1
|
Collet JM, Nidelet S, Fellous S. Genetic independence between traits separated by metamorphosis is widespread but varies with biological function. Proc Biol Sci 2023; 290:20231784. [PMID: 37935368 PMCID: PMC10645066 DOI: 10.1098/rspb.2023.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Why is metamorphosis so pervasive? Does it facilitate the independent (micro)evolution of quantitative traits in distinct life stages, similarly to how it enables some limbs and organs to develop at specific life stages? We tested this hypothesis by measuring the expression of 6400 genes in 41 Drosophila melanogaster inbred lines at larval and adult stages. Only 30% of the genes showed significant genetic correlations between larval and adult expression. By contrast, 46% of the traits showed some level of genetic independence between stages. Gene ontology terms enrichment revealed that across stages correlated traits were often involved in proteins synthesis, insecticide resistance and innate immunity, while a vast number of genes expression traits associated with energy metabolism were independent between life stages. We compared our results to a similar case: genetic constraints between males and females in gonochoric species (i.e. sexual antagonism). We expected selection for the separation between males and females to be higher than between juvenile and adult functions, as gonochorism is a more common strategy in the animal kingdom than metamorphosis. Surprisingly, we found that inter-stage constraints were lower than inter-sexual genetic constraints. Overall, our results show that metamorphosis enables a large part of the transcriptome to evolve independently at different life stages.
Collapse
Affiliation(s)
- Julie M. Collet
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Sabine Nidelet
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Simon Fellous
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
2
|
Díaz AV, Walker M, Webster JP. Reaching the World Health Organization elimination targets for schistosomiasis: the importance of a One Health perspective. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220274. [PMID: 37598697 PMCID: PMC10440173 DOI: 10.1098/rstb.2022.0274] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
The past three years has seen the launch of a new World Health Organization (WHO) neglected tropical diseases (NTDs) roadmap, together with revised control and elimination guidelines. Across all, there is now a clear emphasis on the need to incorporate a One Health approach, recognizing the critical links between human and animal health and the environment. Schistosomiasis, caused by Schistosoma spp. trematodes, is a NTD of global medical and veterinary importance, with over 220 million people and untold millions of livestock currently infected. Its burden remains extremely high in certain regions, particularly within sub-Saharan Africa, despite over two decades of mass preventive chemotherapy (mass drug administration), predominantly to school-aged children. In Africa, in contrast to Asia, any zoonotic component of schistosomiasis transmission and its implications for disease control has, until recently, been largely ignored. Here, we review recent epidemiological, clinical, molecular, and modelling work across both Asia and Africa. We outline the evolutionary history and transmission dynamics of Schistosoma species, and emphasize the emerging risk raised by both wildlife reservoirs and viable hybridization between human and animal schistosomes. To achieve the 2030 WHO roadmap elimination targets, a truly multi-disciplinary One Health perspective must be implemented. This article is part of the theme issue 'Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.
Collapse
Affiliation(s)
- Adriana V. Díaz
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Martin Walker
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| | - Joanne P. Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| |
Collapse
|
3
|
Benesh DP, Chubb JC, Parker GA. Adaptive division of growth and development between hosts in helminths with two-host life cycles. Evolution 2022; 76:1971-1985. [PMID: 35860949 DOI: 10.1111/evo.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 01/22/2023]
Abstract
Parasitic worms (helminths) with complex life cycles divide growth and development between successive hosts. Using data from 597 species of acanthocephalans, cestodes, and nematodes with two-host life cycles, we found that helminths with larger intermediate hosts were more likely to infect larger, endothermic definitive hosts, although some evolutionary shifts in definitive host mass occurred without changes in intermediate host mass. Life-history theory predicts parasites to shift growth to hosts in which they can grow rapidly and/or safely. Accordingly, helminth species grew relatively less as larvae and more as adults if they infected smaller intermediate hosts and/or larger, endothermic definitive hosts. Growing larger than expected in one host, relative to host mass/endothermy, was not associated with growing less in the other host, implying a lack of cross-host trade-offs. Rather, some helminth orders had both large larvae and large adults. Within these taxa, however, size at maturity in the definitive host was unaffected by changes to larval growth, as predicted by optimality models. Parasite life-history strategies were mostly (though not entirely) consistent with theoretical expectations, suggesting that helminths adaptively divide growth and development between the multiple hosts in their complex life cycles.
Collapse
Affiliation(s)
- Daniel P Benesh
- Department of Molecular Parasitology, Humboldt University, 10115, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Berlin, Germany
| | - James C Chubb
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Geoff A Parker
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| |
Collapse
|
4
|
Le Clec’h W, Chevalier FD, McDew-White M, Menon V, Arya GA, Anderson TJ. Genetic architecture of transmission stage production and virulence in schistosome parasites. Virulence 2021; 12:1508-1526. [PMID: 34167443 PMCID: PMC8237990 DOI: 10.1080/21505594.2021.1932183] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022] Open
Abstract
Both theory and experimental data from pathogens suggest that the production of transmission stages should be strongly associated with virulence, but the genetic bases of parasite transmission/virulence traits are poorly understood. The blood fluke Schistosoma mansoni shows extensive variation in numbers of cercariae larvae shed and in their virulence to infected snail hosts, consistent with expected trade-offs between parasite transmission and virulence. We crossed schistosomes from two populations that differ 8-fold in cercarial shedding and in their virulence to Biomphalaria glabrata snail hosts, and determined four-week cercarial shedding profiles in F0 parents, F1 parents and 376 F2 progeny from two independent crosses in inbred snails. Sequencing and linkage analysis revealed that cercarial production is polygenic and controlled by five QTLs (i.e. Quantitative Trait Loci). These QTLs act additively, explaining 28.56% of the phenotypic variation. These results demonstrate that the genetic architecture of key traits relevant to schistosome ecology can be dissected using classical linkage mapping approaches.
Collapse
Affiliation(s)
- Winka Le Clec’h
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | | | | - Vinay Menon
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Grace-Ann Arya
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | |
Collapse
|
5
|
Mawa PA, Kincaid-Smith J, Tukahebwa EM, Webster JP, Wilson S. Schistosomiasis Morbidity Hotspots: Roles of the Human Host, the Parasite and Their Interface in the Development of Severe Morbidity. Front Immunol 2021; 12:635869. [PMID: 33790908 PMCID: PMC8005546 DOI: 10.3389/fimmu.2021.635869] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Schistosomiasis is the second most important human parasitic disease in terms of socioeconomic impact, causing great morbidity and mortality, predominantly across the African continent. For intestinal schistosomiasis, severe morbidity manifests as periportal fibrosis (PPF) in which large tracts of macro-fibrosis of the liver, visible by ultrasound, can occlude the main portal vein leading to portal hypertension (PHT), sequelae such as ascites and collateral vasculature, and ultimately fatalities. For urogenital schistosomiasis, severe morbidity manifests as pathology throughout the urinary system and genitals, and is a definitive cause of squamous cell bladder carcinoma. Preventative chemotherapy (PC) programmes, delivered through mass drug administration (MDA) of praziquantel (PZQ), have been at the forefront of schistosomiasis control programmes in sub-Saharan Africa since their commencement in Uganda in 2003. However, despite many successes, 'biological hotspots' (as distinct from 'operational hotspots') of both persistent high transmission and morbidity remain. In some areas, this failure to gain control of schistosomiasis has devastating consequences, with not only persistently high infection intensities, but both "subtle" and severe morbidity remaining prevalent. These hotspots highlight the requirement to revisit research into severe morbidity and its mechanisms, a topic that has been out of favor during times of PC implementation. Indeed, the focality and spatially-structured epidemiology of schistosomiasis, its transmission persistence and the morbidity induced, has long suggested that gene-environmental-interactions playing out at the host-parasite interface are crucial. Here we review evidence of potential unique parasite factors, host factors, and their gene-environmental interactions in terms of explaining differential morbidity profiles in the human host. We then take the situation of schistosomiasis mansoni within the Albertine region of Uganda as a case study in terms of elucidating the factors behind the severe morbidity observed and the avenues and directions for future research currently underway within a new research and clinical trial programme (FibroScHot).
Collapse
Affiliation(s)
- Patrice A. Mawa
- Immunomodulation and Vaccines Programme, Medical Research Council-Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julien Kincaid-Smith
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | | | - Joanne P. Webster
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Herts, United Kingdom
| | - Shona Wilson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Collet J, Fellous S. Do traits separated by metamorphosis evolve independently? Concepts and methods. Proc Biol Sci 2020; 286:20190445. [PMID: 30966980 DOI: 10.1098/rspb.2019.0445] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the ubiquity of complex life cycles, we know little of the evolutionary constraints exerted by metamorphosis. Here, we present pitfalls and methods to answer whether animals with a complex life cycle can independently adapt to the environments encountered at each life stage, with a specific focus on the microevolution of quantitative characters. We first discuss challenges associated with study traits and populations. We further emphasize the benefits of using a combination of approaches. We then develop how multivariate methods can limit several issues by revealing genetic patterns that are invisible when only considering trait-by-trait genetic correlations. Finally, we detail how Lande's work on sexual dimorphism can be applied in measuring G matrices across life stages. The methods and tools described here will contribute towards building a predictive framework for trait evolution across life stages.
Collapse
Affiliation(s)
- Julie Collet
- 1 CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier , Montpellier , France.,2 CEFE, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, EPHE, IRD , Montpellier , France
| | - Simon Fellous
- 1 CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier , Montpellier , France
| |
Collapse
|
7
|
Le Clecʼh W, Diaz R, Chevalier FD, McDew-White M, Anderson TJC. Striking differences in virulence, transmission and sporocyst growth dynamics between two schistosome populations. Parasit Vectors 2019; 12:485. [PMID: 31619284 PMCID: PMC6796389 DOI: 10.1186/s13071-019-3741-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/04/2019] [Indexed: 11/12/2022] Open
Abstract
Background Parasite traits associated with transmission success, such as the number of infective stages released from the host, are expected to be optimized by natural selection. However, in the trematode parasite Schistosoma mansoni, a key transmission trait, i.e. the number of cercariae larvae shed from infected Biomphalaria spp. snails, varies significantly within and between different parasite populations and selection experiments demonstrate that this variation has a strong genetic basis. In this study, we compared the transmission strategies of two laboratory schistosome population and their consequences for their snail host. Methods We infected inbred Biomphalaria glabrata snails using two S. mansoni parasite populations (SmBRE and SmLE), both isolated from Brazil and maintained in the laboratory for decades. We compared life history traits of these two parasite populations by quantifying sporocyst growth within infected snails (assayed using qPCR), output of cercaria larvae and impact on snail host physiological response (i.e. hemoglobin rate, laccase-like activity) and survival. Results We identified striking differences in virulence and transmission between the two studied parasite populations. SmBRE (low shedder (LS) parasite population) sheds very low numbers of cercariae and causes minimal impact on the snail physiological response (i.e. laccase-like activity, hemoglobin rate and snail survival). In contrast, SmLE (high shedder (HS) parasite population) sheds 8-fold more cercariae (mean ± SE cercariae per shedding: 284 ± 19 vs 2352 ± 113), causes high snail mortality and has strong impact on snail physiology. We found that HS sporocysts grow more rapidly inside the snail host, comprising up to 60% of cells within infected snails, compared to LS sporocysts, which comprised up to 31%. Cercarial production is strongly correlated to the number of S. mansoni sporocyst cells present within the snail host tissue, although the proportion of sporocyst cells alone does not explain the low cercarial shedding of SmBRE. Conclusions We demonstrated the existence of alternative transmission strategies in the S. mansoni parasite consistent with trade-offs between parasite transmission and host survival: a “boom-bust” strategy characterized by high virulence, high transmission and short duration infections and a “slow and steady” strategy with low virulence, low transmission but long duration of snail host infections.![]()
Collapse
Affiliation(s)
- Winka Le Clecʼh
- Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, Texas, 78245, USA.
| | - Robbie Diaz
- Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, Texas, 78245, USA
| | - Frédéric D Chevalier
- Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, Texas, 78245, USA
| | - Marina McDew-White
- Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, Texas, 78245, USA
| | - Timothy J C Anderson
- Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, Texas, 78245, USA
| |
Collapse
|
8
|
Anderson TJC, LoVerde PT, Le Clec'h W, Chevalier FD. Genetic Crosses and Linkage Mapping in Schistosome Parasites. Trends Parasitol 2018; 34:982-996. [PMID: 30150002 DOI: 10.1016/j.pt.2018.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Linkage mapping - utilizing experimental genetic crosses to examine cosegregation of phenotypic traits with genetic markers - is now 100 years old. Schistosome parasites are exquisitely well suited to linkage mapping approaches because genetic crosses can be conducted in the laboratory, thousands of progeny are produced, and elegant experimental work over the last 75 years has revealed heritable genetic variation in multiple biomedically important traits such as drug resistance, host specificity, and virulence. Application of this approach is timely because the improved genome assembly for Schistosoma mansoni and developing molecular toolkit for schistosomes increase our ability to link phenotype with genotype. We describe current progress and potential future directions of linkage mapping in schistosomes.
Collapse
Affiliation(s)
| | | | - Winka Le Clec'h
- Texas Biomedical Research Institute, San Antonio, Texas 78227, USA
| | | |
Collapse
|
9
|
Lamberton PHL, Faust CL, Webster JP. Praziquantel decreases fecundity in Schistosoma mansoni adult worms that survive treatment: evidence from a laboratory life-history trade-offs selection study. Infect Dis Poverty 2017. [PMID: 28622767 PMCID: PMC5472905 DOI: 10.1186/s40249-017-0324-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Mass drug administration of praziquantel is the World Health Organization’s endorsed control strategy for schistosomiasis. A decade of annual treatments across sub-Saharan Africa has resulted in significant reductions of infection prevalence and intensity levels, although ‘hotspots’ remain. Repeated drug treatments place strong selective pressures on parasites, which may affect life-history traits that impact transmission dynamics. Understanding drug treatment responses and the evolution of such traits can help inform on how to minimise the risk of drug resistance developing, maximise sustainable control programme success, and improve diagnostic protocols. Methods We performed a four-generation Schistosoma mansoni praziquantel selection experiment in mice and snails. We used three S. mansoni lines: a praziquantel-resistant isolate (R), a praziquantel-susceptible isolate (S), and a co-infected line (RS), under three treatment regimens: untreated, 25 mg/kg praziquantel, or 50 mg/kg praziquantel. Life-history traits, including parasite adult-worm establishment, survival, reproduction (fecundity), and associated morbidity, were recorded in mice across all four generations. Predictor variables were tested in a series of generalized linear mixed effects models to determine which factors had a significant influence on parasite life-history traits in definitive hosts under different selection regimes. Results Praziquantel pressure significantly reduced adult-worm burdens across all generations and isolates, including within R-lines. However, previous drug treatment resulted in an increase in adult-worm establishment with increasing generation from P1 to F3. The highest worm numbers were in the co-infected RS line. Praziquantel treatment decreased adult-worm burden, but had a larger negative impact on the mean daily number of miracidia, a proxy for fecundity, across all three parasite isolates. Conclusions Our predicted cost of resistance was not supported by the traits we measured within the murine host. We did not find evidence for negative adult worm density-dependent effects on fecundity. In contrast, of the adult worms that survived treatment, even low doses of praziquantel significantly reduced adult-worm fecundity. Such reductions in worm fecundity post treatment suggest that egg - based measures of drug efficacy, such as Kato-Katz, may overestimate the short-term effect of praziquantel on adult - worm burdens. These findings have important implications for S. mansoni transmission control, diagnostic protocols, and the potential for undetected selection toward drug resistance. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0324-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Poppy H L Lamberton
- Institute for Biodiversity, Animal Health, and Comparative Medicine & Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK. .,London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, W2 1PG, London, UK.
| | - Christina L Faust
- Institute for Biodiversity, Animal Health, and Comparative Medicine & Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Joanne P Webster
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, W2 1PG, London, UK.,Centre for Endemic, Emerging and Exotic Diseases, The Royal Veterinary College, University of London, London, AL9 7TA, UK
| |
Collapse
|
10
|
Webster JP, Borlase A, Rudge JW. Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the 'elimination' era. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160091. [PMID: 28289259 PMCID: PMC5352818 DOI: 10.1098/rstb.2016.0091] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
Multi-host infectious agents challenge our abilities to understand, predict and manage disease dynamics. Within this, many infectious agents are also able to use, simultaneously or sequentially, multiple modes of transmission. Furthermore, the relative importance of different host species and modes can itself be dynamic, with potential for switches and shifts in host range and/or transmission mode in response to changing selective pressures, such as those imposed by disease control interventions. The epidemiology of such multi-host, multi-mode infectious agents thereby can involve a multi-faceted community of definitive and intermediate/secondary hosts or vectors, often together with infectious stages in the environment, all of which may represent potential targets, as well as specific challenges, particularly where disease elimination is proposed. Here, we explore, focusing on examples from both human and animal pathogen systems, why and how we should aim to disentangle and quantify the relative importance of multi-host multi-mode infectious agent transmission dynamics under contrasting conditions, and ultimately, how this can be used to help achieve efficient and effective disease control.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Collapse
Affiliation(s)
- Joanne P Webster
- Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases, Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| | - Anna Borlase
- Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases, Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| | - James W Rudge
- Communicable Diseases Policy Research Group, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Faculty of Public Health, Mahidol University, 420/1 Rajavithi Road, Bangkok 10400, Thailand
| |
Collapse
|
11
|
Ten Brink H, de Roos AM. A Parent-Offspring Trade-Off Limits the Evolution of an Ontogenetic Niche Shift. Am Nat 2017; 190:45-60. [PMID: 28617644 DOI: 10.1086/692066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Many free-living animal species, including the majority of fish, insects, and amphibians, change their food and habitat during their life. Even though these ontogenetic changes in niche are common, it is not well understood which ecological conditions have favored the evolution of these shifts. Using an adaptive dynamics approach, we show that it is evolutionarily advantageous to switch to an alternative food source in the course of ontogeny when this results in a higher intake rate for the switching consumers. Individuals are, however, not able to specialize on this new food source when this negatively affects the performance early in life on the original food source. Selection on these early life stages is so strong that in species with a complete diet shift, evolution results in large juveniles and adults that are maladapted to the alternative food source while their offspring are specialized on the original food source when young. These outcomes suggest strong selection to decouple the different life stages, such that they can maximize their performance on different food sources independently from each other. Metamorphosis could be a way to decouple the different life stages and therefore evolve in species that feed on multiple food sources during their life.
Collapse
|
12
|
Abstract
SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.
Collapse
|
13
|
Urabe M. Experimental infection of the digeneans to some congeneric snail species radiated in a single water system: Relative importance of local evolution and phylogenetic constraint. Parasitol Int 2016; 65:221-6. [PMID: 26773868 DOI: 10.1016/j.parint.2016.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 12/17/2015] [Accepted: 01/06/2016] [Indexed: 11/25/2022]
Abstract
To determine the relative importance of local adaptation caused by host-parasite coevolution and resource tracking by the parasites, the susceptibility of the freshwater snail genus Semisulcospira to the digenean parasite genus Genarchopsis was investigated experimentally. Four snail species endemic to the Lake Biwa system in Japan and two non-endemic species were investigated. All but one species was also tested for local variation in susceptibility. Parasites were obtained from Takashima (mix population of Genarchopsis gigi and Genarchopsis chubuensis) and Nagahama (G. chubuensis). In endemic Semisulcospira, closely related specie pairs (Semisulcospira habei and Semisulcospira niponica, Semisulcospira decipiens and Semisulcospira nakasekoae) showed similar susceptibilities to parasites from both localities. S. habei and S. niponica were highly susceptible to parasites from Takashima, but were resistant to parasites from Nagahama. S. decipiens and S. nakasekoae showed moderate susceptibility to parasites from both localities. None of the endemic snail species showed a clear local variation in susceptibility. These results show that the susceptibility of endemic Semisulcospira to Genarchopsis is conservative and can be regarded as an example of resource-tracking. One of the non-endemic snails, Semisulcospira libertina, showed local variation in susceptibility. This variation was not related to the sympatry of the parasites used for the experimental infection, suggesting that it was not the result of local adaptation by parasites.
Collapse
Affiliation(s)
- Misako Urabe
- Department of Ecosystem Studies, School of Environmental Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan.
| |
Collapse
|
14
|
Januszkiewicz K, Norbury LJ, Wilkowski P, Zawistowska-Deniziak A, Wesołowska A, Wedrychowicz H. Variations in cercarial production and the level of in vitro activation of metacercariae of two different isolates of Fasciola hepatica. Acta Parasitol 2015. [PMID: 26204191 DOI: 10.1515/ap-2015-0072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fasciola hepatica infections cause large economic losses and are a serious veterinary medicine problem in many regions of the world. Recent studies examining fascioliasis in the bison population from Bialowieza National Park have shown that the prevalence of infection with this parasite is up to 100%. Liver flukes isolated from bison from Bialowieza National Park in Poland were compared with a fluke strain originally obtained from the Central Veterinary Laboratory, Weybridge, UK, to determine variations in cercarial production and establish the ability of their metacercariae to activate in vitro. Some small differences in cercarial production between the two isolates are shown, while significant differences in the ability of their metacercariae to activate in vitro were observed.
Collapse
|
15
|
Chevalier FD, Valentim CLL, LoVerde PT, Anderson TJC. Efficient linkage mapping using exome capture and extreme QTL in schistosome parasites. BMC Genomics 2014; 15:617. [PMID: 25048426 PMCID: PMC4117968 DOI: 10.1186/1471-2164-15-617] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/14/2014] [Indexed: 12/30/2022] Open
Abstract
Background Identification of parasite genes that underlie traits such as drug resistance and host specificity is challenging using classical linkage mapping approaches. Extreme QTL (X-QTL) methods, originally developed by rodent malaria and yeast researchers, promise to increase the power and simplify logistics of linkage mapping in experimental crosses of schistosomes (or other helminth parasites), because many 1000s of progeny can be analysed, phenotyping is not required, and progeny pools rather than individuals are genotyped. We explored the utility of this method for mapping a drug resistance gene in the human parasitic fluke Schistosoma mansoni. Results We staged a genetic cross between oxamniquine sensitive and resistant parasites, then between two F1 progeny, to generate multiple F2 progeny. One group of F2s infecting hamsters was treated with oxamniquine, while a second group was left untreated. We used exome capture to reduce the size of the genome (from 363 Mb to 15 Mb) and exomes from pooled F2 progeny (treated males, untreated males, treated females, untreated females) and the two parent parasites were sequenced to high read depth (mean = 95-366×) and allele frequencies at 14,489 variants compared. We observed dramatic enrichment of alleles from the resistant parent in a small region of chromosome 6 in drug-treated male and female pools (combined analysis: = 11.07, p = 8.74 × 10-29). This region contains Smp_089320 a gene encoding a sulfotransferase recently implicated in oxamniquine resistance using classical linkage mapping methods. Conclusions These results (a) demonstrate the utility of exome capture for generating reduced representation libraries in Schistosoma mansoni, and (b) provide proof-of-principle that X-QTL methods can be successfully applied to an important human helminth. The combination of these methods will simplify linkage analysis of biomedically or biologically important traits in this parasite. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-617) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Timothy J C Anderson
- Department of Genetics, Texas Biomedical Research Institute, P,O, Box 760549, 78245 San Antonio, Texas, USA.
| |
Collapse
|
16
|
Valentim CLL, Cioli D, Chevalier FD, Cao X, Taylor AB, Holloway SP, Pica-Mattoccia L, Guidi A, Basso A, Tsai IJ, Berriman M, Carvalho-Queiroz C, Almeida M, Aguilar H, Frantz DE, Hart PJ, LoVerde PT, Anderson TJC. Genetic and molecular basis of drug resistance and species-specific drug action in schistosome parasites. Science 2013; 342:1385-9. [PMID: 24263136 PMCID: PMC4136436 DOI: 10.1126/science.1243106] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxamniquine resistance evolved in the human blood fluke (Schistosoma mansoni) in Brazil in the 1970s. We crossed parental parasites differing ~500-fold in drug response, determined drug sensitivity and marker segregation in clonally derived second-generation progeny, and identified a single quantitative trait locus (logarithm of odds = 31) on chromosome 6. A sulfotransferase was identified as the causative gene by using RNA interference knockdown and biochemical complementation assays, and we subsequently demonstrated independent origins of loss-of-function mutations in field-derived and laboratory-selected resistant parasites. These results demonstrate the utility of linkage mapping in a human helminth parasite, while crystallographic analyses of protein-drug interactions illuminate the mode of drug action and provide a framework for rational design of oxamniquine derivatives that kill both S. mansoni and S. haematobium, the two species responsible for >99% of schistosomiasis cases worldwide.
Collapse
Affiliation(s)
- Claudia L L Valentim
- Departments of Biochemistry and Pathology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gower CM, Gouvras AN, Lamberton PH, Deol A, Shrivastava J, Mutombo PN, Mbuh JV, Norton AJ, Webster BL, Stothard JR, Garba A, Lamine MS, Kariuki C, Lange CN, Mkoji GM, Kabatereine NB, Gabrielli AF, Rudge JW, Fenwick A, Sacko M, Dembelé R, Lwambo NJ, Tchuem Tchuenté LA, Rollinson D, Webster JP. Population genetic structure of Schistosoma mansoni and Schistosoma haematobium from across six sub-Saharan African countries: implications for epidemiology, evolution and control. Acta Trop 2013; 128:261-74. [PMID: 23041540 DOI: 10.1016/j.actatropica.2012.09.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 09/18/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
Abstract
We conducted the first meta-analysis of ten Schistosoma haematobium (one published and nine unpublished) and eight Schistosoma mansoni (two published and six unpublished) microsatellite datasets collected from individual schistosome-infected school-children across six sub-Saharan Africa countries. High levels of genetic diversity were documented in both S. haematobium and S. mansoni. In S. haematobium populations, allelic richness did not differ significantly between the ten schools, despite widely varying prevalences and intensities of infection, but higher levels of heterozygote deficiency were seen in East than in West Africa. In contrast, S. mansoni populations were more diverse in East than West African schools, but heterozygosity levels did not vary significantly with geography. Genetic structure in both S. haematobium and S. mansoni populations was documented, at both a regional and continental scale. Such structuring might be expected to slow the spread to new areas of anti-schistosomal drug resistance should it develop. There was, however, limited evidence of genetic structure at the individual host level, which might be predicted to promote the development or establishment of drug resistance, particularly if it were a recessive trait. Our results are discussed in terms of their potential implications for the epidemiology and evolution of schistosomes as well as their subsequent control across sub-Saharan Africa.
Collapse
|
18
|
Xu D, Sandland GJ, Minchella DJ, Feng Z. Interactions among virulence, coinfection and drug resistance in a complex life-cycle parasite. J Theor Biol 2012; 304:197-210. [PMID: 22554952 DOI: 10.1016/j.jtbi.2012.03.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 01/31/2012] [Accepted: 03/29/2012] [Indexed: 11/26/2022]
Abstract
Motivated by relatively recent empirical studies on Schistosoma mansoni, we use a mathematical model to investigate the impacts of drug treatment of the definitive human host and coinfection of the intermediate snail host by multiple parasite strains on the evolution of parasites' drug resistance. Through the examination of evolutionarily stable strategies (ESS) of parasites, our study suggests that higher levels of drug treatment rates (which usually tend to promote monomorphism as the evolutionary equilibrium) favor parasite strains that have a higher level of drug resistance. Our study also shows that whether coinfection of intermediate hosts affects the levels of drug resistance at ESS points and their stability depends on the assumptions on the cost of parasites paid for drug resistance, coinfection functions and parasites' reproduction within coinfected hosts. This calls for more empirical studies on the parasite.
Collapse
Affiliation(s)
- Dashun Xu
- Department of Mathematics, Southern Illinois University, Carbondale, IL 62901, USA.
| | | | | | | |
Collapse
|
19
|
Benesh DP, Hafer N. Growth and ontogeny of the tapeworm Schistocephalus solidus in its copepod first host affects performance in its stickleback second intermediate host. Parasit Vectors 2012; 5:90. [PMID: 22564512 PMCID: PMC3403952 DOI: 10.1186/1756-3305-5-90] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/07/2012] [Indexed: 11/25/2022] Open
Abstract
Background For parasites with complex life cycles, size at transmission can impact performance in the next host, thereby coupling parasite phenotypes in the two consecutive hosts. However, a handful of studies with parasites, and numerous studies with free-living, complex-life-cycle animals, have found that larval size correlates poorly with fitness under particular conditions, implying that other traits, such as physiological or ontogenetic variation, may predict fitness more reliably. Using the tapeworm Schistocephalus solidus, we evaluated how parasite size, age, and ontogeny in the copepod first host interact to determine performance in the stickleback second host. Methods We raised infected copepods under two feeding treatments (to manipulate parasite growth), and then exposed fish to worms of two different ages (to manipulate parasite ontogeny). We assessed how growth and ontogeny in copepods affected three measures of fitness in fish: infection probability, growth rate, and energy storage. Results Our main, novel finding is that the increase in fitness (infection probability and growth in fish) with larval size and age observed in previous studies on S. solidus seems to be largely mediated by ontogenetic variation. Worms that developed rapidly (had a cercomer after 9 days in copepods) were able to infect fish at an earlier age, and they grew to larger sizes with larger energy reserves in fish. Infection probability in fish increased with larval size chiefly in young worms, when size and ontogeny are positively correlated, but not in older worms that had essentially completed their larval development in copepods. Conclusions Transmission to sticklebacks as a small, not-yet-fully developed larva has clear costs for S. solidus, but it remains unclear what prevents the evolution of faster growth and development in this species.
Collapse
Affiliation(s)
- Daniel P Benesh
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Plön, Germany.
| | | |
Collapse
|
20
|
Lustigman S, Geldhof P, Grant WN, Osei-Atweneboana MY, Sripa B, Basáñez MG. A research agenda for helminth diseases of humans: basic research and enabling technologies to support control and elimination of helminthiases. PLoS Negl Trop Dis 2012; 6:e1445. [PMID: 22545160 PMCID: PMC3335859 DOI: 10.1371/journal.pntd.0001445] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Successful and sustainable intervention against human helminthiases depends on optimal utilisation of available control measures and development of new tools and strategies, as well as an understanding of the evolutionary implications of prolonged intervention on parasite populations and those of their hosts and vectors. This will depend largely on updated knowledge of relevant and fundamental parasite biology. There is a need, therefore, to exploit and apply new knowledge and techniques in order to make significant and novel gains in combating helminthiases and supporting the sustainability of current and successful mass drug administration (MDA) programmes. Among the fields of basic research that are likely to yield improved control tools, the Disease Reference Group on Helminth Infections (DRG4) has identified four broad areas that stand out as central to the development of the next generation of helminth control measures: 1) parasite genetics, genomics, and functional genomics; 2) parasite immunology; 3) (vertebrate) host–parasite interactions and immunopathology; and 4) (invertebrate) host–parasite interactions and transmission biology. The DRG4 was established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR). The Group was given the mandate to undertake a comprehensive review of recent advances in helminthiases research in order to identify notable gaps and highlight priority areas. This paper summarises recent advances and discusses challenges in the investigation of the fundamental biology of those helminth parasites under the DRG4 Group's remit according to the identified priorities, and presents a research and development agenda for basic parasite research and enabling technologies that will help support control and elimination efforts against human helminthiases.
Collapse
Affiliation(s)
- Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Rossiter W, Sukhdeo MVK. Host Quality and Spatial Patterning in Infections of the Eastern Mudsnail (Ilyanassa obsoleta) by Two Trematodes (Himasthla quissetensis and Zoogonus rubellus). J Parasitol 2012; 98:245-55. [DOI: 10.1645/ge-2802.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
22
|
ARBIV A, KHOKHLOVA IS, OVADIA O, NOVOPLANSKY A, KRASNOV BR. Use it or lose it: reproductive implications of ecological specialization in a haematophagous ectoparasite. J Evol Biol 2012; 25:1140-8. [DOI: 10.1111/j.1420-9101.2012.02499.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Evolution of host resistance to parasite infection in the snail–schistosome–human system. J Math Biol 2011; 65:201-36. [DOI: 10.1007/s00285-011-0457-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 03/25/2011] [Indexed: 10/18/2022]
|
24
|
Population genetics of Schistosoma haematobium: development of novel microsatellite markers and their application to schistosomiasis control in Mali. Parasitology 2011; 138:978-94. [PMID: 21679489 DOI: 10.1017/s0031182011000722] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The recent implementation of mass drug administration (MDA) for control of uro-genital schistosomiasis has identified an urgent need for molecular markers to both directly monitor the impact of MDA, for example to distinguish re-infections from uncleared infections, as well as understand aspects of parasite reproduction and gene flow which might predict evolutionary change, such as the development and spread of drug resistance. We report the development of a novel microsatellite tool-kit allowing, for the first time, robust genetic analysis of individual S. haematobium larvae collected directly from infected human hosts. We genotyped the parasite populations of 47 children from 2 schools in the Ségou region of Mali, the first microsatellite study of this highly neglected parasite. There was only limited evidence of population subdivision between individual children or between the two schools, suggesting that few barriers to gene flow exist in this population. Complex relationships between parasite reproductive success, infection intensity and host age and gender were identified. Older children and boys harboured more diverse infections, as measured by the number of unique adult genotypes present. Individual parasite genotypes had variable reproductive success both across hosts, a pre-requisite for evolutionary selection, and, phenotypically, in hosts of different ages and genders. These data serve as a baseline against which to measure the effect of treatment on parasite population genetics in this region of Mali, and the tools developed are suitable to further investigate this important pathogen, and its close relatives, throughout their range.
Collapse
|
25
|
Jones-Nelson O, Thiele EA, Minchella DJ. Transmission dynamics of two strains of Schistosoma mansoni utilizing novel intermediate and definitive hosts. Parasitol Res 2011; 109:675-87. [PMID: 21369763 DOI: 10.1007/s00436-011-2299-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/17/2011] [Indexed: 11/24/2022]
Abstract
The intimate host-parasite relationship mandates adaptation to the genetic and phenotypic variability of their counterparts. Here, inbred and outcrossed strains of Schistosoma mansoni were challenged with "local" and "novel" intermediate and definitive hosts to examine effects of genetic variability and novelty on infection success and dynamics. Genetically distinct lines of Biomphalaria glabrata intermediate hosts exposed to inbred and outcrossed S. mansoni larvae were assessed for differences in both snail and parasite life-history parameters. Cercariae from each parasite-snail treatment were used to infect "local" and "novel" Mus musculus definitive hosts to assess parasite infectivity and fitness. Outcrossed parasites significantly reduced snail growth, were more productive, and induced greater host mortality than inbred parasites. Mouse strain did not influence parasite infectivity or reproduction, but parasite and snail host genetic background did, affecting both sex-specific infectivity and parasite productivity. Overall, genetic background of S. mansoni and its intermediate snail host altered life history traits and transmission dynamics of the parasite throughout its life cycle.
Collapse
Affiliation(s)
- Omari Jones-Nelson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
26
|
Lamberton PHL, Hogan SC, Kabatereine NB, Fenwick A, Webster JP. In vitro praziquantel test capable of detecting reduced in vivo efficacy in Schistosoma mansoni human infections. Am J Trop Med Hyg 2011; 83:1340-7. [PMID: 21118946 PMCID: PMC2990056 DOI: 10.4269/ajtmh.2010.10-0413] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although great reductions in human schistosomiasis have been observed after praziquantel (PZQ) mass drug administration (MDA), some individuals remain infected after multiple treatments. Many MDA programs now require monitoring for drug efficacy as a key component. No molecular tools for PZQ resistance currently exist and investigations into the dose of PZQ required to kill 50% of adult worms in vivo (ED(50)) present ethical, logistical, and temporal restraints. We, therefore, assessed the feasibility and accuracy of a rapid, inexpensive in vitro PZQ test in the laboratory and directly in the field in Uganda under MDA in conjunction with highly detailed infection intensity, clearance, and reinfection data. This test strongly differentiated between subsequently cleared and uncleared infections as well as differences between parasite populations pre- and post-PZQ treatments, advocating its use for on-the-spot monitoring of PZQ efficacy in natural foci. After only a few treatments, uncleared parasites were identified to be phenotypically different from drug-sensitive parasites, emphasizing the urgent need for monitoring of these repeatedly PZQ-treated populations.
Collapse
Affiliation(s)
- Poppy H L Lamberton
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
27
|
Observed reductions in Schistosoma mansoni transmission from large-scale administration of praziquantel in Uganda: a mathematical modelling study. PLoS Negl Trop Dis 2010; 4:e897. [PMID: 21124888 PMCID: PMC2990705 DOI: 10.1371/journal.pntd.0000897] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 10/28/2010] [Indexed: 11/26/2022] Open
Abstract
Background To date schistosomiasis control programmes based on chemotherapy have largely aimed at controlling morbidity in treated individuals rather than at suppressing transmission. In this study, a mathematical modelling approach was used to estimate reductions in the rate of Schistosoma mansoni reinfection following annual mass drug administration (MDA) with praziquantel in Uganda over four years (2003–2006). In doing this we aim to elucidate the benefits of MDA in reducing community transmission. Methods Age-structured models were fitted to a longitudinal cohort followed up across successive rounds of annual treatment for four years (Baseline: 2003, Treatment: 2004–2006; n = 1,764). Instead of modelling contamination, infection and immunity processes separately, these functions were combined in order to estimate a composite force of infection (FOI), i.e., the rate of parasite acquisition by hosts. Results MDA achieved substantial and statistically significant reductions in the FOI following one round of treatment in areas of low baseline infection intensity, and following two rounds in areas with high and medium intensities. In all areas, the FOI remained suppressed following a third round of treatment. Conclusions/Significance This study represents one of the first attempts to monitor reductions in the FOI within a large-scale MDA schistosomiasis morbidity control programme in sub-Saharan Africa. The results indicate that the Schistosomiasis Control Initiative, as a model for other MDA programmes, is likely exerting a significant ancillary impact on reducing transmission within the community, and may provide health benefits to those who do not receive treatment. The results obtained will have implications for evaluating the cost-effectiveness of schistosomiasis control programmes and the design of monitoring and evaluation approaches in general. Schistosomiasis is a parasitic disease of enormous public health importance, infecting over 200 million people worldwide, of which the large majority live in sub-Saharan Africa. Control programmes based on the mass treatment of individuals in infected areas with the drug praziquantel have been shown to be successful in reducing the parasite burden and likelihood of developing morbidity in those individuals who receive treatment. Using data from an ongoing intestinal schistosomiasis control programme in Uganda and through the application of a mathematical model, we show that an additional benefit of mass treatment is a decrease in parasite acquisition, via a reduction in the number of transmission stages in the environment. This leads to a lower rate of infection and reinfection of individuals in those areas. We show that this result is valid in areas of differing average infection intensity. The importance of this finding is that this will benefit untreated as well as treated individuals, and will allow a fuller estimation of the benefits of schistosomiasis control programmes.
Collapse
|
28
|
Rigaud T, Perrot-Minnot MJ, Brown MJF. Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence. Proc Biol Sci 2010; 277:3693-702. [PMID: 20667874 DOI: 10.1098/rspb.2010.1163] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Interactions involving several parasite species (multi-parasitized hosts) or several host species (multi-host parasites) are the rule in nature. Only a few studies have investigated these realistic, but complex, situations from an evolutionary perspective. Consequently, their impact on the evolution of parasite virulence and transmission remains poorly understood. The mechanisms by which multiple infections may influence virulence and transmission include the dynamics of intrahost competition, mediation by the host immune system and an increase in parasite genetic recombination. Theoretical investigations have yet to be conducted to determine which of these mechanisms are likely to be key factors in the evolution of virulence and transmission. In contrast, the relationship between multi-host parasites and parasite virulence and transmission has seen some theoretical investigation. The key factors in these models are the trade-off between virulence across different host species, variation in host species quality and patterns of transmission. The empirical studies on multi-host parasites suggest that interspecies transmission plays a central role in the evolution of virulence, but as yet no complete picture of the phenomena involved is available. Ultimately, determining how complex host-parasite interactions impact the evolution of host-parasite relationships will require the development of cross-disciplinary studies linking the ecology of quantitative networks with the evolution of virulence.
Collapse
Affiliation(s)
- Thierry Rigaud
- Laboratoire Biogéosciences, CNRS UMR 5561, Université de Bourgogne, Equipe Ecologie Evolutive, 6 Boulevard Gabriel, 21000 Dijon, France.
| | | | | |
Collapse
|
29
|
Campbell G, Noble LR, Rollinson D, Southgate VR, Webster JP, Jones CS. Low genetic diversity in a snail intermediate host (Biomphalaria pfeifferi Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. Mol Ecol 2009; 19:241-56. [PMID: 20025653 DOI: 10.1111/j.1365-294x.2009.04463.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Population genetic perturbations of intermediate hosts, often a consequence of human pressure on environmental resources, can precipitate unexpectedly severe disease outbreaks. Such disturbances are set to become increasingly common following range changes concomitant with climate shifts, dwindling natural resources and major infrastructure changes such as hydroprojects. Construction of the Diama dam in the Senegal River Basin (SRB) reduced river salinity, enabling the freshwater snail intermediate host Biomphalaria pfeifferi to rapidly expand its distribution. A serious public health problem ensued, with an epidemic of intestinal schistosomiasis occurring in the previously schistosome-free Richard-Toll region within 2 years. The current study aimed to assess the population variability of B. pfeifferi in the SRB, and speculate upon its subsequent impact on host-parasite interactions following such engineered ecological change. Genetic variation at nine polymorphic microsatellite loci revealed little population differentiation in SRB snails compared with those from natural habitats in Zimbabwe, where Schistosoma mansoni transmission is much lower. 'Open' SRB habitats are associated with greater water contact, smaller population sizes and less genetic diversity, with sites downstream of Richard-Toll showing greater inter- and intrapopulation variation, concomitant with less frequent human contact. These observations may be explained by rapid expansion into pristine habitat selecting for high fecundity genotypes at the expense of schistosome resistance, presenting S. mansoni with genetically homogenous highly fecund susceptible populations around the focal point, promoting development of a highly compatible host-parasite relationship. Longitudinal study of such systems may prove important in predicting public health risks engendered by future environmental engineering projects.
Collapse
Affiliation(s)
- G Campbell
- General Medical Council, St James's Buildings, 79 Oxford Street, Manchester, M1 6FQ, UK
| | | | | | | | | | | |
Collapse
|
30
|
Barrett LG, Thrall PH, Burdon JJ, Linde CC. Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends Ecol Evol 2008; 23:678-85. [PMID: 18947899 DOI: 10.1016/j.tree.2008.06.017] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 02/04/2023]
Abstract
Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.
Collapse
Affiliation(s)
- Luke G Barrett
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
31
|
Webster JP, Gower CM, Norton AJ. Evolutionary concepts in predicting and evaluating the impact of mass chemotherapy schistosomiasis control programmes on parasites and their hosts. Evol Appl 2008; 1:66-83. [PMID: 25567492 PMCID: PMC3352399 DOI: 10.1111/j.1752-4571.2007.00012.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 12/05/2007] [Indexed: 11/28/2022] Open
Abstract
Schistosomiasis is a parasitic disease of significant medical and veterinary importance in many regions of the world. Recent shifts in global health policy have led towards the implementation of mass chemotherapeutic control programmes at the national scale in previously 'neglected' countries such as those within sub-Saharan Africa. Evolutionary theory has an important role to play in the design, application and interpretation of such programmes. Whilst celebrating the rapid success achieved to date by such programmes, in terms of reduced infection prevalence, intensity and associated human morbidity, evolutionary change in response to drug selection pressure may be predicted under certain circumstances, particularly in terms of the development of potential drug resistance, evolutionary changes in parasite virulence, transmission and host use, and/or competitive interactions with co-infecting pathogens. Theoretical and empirical data gained to date serve to highlight the importance of careful monitoring and evaluation of parasites and their hosts whenever and wherever chemotherapy is applied and where parasite transmission remains.
Collapse
Affiliation(s)
- Joanne P Webster
- Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine Norfolk Place, London, UK
| | - Charlotte M Gower
- Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine Norfolk Place, London, UK
| | - Alice J Norton
- Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine Norfolk Place, London, UK
| |
Collapse
|
32
|
Salvaudon L, Héraudet V, Shykoff JA. Genotype-specific interactions and the trade-off between host and parasite fitness. BMC Evol Biol 2007; 7:189. [PMID: 17919316 PMCID: PMC2148064 DOI: 10.1186/1471-2148-7-189] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 10/05/2007] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Evolution of parasite traits is inextricably linked to their hosts. For instance one common definition of parasite virulence is the reduction in host fitness due to infection. Thus, traits of infection must be viewed in both protagonists and may be under shared genetic and physiological control. We investigated these questions on the oomycete Hyaloperonospora arabidopsis (= parasitica), a natural pathogen of the Brassicaceae Arabidopsis thaliana. RESULTS We performed a controlled cross inoculation experiment confronting six lines of the host plant with seven strains of the parasite in order to evaluate genetic variation for phenotypic traits of infection among hosts, parasites, and distinct combinations. Parasite infection intensity and transmission were highly variable among parasite strains and host lines but depended also on the interaction between particular genotypes of the protagonists, and genetic variation for the infection phenotype of parasites from natural populations was found even at a small spatial scale within population. Furthermore, increased parasite fitness led to a significant decrease in host fitness only on a single host line (Gb), although a trade-off between these two traits was expected because host and parasite share the same resource pool for their respective reproduction. We propose that different levels of compatibility dependent on genotype by genotype interactions might lead to different amounts of resources available for host and parasite reproduction. This variation in compatibility could thus mask the expected negative relationship between host and parasite fitness, as the total resource pool would not be constant. CONCLUSION These results highlight the importance of host variation in the determination of parasite fitness traits. This kind of interaction may in turn decouple the relationship between parasite transmission and its negative effect on host fitness, altering theoretical predictions of parasite evolution.
Collapse
Affiliation(s)
- Lucie Salvaudon
- Laboratoire Ecologie, Systématique et Evolution, UMR 8079, Univ Paris-Sud, Orsay cedex, F-91405; CNRS, Orsay cedex, F-91405 France.
| | | | | |
Collapse
|
33
|
Webster JP, Shrivastava J, Johnson PJ, Blair L. Is host-schistosome coevolution going anywhere? BMC Evol Biol 2007; 7:91. [PMID: 17567519 PMCID: PMC1920509 DOI: 10.1186/1471-2148-7-91] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 06/13/2007] [Indexed: 11/19/2022] Open
Abstract
Background: That pathogens and hosts coevolve is a powerful concept with broad theoretical and applied implications spanning from genetic theory to the medical and veterinary sciences, particularly in the context of infectious disease epidemiology. A substantial body of theory has been developed to explore the likelihood and consequences of coevolution, but few empirical studies have been conducted to test these theories, particularly for indirectly-transmitted pathogen-host systems. We initiated replicate longitudinal host-schistosome co-selection trials under different host genotype combinations: Schistosoma mansoni parasite lines were co-selected with populations of either previously resistant-selected Biomphalaria glabrata host genotypes, or unselected susceptible B. glabrata genotypes, or a mixed population of the two. All parasite lines were also passaged through their obligatory mammalian definitive host at each generation. Results: We demonstrated variation in, and a reciprocal impact on, the fitness of both host and pathogen phenotype and genotype, an outcome dependent on the combinations of genotypes involved, and evidence of change over time. Most apparent was the observation that parasites appeared to rapidly adapt to those intermediate hosts previously selected for resistance. Conclusion: Our results illustrate the potential for host-schistosome coevolution and, in particular, suggest that host resistance may be a temporary phenomenon in nature due, in part, to rapid counter-adaptations by parasites.
Collapse
Affiliation(s)
- Joanne P Webster
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College, Norfolk Place, London, W2 1PG. UK
| | - Jaya Shrivastava
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College, Norfolk Place, London, W2 1PG. UK
| | - Paul J Johnson
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Lynsey Blair
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College, Norfolk Place, London, W2 1PG. UK
| |
Collapse
|
34
|
Zhang P, Sandland GJ, Feng Z, Xu D, Minchella DJ. Evolutionary implications for interactions between multiple strains of host and parasite. J Theor Biol 2007; 248:225-40. [PMID: 17585945 DOI: 10.1016/j.jtbi.2007.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 05/07/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
The interaction between multiple parasite strains within different host types may influence the evolutionary trajectories of parasites. In this article, we formulate a deterministic model with two strains of parasites and two host types in order to investigate how heterogeneities in parasite virulence and host life-history may affect the persistence and spread of diseases in natural systems. We compute the reproductive number of strain i (R(i)) independently, as well as the (conditional) "invasion" reproductive number for strains i (R(i)(j), j not equal i) when strain j is at a positive equilibrium. We show that the disease-free equilibrium is locally asymptotically stable if R(i)<1 for both strains and is unstable if R(i)>1 for one stain. We establish the criterion R(i)(j)>1 for strain i to invade strain j. Subthreshold coexistence driven by coinfection is possible even when R(i) of one strain is below 1. We identify conditions that determine the evolution of parasite specialism or generalism based on the life-history strategies employed by hosts, and investigate how host strains may influence parasite persistence.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
35
|
Tseng M. Interactions between the parasite's previous and current environment mediate the outcome of parasite infection. Am Nat 2006; 168:565-71. [PMID: 17004228 DOI: 10.1086/507997] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 06/16/2006] [Indexed: 11/03/2022]
Abstract
The study of parasite virulence has generally focused on the conditions under which virulence is expected to increase or decrease over time and how the interactions between hosts and their environments may mediate the outcome of infection. Recently, parasite traits such as transmission, offspring production, and development have also been shown to be influenced by environmental variation. What is unclear is how variation in the parasite's environment may impact virulence. Recent theory demonstrates that plasticity can promote the evolution of decreased virulence; thus, understanding whether the parasite's environment can mediate virulence can improve predictions regarding the outcome of parasite infection. Here, an obligate mosquito parasite was reared in hosts fed high or low levels of food. Parasite oocysts (offspring) produced in these two host environments were subsequently fed to uninfected hosts. Parasites originating from well-fed hosts were found to be more virulent to these subsequent hosts compared to parasites originating from poorly fed hosts. Additionally, this effect was apparent only when current hosts were food deprived. These results demonstrate that parasite virulence was mediated by a cross-generational effect of the environment and that the overall outcome of infection was modified by variation in both the parasite's and host's environments.
Collapse
Affiliation(s)
- Michelle Tseng
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA. mtsengzzoology.ubc.ca
| |
Collapse
|
36
|
Hammerschmidt K, Kurtz J. Evolutionary implications of the adaptation to different immune systems in a parasite with a complex life cycle. Proc Biol Sci 2006; 272:2511-8. [PMID: 16271977 PMCID: PMC1599786 DOI: 10.1098/rspb.2005.3241] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many diseases are caused by parasites with complex life cycles that involve several hosts. If parasites cope better with only one of the different types of immune systems of their host species, we might expect a trade-off in parasite performance in the different hosts, that likely influences the evolution of virulence. We tested this hypothesis in a naturally co-evolving host-parasite system consisting of the tapeworm Schistocephalus solidus and its intermediate hosts, a copepod, Macrocyclops albidus, and the three-spined stickleback Gasterosteus aculeatus. We did not find a trade-off between infection success in the two hosts. Rather, tapeworms seem to trade-off adaptation towards different parts of their hosts' immune systems. Worm sibships that performed better in the invertebrate host also seem to be able to evade detection by the fish innate defence systems, i.e. induce lower levels of activation of innate immune components. These worm variants were less harmful for the fish host likely due to reduced costs of an activated innate immune system. These findings substantiate the impact of both hosts' immune systems on parasite performance and virulence.
Collapse
|
37
|
Hammerschmidt K, Kurtz J. Surface carbohydrate composition of a tapeworm in its consecutive intermediate hosts: Individual variation and fitness consequences. Int J Parasitol 2005; 35:1499-507. [PMID: 16198355 DOI: 10.1016/j.ijpara.2005.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 08/09/2005] [Accepted: 08/09/2005] [Indexed: 11/21/2022]
Abstract
Carbohydrates on parasite surfaces have been shown to play an important role in host-parasite coevolution, mediating host non-self recognition and parasite camouflage. Parasites that switch hosts can change their surface molecules to remain undetected by the diverse immune systems of their different hosts. However, the question of individual variation in surface sugar composition and its relation to infectivity, virulence, immune evasion and growth of a parasite in its different hosts is as yet largely unexplored. We studied such fitness consequences of variation in surface sugars in a sympatric host-parasite system consisting of the cestode Schistocephalus solidus and its intermediate hosts, a copepod and the three-spined stickleback. Using lectins to analyse the sugar composition, we show that the tapeworm changes its surface according to the invertebrate or vertebrate host. Importantly, sugar composition seems to be genetically variable, as shown by differences among tapeworm sibships. These differences are related to variation in parasite fitness in its second intermediate host, i.e. infectivity and growth. Surface sugar composition may thus be a proximate correlate of the evolutionarily relevant variability in infectivity and virulence of parasites in different hosts.
Collapse
Affiliation(s)
- Katrin Hammerschmidt
- Department of Evolutionary Ecology, Max-Planck-Institute for Limnology, August-Thienemann-Strasse 2, D-24306 Plön, Germany.
| | | |
Collapse
|
38
|
Gower CM, Webster JP. INTRASPECIFIC COMPETITION AND THE EVOLUTION OF VIRULENCE IN A PARASITIC TREMATODE. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb01014.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Gower CM, Webster JP. INTRASPECIFIC COMPETITION AND THE EVOLUTION OF VIRULENCE IN A PARASITIC TREMATODE. Evolution 2005. [DOI: 10.1554/04-475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Webster JP, Gower CM, Blair L. Do Hosts and Parasites Coevolve? Empirical Support from the Schistosoma System. Am Nat 2004; 164 Suppl 5:S33-51. [PMID: 15540140 DOI: 10.1086/424607] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Coevolution between host and parasite is, in principle, a powerful determinant of the biology and genetics of infection and disease. However, coevolution is difficult to demonstrate rigorously in practice and therefore has rarely been observed empirically, particularly in animal-parasite systems. Research on host-schistosome interactions has the potential for making an important contribution to the study of coevolution or reciprocal adaptation. This may be particularly pertinent because schistosomes represent an indirectly transmitted macroparasite, so often overlooked among both theoretical and empirical studies. Here we present ideas and experiments on host-schistosome interactions, in part reviewed from published work but focusing in particular on preliminary novel data from our ongoing studies of potential host-schistosome evolution and coevolution in the laboratory. The article is split into three main sections: we first focus on the evidence for evolution in the host, then in the parasite, before combining both to illustrate the gathering evidence of host-parasite coevolution in the snail-schistosome system. In particular, we demonstrate that genetic architecture, variability, and selective pressures are present for the evolution of resistance and susceptibility, virulence, and infectivity to occur, the mechanisms allowing such polymorphisms to be maintained, and that hosts and parasites appear to have reciprocal effects on each other's phenotype and genotype.
Collapse
Affiliation(s)
- J P Webster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | | | |
Collapse
|