1
|
Rühle T, Leister D, Pasch V. Chloroplast ATP synthase: From structure to engineering. THE PLANT CELL 2024; 36:3974-3996. [PMID: 38484126 PMCID: PMC11449085 DOI: 10.1093/plcell/koae081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 10/05/2024]
Abstract
F-type ATP synthases are extensively researched protein complexes because of their widespread and central role in energy metabolism. Progress in structural biology, proteomics, and molecular biology has also greatly advanced our understanding of the catalytic mechanism, post-translational modifications, and biogenesis of chloroplast ATP synthases. Given their critical role in light-driven ATP generation, tailoring the activity of chloroplast ATP synthases and modeling approaches can be applied to modulate photosynthesis. In the future, advances in genetic manipulation and protein design tools will significantly expand the scope for testing new strategies in engineering light-driven nanomotors.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Viviana Pasch
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Bos PR, Berentsen J, Wientjes E. Expansion microscopy resolves the thylakoid structure of spinach. PLANT PHYSIOLOGY 2023; 194:347-358. [PMID: 37792700 PMCID: PMC10756755 DOI: 10.1093/plphys/kiad526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
The light-harvesting reactions of photosynthesis take place on the thylakoid membrane inside chloroplasts. The thylakoid membrane is folded into appressed membranes, the grana, and nonappressed membranes that interconnect the grana, the stroma lamellae. This folding is essential for the correct functioning of photosynthesis. Electron microscopy and atomic force microscopy are commonly used to study the thylakoid membrane, but these techniques have limitations in visualizing a complete chloroplast and its organization. To overcome this limitation, we applied expansion microscopy (ExM) on isolated chloroplasts. ExM is a technique that involves physically expanding a sample in a swellable hydrogel to enhance the spatial resolution of fluorescence microscopy. Using all-protein staining, we visualized the 3D structure of spinach (Spinacia oleracea) thylakoids in detail. We were able to resolve stroma lamellae that were 60 nm apart and observe their helical wrapping around the grana. Furthermore, we accurately measured the dimensions of grana from top views of chloroplasts, which allow for precise determination of the granum diameter. Our results demonstrate that ExM is a fast and reliable technique for studying thylakoid organization in great detail.
Collapse
Affiliation(s)
- Peter R Bos
- Laboratory of Biophysics, Wageningen University & Research, Wageningen 6700 ET, The Netherlands
| | - Jarne Berentsen
- Laboratory of Biophysics, Wageningen University & Research, Wageningen 6700 ET, The Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University & Research, Wageningen 6700 ET, The Netherlands
| |
Collapse
|
3
|
Wood WHJ, Johnson MP. Modeling the Role of LHCII-LHCII, PSII-LHCII, and PSI-LHCII Interactions in State Transitions. Biophys J 2020; 119:287-299. [PMID: 32621865 DOI: 10.1016/j.bpj.2020.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/28/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023] Open
Abstract
The light-dependent reactions of photosynthesis take place in the plant chloroplast thylakoid membrane, a complex three-dimensional structure divided into the stacked grana and unstacked stromal lamellae domains. Plants regulate the macro-organization of photosynthetic complexes within the thylakoid membrane to adapt to changing environmental conditions and avoid oxidative stress. One such mechanism is the state transition that regulates photosynthetic light harvesting and electron transfer. State transitions are driven by changes in the phosphorylation of light harvesting complex II (LHCII), which cause a decrease in grana diameter and stacking, a decrease in energetic connectivity between photosystem II (PSII) reaction centers, and an increase in the relative LHCII antenna size of photosystem I (PSI) compared to PSII. Phosphorylation is believed to drive these changes by weakening the intramembrane lateral PSII-LHCII and LHCII-LHCII interactions and the intermembrane stacking interactions between these complexes, while simultaneously increasing the affinity of LHCII for PSI. We investigated the relative roles and contributions of these three types of interaction to state transitions using a lattice-based model of the thylakoid membrane based on existing structural data, developing a novel algorithm to simulate protein complex dynamics. Monte Carlo simulations revealed that state transitions are unlikely to lead to a large-scale migration of LHCII from the grana to the stromal lamellae. Instead, the increased light harvesting capacity of PSI is largely due to the more efficient recruitment of LHCII already residing in the stromal lamellae into PSI-LHCII supercomplexes upon its phosphorylation. Likewise, the increased light harvesting capacity of PSII upon dephosphorylation was found to be driven by a more efficient recruitment of LHCII already residing in the grana into functional PSII-LHCII clusters, primarily driven by lateral interactions.
Collapse
Affiliation(s)
- William H J Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
4
|
Bussi Y, Shimoni E, Weiner A, Kapon R, Charuvi D, Nevo R, Efrati E, Reich Z. Fundamental helical geometry consolidates the plant photosynthetic membrane. Proc Natl Acad Sci U S A 2019; 116:22366-22375. [PMID: 31611387 PMCID: PMC6825288 DOI: 10.1073/pnas.1905994116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Plant photosynthetic (thylakoid) membranes are organized into complex networks that are differentiated into 2 distinct morphological and functional domains called grana and stroma lamellae. How the 2 domains join to form a continuous lamellar system has been the subject of numerous studies since the mid-1950s. Using different electron tomography techniques, we found that the grana and stroma lamellae are connected by an array of pitch-balanced right- and left-handed helical membrane surfaces of different radii and pitch. Consistent with theoretical predictions, this arrangement is shown to minimize the surface and bending energies of the membranes. Related configurations were proposed to be present in the rough endoplasmic reticulum and in dense nuclear matter phases theorized to exist in neutron star crusts, where the right- and left-handed helical elements differ only in their handedness. Pitch-balanced helical elements of alternating handedness may thus constitute a fundamental geometry for the efficient packing of connected layers or sheets.
Collapse
Affiliation(s)
- Yuval Bussi
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Allon Weiner
- Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, INSERM, Sorbonne Université, 75013 Paris, France
| | - Ruti Kapon
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Dana Charuvi
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Center, 7505101 Rishon LeZion, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ziv Reich
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel;
| |
Collapse
|
5
|
Macroorganisation and flexibility of thylakoid membranes. Biochem J 2019; 476:2981-3018. [DOI: 10.1042/bcj20190080] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Abstract
The light reactions of photosynthesis are hosted and regulated by the chloroplast thylakoid membrane (TM) — the central structural component of the photosynthetic apparatus of plants and algae. The two-dimensional and three-dimensional arrangement of the lipid–protein assemblies, aka macroorganisation, and its dynamic responses to the fluctuating physiological environment, aka flexibility, are the subject of this review. An emphasis is given on the information obtainable by spectroscopic approaches, especially circular dichroism (CD). We briefly summarise the current knowledge of the composition and three-dimensional architecture of the granal TMs in plants and the supramolecular organisation of Photosystem II and light-harvesting complex II therein. We next acquaint the non-specialist reader with the fundamentals of CD spectroscopy, recent advances such as anisotropic CD, and applications for studying the structure and macroorganisation of photosynthetic complexes and membranes. Special attention is given to the structural and functional flexibility of light-harvesting complex II in vitro as revealed by CD and fluorescence spectroscopy. We give an account of the dynamic changes in membrane macroorganisation associated with the light-adaptation of the photosynthetic apparatus and the regulation of the excitation energy flow by state transitions and non-photochemical quenching.
Collapse
|
6
|
Catechol-Loading Nanofibrous Membranes for Eco-Friendly Iron Nutrition of Plants. NANOMATERIALS 2019; 9:nano9091315. [PMID: 31540053 PMCID: PMC6781093 DOI: 10.3390/nano9091315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 01/22/2023]
Abstract
Modern agriculture requires more efficient and low-impact products and formulations than traditional agrochemicals to improve crop yields. Iron is a micronutrient essential for plant growth and photosynthesis, but it is mostly present in insoluble forms in ecosystems so that it is often limiting for plants. This study was aimed at combining natural strategies and biodegradable nanostructured materials to create environmentally friendly and low-toxic bioactive products capable of both supplying iron to Fe-deficient plants and reducing the impact of agricultural products on the environment. Consequently, free-standing electrospun nanofibrous polycaprolactone/polyhydroxybutyrate thin membranes loaded with catechol (CL-NMs) as an iron-chelating natural agent (at two concentrations) were fabricated on purpose to mobilize Fe from insoluble forms and transfer it to duckweed (Lemna minor L.) plants. The effectiveness of CL-NMs in providing iron to Fe-deficient plants, upon catechol release, tested in duckweeds grown for 4 days under controlled hydroponic conditions, displayed temporal variations in both photosynthetic efficiency and biometric parameters measured by chlorophyll fluorescence and growth imaging. Duckweeds supplied with CL-NMs hosting higher catechol concentrations recovered most of the physiological and growth performances previously impaired by Fe limitation. The absence of short-term toxicity of these materials on duckweeds also proved the low impact on ecosystems of these products.
Collapse
|
7
|
Doltchinkova V, Andreeva T, Georgieva K, Mihailova G, Balashev K. Desiccation-induced alterations in surface topography of thylakoids from resurrection plant Haberlea rhodopensis studied by atomic force microscopy, electrokinetic and optical measurements. PHYSIOLOGIA PLANTARUM 2019; 166:585-595. [PMID: 30043985 DOI: 10.1111/ppl.12807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
With their ability to survive complete desiccation, resurrection plants are a suitable model system for studying the mechanisms of drought tolerance. In the present study, we investigated desiccation-induced alterations in surface topography of thylakoids isolated from well-hydrated, moderately dehydrated, severely desiccated and rehydrated Haberlea rhodopensis plants by means of atomic force microscopy (AFM), electrokinetic and optical measurements. According to our knowledge, so far, there were no reports on the characterization of surface topography and polydispersity of thylakoid membranes from resurrection plants using AFM and dynamic light scattering. To study the physicochemical properties of thylakoids from well-hydrated H. rhodopensis plants, we used spinach thylakoids for comparison as a classical model from higher plants. The thylakoids from well-hydrated H. rhodopensis had a grainy surface, significantly different from the well-structured spinach thylakoids with distinct grana and lamella, they had twice smaller cross-sectional area and were 1.5 times less voluminous than that of spinach. Significant differences in their physicochemical properties were observed. The dehydration and subsequent rehydration of plants affected the size, shape, morphology, roughness and therefore the structure of the studied thylakoids. Drought resulted in significant enhancement of negative charges on the outer surface of thylakoid membranes which correlated with the increased roughness of thylakoid surface. This enhancement in surface charge density could be due to the partial unstacking of thylakoids exposing more negatively charged groups from protein complexes on the membrane surface that prevent from possible aggregation upon drought stress.
Collapse
Affiliation(s)
- Virjinia Doltchinkova
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Konstantin Balashev
- Laboratory of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry and Pharmacia, Sofia University "St. Kliment Ohridski", 1164, Sofia, Bulgaria
| |
Collapse
|
8
|
Danielsson R, Albertsson PÅ. AQUEOUS POLYMER TWO-PHASE SYSTEMS AND THEIR USE IN FRAGMENTATION AND SEPARATION OF BIOLOGICAL MEMBRANES FOR THE PURPOSE OF MAPPING THE MEMBRANE STRUCTURE. Prep Biochem Biotechnol 2013; 43:512-25. [DOI: 10.1080/10826068.2013.773449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Rumak I, Mazur R, Gieczewska K, Kozioł-Lipińska J, Kierdaszuk B, Michalski WP, Shiell BJ, Venema JH, Vredenberg WJ, Mostowska A, Garstka M. Correlation between spatial (3D) structure of pea and bean thylakoid membranes and arrangement of chlorophyll-protein complexes. BMC PLANT BIOLOGY 2012; 12:72. [PMID: 22631450 PMCID: PMC3499227 DOI: 10.1186/1471-2229-12-72] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/10/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND The thylakoid system in plant chloroplasts is organized into two distinct domains: grana arranged in stacks of appressed membranes and non-appressed membranes consisting of stroma thylakoids and margins of granal stacks. It is argued that the reason for the development of appressed membranes in plants is that their photosynthetic apparatus need to cope with and survive ever-changing environmental conditions. It is not known however, why different plant species have different arrangements of grana within their chloroplasts. It is important to elucidate whether a different arrangement and distribution of appressed and non-appressed thylakoids in chloroplasts are linked with different qualitative and/or quantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranes and whether this arrangement influences the photosynthetic efficiency. RESULTS Our results from TEM and in situ CLSM strongly indicate the existence of different arrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids are regularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, while irregular appressed thylakoid membranes within bean chloroplasts correspond to smaller and less distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show a distinct spatial separation of stacked thylakoids from stromal spaces whereas spatial division of stroma and thylakoid areas in bean chloroplasts are more complex. Structural differences influenced the PSII photochemistry, however without significant changes in photosynthetic efficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well as spectroscopic investigations indicated a similar proportion between PSI and PSII core complexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones. Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSI supercomplexes between species are suggested. CONCLUSIONS Based on proteomic and spectroscopic investigations we postulate that the differences in the chloroplast structure between the analyzed species are a consequence of quantitative proportions between the individual CP complexes and its arrangement inside membranes. Such a structure of membranes induced the formation of large stacked domains in pea, or smaller heterogeneous regions in bean thylakoids. Presented 3D models of chloroplasts showed that stacked areas are noticeably irregular with variable thickness, merging with each other and not always parallel to each other.
Collapse
Affiliation(s)
- Izabela Rumak
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, PL-02-096, Poland
| | - Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, PL-02-096, Poland
| | - Katarzyna Gieczewska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, PL-02-096, Poland
| | - Joanna Kozioł-Lipińska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, PL-02-096, Poland
| | - Borys Kierdaszuk
- Department of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Żwirki i Wigury 93, Warsaw, PL-02-089, Poland
| | - Wojtek P Michalski
- Australian Animal Health Laboratory, CSIRO Livestock Industries, 5 Portarlington Road Geelong, Victoria, 3220, Australia
| | - Brian J Shiell
- Australian Animal Health Laboratory, CSIRO Livestock Industries, 5 Portarlington Road Geelong, Victoria, 3220, Australia
| | - Jan Henk Venema
- Laboratory of Plant Physiology, Centre for Ecological and Evolutionary Studies (CEES), University of Groningen, P.O. Box 11103, Groningen, 9700 CC, The Netherlands
| | - Wim J Vredenberg
- Department of Plant Physiology, Wageningen University and Research Centre, Wageningen, 6708 PB, The Netherlands
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, PL-02-096, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, PL-02-096, Poland
| |
Collapse
|
10
|
Adam Z, Charuvi D, Tsabari O, Knopf RR, Reich Z. Biogenesis of thylakoid networks in angiosperms: knowns and unknowns. PLANT MOLECULAR BIOLOGY 2011; 76:221-34. [PMID: 20859754 DOI: 10.1007/s11103-010-9693-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/10/2010] [Indexed: 05/06/2023]
Abstract
Aerobic life on Earth depends on oxygenic photosynthesis. This fundamentally important process is carried out within an elaborate membranous system, called the thylakoid network. In angiosperms, thylakoid networks are constructed almost from scratch by an intricate, light-dependent process in which lipids, proteins, and small organic molecules are assembled into morphologically and functionally differentiated, three-dimensional lamellar structures. In this review, we summarize the major events that occur during this complex, largely elusive process, concentrating on those that are directly involved in network formation and potentiation and highlighting gaps in our knowledge, which, as hinted by the title, are substantial.
Collapse
Affiliation(s)
- Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 76100 Rehovot, Israel.
| | | | | | | | | |
Collapse
|
11
|
Fristedt R, Granath P, Vener AV. A protein phosphorylation threshold for functional stacking of plant photosynthetic membranes. PLoS One 2010; 5:e10963. [PMID: 20532038 PMCID: PMC2881038 DOI: 10.1371/journal.pone.0010963] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 05/16/2010] [Indexed: 11/18/2022] Open
Abstract
Phosphorylation of photosystem II (PSII) proteins affects macroscopic structure of thylakoid photosynthetic membranes in chloroplasts of the model plant Arabidopsis. In this study, light-scattering spectroscopy revealed that stacking of thylakoids isolated from wild type Arabidopsis and the mutant lacking STN7 protein kinase was highly influenced by cation (Mg++) concentrations. The stacking of thylakoids from the stn8 and stn7stn8 mutants, deficient in STN8 kinase and consequently in light-dependent phosphorylation of PSII, was increased even in the absence of Mg++. Additional PSII protein phosphorylation in wild type plants exposed to high light enhanced Mg++-dependence of thylakoid stacking. Protein phosphorylation in the plant leaves was analyzed during day, night and prolonged darkness using three independent techniques: immunoblotting with anti-phosphothreonine antibodies; Diamond ProQ phosphoprotein staining; and quantitative mass spectrometry of peptides released from the thylakoid membranes by trypsin. All assays revealed dark/night-induced increase in phosphorylation of the 43 kDa chlorophyll-binding protein CP43, which compensated for decrease in phosphorylation of the other PSII proteins in wild type and stn7, but not in the stn8 and stn7stn8 mutants. Quantitative mass spectrometry determined that every PSII in wild type and stn7 contained on average 2.5±0.1 or 1.4±0.1 phosphoryl groups during day or night, correspondingly, while less than every second PSII had a phosphoryl group in stn8 and stn7stn8. It is postulated that functional cation-dependent stacking of plant thylakoid membranes requires at least one phosphoryl group per PSII, and increased phosphorylation of PSII in plants exposed to high light enhances stacking dynamics of the photosynthetic membranes.
Collapse
Affiliation(s)
- Rikard Fristedt
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Pontus Granath
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Alexander V. Vener
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
12
|
Morosinotto T, Segalla A, Giacometti GM, Bassi R. Purification of structurally intact grana from plants thylakoids membranes. J Bioenerg Biomembr 2010; 42:37-45. [DOI: 10.1007/s10863-009-9261-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 10/20/2009] [Indexed: 11/29/2022]
|
13
|
Fristedt R, Willig A, Granath P, Crèvecoeur M, Rochaix JD, Vener AV. Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis. THE PLANT CELL 2009; 21:3950-64. [PMID: 20028840 PMCID: PMC2814517 DOI: 10.1105/tpc.109.069435] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 11/23/2009] [Accepted: 11/29/2009] [Indexed: 05/18/2023]
Abstract
Photosynthetic thylakoid membranes in plants contain highly folded membrane layers enriched in photosystem II, which uses light energy to oxidize water and produce oxygen. The sunlight also causes quantitative phosphorylation of major photosystem II proteins. Analysis of the Arabidopsis thaliana stn7xstn8 double mutant deficient in thylakoid protein kinases STN7 and STN8 revealed light-independent phosphorylation of PsbH protein and greatly reduced N-terminal phosphorylation of D2 protein. The stn7xstn8 and stn8 mutants deficient in light-induced phosphorylation of photosystem II had increased thylakoid membrane folding compared with wild-type and stn7 plants. Significant enhancement in the size of stacked thylakoid membranes in stn7xstn8 and stn8 accelerated gravity-driven sedimentation of isolated thylakoids and was observed directly in plant leaves by transmission electron microscopy. Increased membrane folding, caused by the loss of light-induced protein phosphorylation, obstructed lateral migration of the photosystem II reaction center protein D1 and of processing protease FtsH between the stacked and unstacked membrane domains, suppressing turnover of damaged D1 in the leaves exposed to high light. These findings show that the high level of photosystem II phosphorylation in plants is required for adjustment of macroscopic folding of large photosynthetic membranes modulating lateral mobility of membrane proteins and sustained photosynthetic activity.
Collapse
Affiliation(s)
- Rikard Fristedt
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden
| | - Adrian Willig
- Departments of Molecular Biology and Plant Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Pontus Granath
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden
| | - Michèle Crèvecoeur
- Departments of Molecular Biology and Plant Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Alexander V. Vener
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden
- Address correspondence to
| |
Collapse
|
14
|
Broess K, Borst JW, van Amerongen H. Applying two-photon excitation fluorescence lifetime imaging microscopy to study photosynthesis in plant leaves. PHOTOSYNTHESIS RESEARCH 2009; 100:89-96. [PMID: 19468857 PMCID: PMC2693770 DOI: 10.1007/s11120-009-9431-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 04/27/2009] [Indexed: 05/20/2023]
Abstract
This study investigates to which extent two-photon excitation (TPE) fluorescence lifetime imaging microscopy can be applied to study picosecond fluorescence kinetics of individual chloroplasts in leaves. Using femtosecond 860 nm excitation pulses, fluorescence lifetimes can be measured in leaves of Arabidopsis thaliana and Alocasia wentii under excitation-annihilation free conditions, both for the F (0)- and the F (m)-state. The corresponding average lifetimes are approximately 250 ps and approximately 1.5 ns, respectively, similar to those of isolated chloroplasts. These values appear to be the same for chloroplasts in the top, middle, and bottom layer of the leaves. With the spatial resolution of approximately 500 nm in the focal (xy) plane and 2 microm in the z direction, it appears to be impossible to fully resolve the grana stacks and stroma lamellae, but variations in the fluorescence lifetimes, and thus of the composition on a pixel-to-pixel base can be observed.
Collapse
Affiliation(s)
- Koen Broess
- Laboratory of Biophysics, Wageningen University, PO Box 8128, 6700 ET Wageningen, The Netherlands
| | - Jan Willem Borst
- MicroSpectroscopy Centre, Wageningen University, 6703 HA Wageningen, The Netherlands
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, PO Box 8128, 6700 ET Wageningen, The Netherlands
- MicroSpectroscopy Centre, Wageningen University, 6703 HA Wageningen, The Netherlands
| |
Collapse
|
15
|
Hansson A, Jensen PE. Chlorophyll limitation in plants remodels and balances the photosynthetic apparatus by changing the accumulation of photosystems I and II through two different approaches. PHYSIOLOGIA PLANTARUM 2009; 135:214-228. [PMID: 19055541 DOI: 10.1111/j.1399-3054.2008.01181.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Arabidopsis plants with a reduced expression of CHL27 (chl27), an enzyme (EC 1.14.13.81) required for the synthesis of Pchlide, are chlorotic and have a Chl a/b ratio two times higher than wild-type (WT). Knockdown plants transformed with a construct constitutively expressing CHL27 recovered regarding Chl level, a/b ratio and 77K fluorescence. A negative correlation was found between total Chl and Chl a/b ratio in the examined plants. The chl27 plants fail to assemble WT amounts of complete PSI and PSII, leading to an elevated PSII/PSI ratio. The PSI remaining in chl27 is fully functional with a quantum yield higher than for WT. Despite a severe reduction of photosystem II antennae protein (LHCII) and an increased proportion of stroma lammella, the chl27 plants are able to perform state transitions. No major differences were found regarding PSII quantum yield, qN and 1 - qp whereas non-photochemical quenching was decreased by a factor two in chl27 plants. The PSII quantum yield for dark-adapted plants and plants given 10 min recovery after high light treatment were similar for both WT and chl27 showing that chl27 plants are not more susceptible to photoinhibition than WT. Taken together the plant manage to acclimate and to balance the two photosystems well even when it is severely limited in Chl. The way to achieve this differs for the two photosystems: regarding PSI a general reduction of core and antenna subunits occurs with no apparent change in the antenna composition; whereas for PSII there is a preferential loss of antenna proteins.
Collapse
Affiliation(s)
- Andreas Hansson
- Molecular Plant Biology Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, VKR Research Centre Pro-Active Plants, University of Copenhagen, 40 Thorvaldsensvej, Frederiksberg C, Denmark
| | | |
Collapse
|
16
|
Fragmentation and separation analysis of the photosynthetic membrane from spinach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:25-36. [DOI: 10.1016/j.bbabio.2008.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/28/2008] [Accepted: 10/03/2008] [Indexed: 11/21/2022]
|
17
|
Garstka M, Venema JH, Rumak I, Gieczewska K, Rosiak M, Koziol-Lipinska J, Kierdaszuk B, Vredenberg WJ, Mostowska A. Contrasting effect of dark-chilling on chloroplast structure and arrangement of chlorophyll-protein complexes in pea and tomato: plants with a different susceptibility to non-freezing temperature. PLANTA 2007; 226:1165-81. [PMID: 17569078 DOI: 10.1007/s00425-007-0562-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 05/24/2007] [Indexed: 05/15/2023]
Abstract
The effect of dark-chilling and subsequent photoactivation on chloroplast structure and arrangements of chlorophyll-protein complexes in thylakoid membranes was studied in chilling-tolerant (CT) pea and in chilling-sensitive (CS) tomato. Dark-chilling did not influence chlorophyll content and Chl a/b ratio in thylakoids of both species. A decline of Chl a fluorescence intensity and an increase of the ratio of fluorescence intensities of PSI and PSII at 120 K was observed after dark-chilling in thylakoids isolated from tomato, but not from pea leaves. Chilling of pea leaves induced an increase of the relative contribution of LHCII and PSII fluorescence. A substantial decrease of the LHCII/PSII fluorescence accompanied by an increase of that from LHCI/PSI was observed in thylakoids from chilled tomato leaves; both were attenuated by photoactivation. Chlorophyll fluorescence of bright grana discs in chloroplasts from dark-chilled leaves, detected by confocal laser scanning microscopy, was more condensed in pea but significantly dispersed in tomato, compared with control samples. The chloroplast images from transmission-electron microscopy revealed that dark-chilling induced an increase of the degree of grana stacking only in pea chloroplasts. Analyses of O-J-D-I-P fluorescence induction curves in leaves of CS tomato before and after recovery from chilling indicate changes in electron transport rates at acceptor- and donor side of PS II and an increase in antenna size. In CT pea leaves these effects were absent, except for a small but irreversible effect on PSII activity and antenna size. Thus, the differences in chloroplast structure between CS and CT plants, induced by dark-chilling are a consequence of different thylakoid supercomplexes rearrangements.
Collapse
Affiliation(s)
- Maciej Garstka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
van der Weij-de Wit CD, Ihalainen JA, van Grondelle R, Dekker JP. Excitation energy transfer in native and unstacked thylakoid membranes studied by low temperature and ultrafast fluorescence spectroscopy. PHOTOSYNTHESIS RESEARCH 2007; 93:173-82. [PMID: 17390231 DOI: 10.1007/s11120-007-9157-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 03/02/2007] [Indexed: 05/14/2023]
Abstract
In this work, the transfer of excitation energy was studied in native and cation-depletion induced, unstacked thylakoid membranes of spinach by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission spectra at 5 K show an increase in photosystem I (PSI) emission upon unstacking, which suggests an increase of its antenna size. Fluorescence excitation measurements at 77 K indicate that the increase of PSI emission upon unstacking is caused both by a direct spillover from the photosystem II (PSII) core antenna and by a functional association of light-harvesting complex II (LHCII) to PSI, which is most likely caused by the formation of LHCII-LHCI-PSI supercomplexes. Time-resolved fluorescence measurements, both at room temperature and at 77 K, reveal differences in the fluorescence decay kinetics of stacked and unstacked membranes. Energy transfer between LHCII and PSI is observed to take place within 25 ps at room temperature and within 38 ps at 77 K, consistent with the formation of LHCII-LHCI-PSI supercomplexes. At the 150-160 ps timescale, both energy transfer from LHCII to PSI as well as spillover from the core antenna of PSII to PSI is shown to occur at 77 K. At room temperature the spillover and energy transfer to PSI is less clear at the 150 ps timescale, because these processes compete with charge separation in the PSII reaction center, which also takes place at a timescale of about 150 ps.
Collapse
Affiliation(s)
- C D van der Weij-de Wit
- Faculty of Sciences, Department of Physics and Astronomy, Section Biophysics, Vrije Universiteit, De Boelelaan 1081, Amsterdam, 1081 HV, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Fan DY, Hope AB, Smith PJ, Jia H, Pace RJ, Anderson JM, Chow WS. The stoichiometry of the two photosystems in higher plants revisited. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1064-72. [PMID: 17618597 DOI: 10.1016/j.bbabio.2007.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/23/2007] [Accepted: 05/31/2007] [Indexed: 11/25/2022]
Abstract
The stoichiometry of Photosystem II (PSII) to Photosystem I (PSI) reaction centres in spinach leaf segments was determined by two methods, each capable of being applied to monitor the presence of both photosystems in a given sample. One method was based on a fast electrochromic (EC) signal, which in the millisecond time scale represents a change in the delocalized electric potential difference across the thylakoid membrane resulting from charge separation in both photosystems. This method was applied to leaf segments, thus avoiding any potential artefacts associated with the isolation of thylakoid membranes. Two variations of this method, suppressing PSII activity by prior photoinactivation (in spinach and poplar leaf segments) or suppressing PSI by photo-oxidation of P700 (the chlorophyll dimer in PSI) with background far-red light (in spinach, poplar and cucumber leaf segments), each gave the separate contribution of each photosystem to the fast EC signal; the PSII/PSI stoichiometry obtained by this method was in the range 1.5-1.9 for the three plant species, and 1.5-1.8 for spinach in particular. A second method, based on electron paramagnetic resonance (EPR), gave values in a comparable range of 1.7-2.1 for spinach. A third method, which consisted of separately determining the content of functional PSII in leaf segments by the oxygen yield per single turnover-flash and that of PSI by photo-oxidation of P700 in thylakoids isolated from the corresponding leaves, gave a PSII/PSI stoichiometry (1.5-1.7) that was consistent with the above values. It is concluded that the ratio of PSII to PSI reaction centres is considerably higher than unity in typical higher plants, in contrast to a surprisingly low PSII/PSI ratio of 0.88, determined by EPR, that was reported for spinach grown in a cabinet under far-red-deficient light in Sweden [Danielsson et al. (2004) Biochim. Biophys. Acta 1608: 53-61]. We suggest that the low PSII/PSI ratio in the Swedish spinach, grown in far-red-deficient light with a lower PSII content, is not due to greater accuracy of the EPR method of measurement, as suggested by the authors, but is rather due to the growth conditions.
Collapse
Affiliation(s)
- Da-Yong Fan
- Photobioenergetics Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Ekman Å, Bülow L, Stymne S. Elevated atmospheric CO(2) concentration and diurnal cycle induce changes in lipid composition in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2007; 174:591-599. [PMID: 17447914 DOI: 10.1111/j.1469-8137.2007.02027.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Few studies regarding the effects of elevated atmospheric CO(2) concentrations on plant lipid metabolism have been carried out. Here, the effects of elevated CO(2) concentration on lipid composition in mature seeds and in leaves during the diurnal cycle of Arabidopsis thaliana were investigated. Plants were grown in controlled climate chambers at elevated (800 ppm) and ambient CO(2) concentrations. Lipids were extracted and characterized using thin layer chromatography (TLC) and gas liquid chromatography. The fatty acid profile of total leaf lipids showed large diurnal variations. However, the elevated CO(2) concentration did not induce any significant differences in the diurnal pattern compared with the ambient concentration. The major chloroplast lipids monogalactosyldiacylglycerol (MGDG) and phosphatidylglycerol (PG) were decreased at elevated CO(2) in favour of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Elevated CO(2) produced a 25% lower ratio of 16:1trans to 16:0 in PG compared with the ambient concentration. With good nutrient supply, growth at elevated CO(2) did not significantly affect single seed weight, total seed mass, oil yield per seed, or the fatty acid profile of the seeds. This study has shown that elevated CO(2) induced changes in leaf lipid composition in A. thaliana, whereas seed lipids were unaffected.
Collapse
Affiliation(s)
- Åsa Ekman
- Department of Crop Science, Swedish University of Agricultural Sciences, PO Box 44, SE-23053 Alnarp, Sweden
- Department of Pure and Applied Biochemistry, Centre for Chemistry and Chemical Engineering, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | - Leif Bülow
- Department of Pure and Applied Biochemistry, Centre for Chemistry and Chemical Engineering, Lund University, PO Box 124, SE-22100 Lund, Sweden
| | - Sten Stymne
- Department of Crop Science, Swedish University of Agricultural Sciences, PO Box 44, SE-23053 Alnarp, Sweden
| |
Collapse
|
21
|
Gao H, Sage TL, Osteryoung KW. FZL, an FZO-like protein in plants, is a determinant of thylakoid and chloroplast morphology. Proc Natl Acad Sci U S A 2006; 103:6759-64. [PMID: 16617119 PMCID: PMC1458954 DOI: 10.1073/pnas.0507287103] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FZO is a dynamin-related membrane-remodeling protein that mediates fusion between mitochondrial outer membranes in animals and fungi. We identified a single FZO-like protein in Arabidopsis, FZL, a new plant-specific member of the dynamin superfamily. FZL is targeted to chloroplasts and associated with thylakoid and envelope membranes as punctate structures. fzl knockout mutants have abnormalities in chloroplast and thylakoid morphology, including disorganized grana stacks and alterations in the relative proportions of grana and stroma thylakoids. Overexpression of FZL-GFP also conferred defects in thylakoid organization. Mutation of a conserved residue in the predicted FZL GTPase domain abolished both the punctate localization pattern and ability of FZL-GFP to complement the fzl mutant phenotype. FZL defines a new protein class within the dynamin superfamily of membrane-remodeling GTPases that regulates organization of the thylakoid network in plants. Notably, FZL levels do not affect mitochondrial morphology or ultrastructure, suggesting that mitochondrial morphology in plants is regulated by an FZO-independent mechanism.
Collapse
Affiliation(s)
- Hongbo Gao
- *Department of Plant Biology and
- Genetics Graduate Program, Michigan State University, East Lansing, MI 48824; and
| | - Tammy L. Sage
- Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada M5S 3B2
| | - Katherine W. Osteryoung
- *Department of Plant Biology and
- To whom correspondence should be addressed at:
Department of Plant Biology, 166 Plant Biology Building, Michigan State University, East Lansing, MI 48824. E-mail:
| |
Collapse
|
22
|
Abstract
Oxygenic photosynthesis, the principal converter of sunlight into chemical energy on earth, is catalyzed by four multi-subunit membrane-protein complexes: photosystem I (PSI), photosystem II (PSII), the cytochrome b(6)f complex, and F-ATPase. PSI generates the most negative redox potential in nature and largely determines the global amount of enthalpy in living systems. PSII generates an oxidant whose redox potential is high enough to enable it to oxidize H(2)O, a substrate so abundant that it assures a practically unlimited electron source for life on earth. During the last century, the sophisticated techniques of spectroscopy, molecular genetics, and biochemistry were used to reveal the structure and function of the two photosystems. The new structures of PSI and PSII from cyanobacteria, algae, and plants has shed light not only on the architecture and mechanism of action of these intricate membrane complexes, but also on the evolutionary forces that shaped oxygenic photosynthesis.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
23
|
Baldisserotto C, Ferroni L, Moro I, Fasulo MP, Pancaldi S. Modulations of the thylakoid system in snow xanthophycean alga cultured in the dark for two months: comparison between microspectrofluorimetric responses and morphological aspects. PROTOPLASMA 2005; 226:125-35. [PMID: 16333571 DOI: 10.1007/s00709-005-0127-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 05/25/2005] [Indexed: 05/05/2023]
Abstract
The response of the plastid was studied, with a special emphasis on thylakoid structure and function, in a snow filamentous xanthophycean alga (Xanthonema sp.) incubated in darkness for two months. Microspectrofluorimetric analyses were performed on single living cells to study the variations in the assembly of the chlorophyll-protein complexes of photosystem II, in comparison with cells grown in light. In parallel, changes in micro- and submicroscopic plastid morphology and in photosynthetic pigment content were monitored. Throughout the experiment, the lamellar architecture of thylakoids in the alga was relatively well preserved, whereas photosystem II underwent disassembly and degradation triggered by prolonged darkness. Conversely, the light-harvesting complex of photosystem II proved to be relatively stable for long periods in darkness. Moreover, a role of the peripheral antennae in determining thylakoid arrangement in xanthophycean algae is implied. Although the responses observed in Xanthonema sp. can be considered in terms of acclimation to darkness, the progressive destabilisation of the light-harvesting complex of photosystem II testifies to incipient ageing of the cells after 35 days.
Collapse
Affiliation(s)
- C Baldisserotto
- Laboratory of Cytophysiology, Department of Natural and Cultural Resources, University of Ferrara, Corso Ercole I d'Este 32, 44100 Ferrara, Italy
| | | | | | | | | |
Collapse
|
24
|
Dekker JP, Boekema EJ. Supramolecular organization of thylakoid membrane proteins in green plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1706:12-39. [PMID: 15620363 DOI: 10.1016/j.bbabio.2004.09.009] [Citation(s) in RCA: 598] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 09/10/2004] [Accepted: 09/15/2004] [Indexed: 11/26/2022]
Abstract
The light reactions of photosynthesis in green plants are mediated by four large protein complexes, embedded in the thylakoid membrane of the chloroplast. Photosystem I (PSI) and Photosystem II (PSII) are both organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. PSI consists of a monomeric core complex with single copies of four different LHCI proteins and has binding sites for additional LHCI and/or LHCII complexes. PSII supercomplexes are dimeric and contain usually two to four copies of trimeric LHCII complexes. These supercomplexes have a further tendency to associate into megacomplexes or into crystalline domains, of which several types have been characterized. Together with the specific lipid composition, the structural features of the main protein complexes of the thylakoid membranes form the main trigger for the segregation of PSII and LHCII from PSI and ATPase into stacked grana membranes. We suggest that the margins, the strongly folded regions of the membranes that connect the grana, are essentially protein-free, and that protein-protein interactions in the lumen also determine the shape of the grana. We also discuss which mechanisms determine the stacking of the thylakoid membranes and how the supramolecular organization of the pigment-protein complexes in the thylakoid membrane and their flexibility may play roles in various regulatory mechanisms of green plant photosynthesis.
Collapse
Affiliation(s)
- Jan P Dekker
- Faculty of Sciences, Division of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands.
| | | |
Collapse
|