstrates that the developed membrane has water vapors transmission rate (WVTR) between 2000 and 2500 g/m2/day and oxygen permeability between 7 and 14 mg/L, which lies in the range of an ideal dressing. The swelling capacity and surface porosity to liberate encapsulated drug (cefepime) in a sustained manner and 88% of drug release was observed. The cefepime loaded hydrogel membrane demonstrated a higher zone of inhibition against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli and excisional rat model exhibit expeditious recovery rate. The developed hydrogel membrane loaded with cefepime nanoparticles is a promising approach for topical application and has greater potential for an accelerated wound healing process.
Collapse
Affiliation(s)
- Maryam Shafique
- Department of Pharmacy, COMSATS University, Abbottabad Campus, Islamabad 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Abbottabad Campus, Islamabad 22010, Pakistan.
| | | | - Touba Khaliq
- Department of Pharmacy, COMSATS University, Abbottabad Campus, Islamabad 22010, Pakistan
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Abbottabad Campus, Islamabad 22010, Pakistan
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan; Discipline of Pharmaceutical Sciences, School of Health Sciences, UKZN, Durban, South Africa
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences (SIMHR), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mudassir Abbasi
- Department of Pharmacy, COMSATS University, Abbottabad Campus, Islamabad 22010, Pakistan
| | - Heather C Aziz
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Abbottabad Campus, Islamabad 22010, Pakistan
| |
Collapse
|
13
|
Abbasi AR, Sohail M, Minhas MU, Khaliq T, Kousar M, Khan S, Hussain Z, Munir A. Bioinspired sodium alginate based thermosensitive hydrogel membranes for accelerated wound healing. Int J Biol Macromol 2020; 155:751-765. [DOI: 10.1016/j.ijbiomac.2020.03.248] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
|
14
|
The Extracts of Cinnamon and Clove as Potential Biofungicides against Strawberry Grey Mould. PLANTS 2020; 9:plants9050613. [PMID: 32403354 PMCID: PMC7284722 DOI: 10.3390/plants9050613] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022]
Abstract
Biofungicides from plants are a possibility for the biocontrol of fungal diseases, as chemical products may be harmful to the environment and humans. Strawberry is one of the many plants infected by grey mould (Botrytis cinerea), and innovative methods of biocontrol against B. cinerea are under investigation. Clove (Syzygium aromaticum L.) and cinnamon (Cinnamomum cassia L.) accumulate natural compounds, such as eugenol and cinnamaldehyde, which provide antimicrobial and antifungal properties; thus, extracts of these plants could be possibly used as biofungicides. During this study, the inhibition of B. cinerea by clove and cinnamon extracts was evaluated in vitro on Petri plates and detached strawberry leaves; additionally, the chemical composition of volatiles was identified. Clove extract consisted of 52.88% eugenol, and cinnamon consisted of 74.67% cinnamaldehyde. The efficacy of the extracts on detached strawberry leaves showed that 12 mL L−1 concentration of clove extract was effective in suppressing the grey mould infection. Clove and cinnamon extracts showed an equal ability to inhibit B. cinerea on Petri plates. However, the results of the detached strawberry leaves assay showed that clove extract was more effective as a biocontrol product. Overall, clove extract expressed a high potential for application in biofungicides formulations.
Collapse
|
15
|
Horakova J, Klicova M, Erben J, Klapstova A, Novotny V, Behalek L, Chvojka J. Impact of Various Sterilization and Disinfection Techniques on Electrospun Poly-ε-caprolactone. ACS OMEGA 2020; 5:8885-8892. [PMID: 32337451 PMCID: PMC7178787 DOI: 10.1021/acsomega.0c00503] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/31/2020] [Indexed: 05/20/2023]
Abstract
Electrospun materials made from biodegradable polycaprolactone are used widely in various tissue engineering and regenerative medicine applications because of their morphological similarity to the extracellular matrix. However, the main prerequisite for the use of such materials in clinical practice consists of the selection of the appropriate sterilization technique. This study is devoted to the study of the impact of traditional sterilization and disinfection methods on a nanofibrous polycaprolactone layer constructed by means of the needleless electrospinning technique. It was determined that hydrogen peroxide plasma treatment led to the loss of fibrous morphology and the creation of a foil. However, certain sterilization (ethylene oxide, gamma irradiation, and peracetic acid) and disinfection techniques (ethanol and UV irradiation) were found not to lead to a change in morphology; thus, the study investigates their impact on thermal properties, molecular weight, and interactions with a fibroblast cell line. It was determined that the surface properties that guide cell adhesion and proliferation were affected more than the bulk properties. The highest proliferation rate of fibroblasts seeded on nanofibrous scaffolds was observed with respect to gamma-irradiated polycaprolactone, while the lowest proliferation rate was observed following ethylene oxide sterilization.
Collapse
Affiliation(s)
- Jana Horakova
- Department of Nonwovens
and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, 460 01 Liberec, Czech Republic
| | - Marketa Klicova
- Department of Nonwovens
and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, 460 01 Liberec, Czech Republic
| | - Jakub Erben
- Department of Nonwovens
and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, 460 01 Liberec, Czech Republic
| | - Andrea Klapstova
- Department of Nonwovens
and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, 460 01 Liberec, Czech Republic
| | - Vit Novotny
- Department of Nanomaterials in Natural
Sciences, Institute of Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 1402/2, 460 01 Liberec, Czech Republic
| | - Lubos Behalek
- Department of Engineering Technology, Faculty
of Mechanical Engineering, Technical University
of Liberec, Studentska 1402/2, 460 01 Liberec, Czech Republic
| | - Jiri Chvojka
- Department of Nonwovens
and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 1402/2, 460 01 Liberec, Czech Republic
| |
Collapse
|
16
|
Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnol Adv 2020; 41:107549. [PMID: 32302653 DOI: 10.1016/j.biotechadv.2020.107549] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/02/2023]
Abstract
Bacterial cellulose (BC) is cellulose produced by a few limited species of bacteria in given conditions. BC has many remarkable properties such as its attractive mechanical properties, water uptake ability and biocompatibility which makes it a very desirable material to be used for wound healing. Inherently due to these important properties, the material is very resistant to easy processing and thus difficult to produce into useful entities. Additionally, being rate limited by the dependency on bacterial production, high yield is difficult to obtain and thus secondary material processing is sought after. In this review, BC is explained in terms of synthesis, structure and properties. These beneficial properties are directly related to the material's great potential in wound healing where it has also been trialled commercially but ultimately failed due to processing issues. However, more recently there has been increased frequency in scientific work relating to BC processing into hybrid polymeric fibres using common laboratory fibre forming techniques such as electrospinning and pressurised gyration. This paper summarises current progress in BC fibre manufacturing, its downfalls and also gives a future perspective on how the landscape should change to allow BC to be utilised in wound care in the current environment.
Collapse
|
17
|
Baniasadi M, Baniasadi H, Azimi R, Khosravi Dehaghi N. Fabrication and characterization of a wound dressing composed of polyvinyl alcohol/nanochitosan/
Artemisia ciniformis
extract: An
RSM
study. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mona Baniasadi
- Department of Petroleum and Chemical Engineering, Science and Research BranchIslamic Azad University Tehran Iran
| | - Hossein Baniasadi
- Department of Petroleum and Chemical Engineering, Science and Research BranchIslamic Azad University Tehran Iran
| | - Razieh Azimi
- Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO) Tehran Iran
| | - Nafiseh Khosravi Dehaghi
- Department of Pharmacognosy, School of PharmacyAlborz University of Medical Sciences Karaj Iran
- Evidence‐Based Phytotherapy and Complementary Medicine Research CenterAlborz University of Medical Sciences Karaj Iran
| |
Collapse
|
18
|
|
19
|
Aydogdu MO, Altun E, Ahmed J, Gunduz O, Edirisinghe M. Fiber Forming Capability of Binary and Ternary Compositions in the Polymer System: Bacterial Cellulose-Polycaprolactone-Polylactic Acid. Polymers (Basel) 2019; 11:E1148. [PMID: 31277438 PMCID: PMC6681128 DOI: 10.3390/polym11071148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Bacterial Cellulose (BC) has over recent decades shown great versatility in wound healing dressings, but is difficult to spin fibers with at high concentrations. An investigation into the preparation of bandage-like fibrous meshes is carried out to determine the optimal blend of polycaprolactone (PCL) and polylactic acid (PLA) as a suitable carrier for BC. Using a simple centrifugal spinning setup, polymer blends of PCL, PLA and BC are investigated as a ternary system to determine the most suitable composition with a focus on achieving maximal BC concentration. It is found that BC content in the fibers above 10 wt % reduced product yield. By creating blends of PLA-PCL fibers, we can create a more suitable system in terms of yield and mechanical properties. The fibrous samples are examined for yield, fiber morphology using scanning electron microscopy, mechanical properties using tensile testing and chemical characteristics using Fourier-transform infrared spectroscopy. A fibrous scaffold with > 30 wt % BC was produced with enhanced mechanical properties owing to the blending of PLA and PCL.
Collapse
Affiliation(s)
- Mehmet Onur Aydogdu
- Centre for Nanotechnology & Biomaterials Research, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Goztepe Campus, 34722 Istanbul, Turkey
| | - Esra Altun
- Centre for Nanotechnology & Biomaterials Research, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Goztepe Campus, 34722 Istanbul, Turkey
| | - Jubair Ahmed
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Oguzhan Gunduz
- Centre for Nanotechnology & Biomaterials Research, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Goztepe Campus, 34722 Istanbul, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Goztepe Campus, 34722 Istanbul, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.
| |
Collapse
|
20
|
Ahmed J, Altun E, Aydogdu MO, Gunduz O, Kerai L, Ren G, Edirisinghe M. Anti-fungal bandages containing cinnamon extract. Int Wound J 2019; 16:730-736. [PMID: 30767437 PMCID: PMC6849878 DOI: 10.1111/iwj.13090] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 02/04/2023] Open
Abstract
Cinnamon‐containing polycaprolactone (PCL) bandages were produced by pressurised gyration and their anti‐fungal activities against Candida albicans were investigated. It was found that by preparing and spinning polymer solutions of cinnamon with PCL, fibres capable of inhibiting fungal growth could be produced, as observed in disk diffusion tests for anti‐fungal susceptibility. Fascinatingly, compared with raw cinnamon powder, the novel cinnamon‐loaded fibres had outstanding long‐term activity. The results presented here are very promising and may indeed accelerate a new era of using completely natural materials in biomedical applications, especially in wound healing.
Collapse
Affiliation(s)
- Jubair Ahmed
- Department of Mechanical Engineering, University College London, London, UK
| | - Esra Altun
- Department of Metallurgical and Materials Engineering, University of Marmara, Istanbul, Turkey
| | - Mehmet O Aydogdu
- Department of Metallurgical and Materials Engineering, University of Marmara, Istanbul, Turkey
| | - Oguzhan Gunduz
- Department of Metallurgical and Materials Engineering, University of Marmara, Istanbul, Turkey
| | - Laxmi Kerai
- School of Life and Medical Sciences, University of Hertfordshire, Hertfordshire, UK
| | - Guogang Ren
- School of Engineering and Technology, University of Hertfordshire, Hertfordshire, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|