1
|
Saleh Z, Mirzazadeh S, Mirzaei F, Heidarnejad K, Meri S, Kalantar K. Alterations in metabolic pathways: a bridge between aging and weaker innate immune response. FRONTIERS IN AGING 2024; 5:1358330. [PMID: 38505645 PMCID: PMC10949225 DOI: 10.3389/fragi.2024.1358330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/21/2024]
Abstract
Aging is a time-dependent progressive physiological process, which results in impaired immune system function. Age-related changes in immune function increase the susceptibility to many diseases such as infections, autoimmune diseases, and cancer. Different metabolic pathways including glycolysis, tricarboxylic acid cycle, amino acid metabolism, pentose phosphate pathway, fatty acid oxidation and fatty acid synthesis regulate the development, differentiation, and response of adaptive and innate immune cells. During aging all these pathways change in the immune cells. In addition to the changes in metabolic pathways, the function and structure of mitochondria also have changed in the immune cells. Thereby, we will review changes in the metabolism of different innate immune cells during the aging process.
Collapse
Affiliation(s)
- Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Mirzazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mirzaei
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Heidarnejad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Lee JL, Linterman MA. Mechanisms underpinning poor antibody responses to vaccines in ageing. Immunol Lett 2022; 241:1-14. [PMID: 34767859 PMCID: PMC8765414 DOI: 10.1016/j.imlet.2021.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
Vaccines are a highly effective intervention for conferring protection against infections and reducing the associated morbidity and mortality in vaccinated individuals. However, ageing is often associated with a functional decline in the immune system that results in poor antibody production in older individuals after vaccination. A key contributing factor of this age-related decline in vaccine efficacy is the reduced size and function of the germinal centre (GC) response. GCs are specialised microstructures where B cells undergo affinity maturation and diversification of their antibody genes, before differentiating into long-lived antibody-secreting plasma cells and memory B cells. The GC response requires the coordinated interaction of many different cell types, including B cells, T follicular helper (Tfh) cells, T follicular regulatory (Tfr) cells and stromal cell subsets like follicular dendritic cells (FDCs). This review discusses how ageing affects different components of the GC reaction that contribute to its limited output and ultimately impaired antibody responses in older individuals after vaccination. An understanding of the mechanisms underpinning the age-related decline in the GC response is crucial in informing strategies to improve vaccine efficacy and extend the healthy lifespan amongst older people.
Collapse
Affiliation(s)
- Jia Le Lee
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Michelle A Linterman
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
3
|
Lagousi T, Basdeki P, De Jonge MI, Spoulou V. Understanding host immune responses to pneumococcal proteins in the upper respiratory tract to develop serotype-independent pneumococcal vaccines. Expert Rev Vaccines 2020; 19:959-972. [PMID: 33107359 DOI: 10.1080/14760584.2020.1843433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Nasopharyngeal colonization is a precondition for mucosal and invasive pneumococcal disease. Prevention of colonization may reduce pneumococcal transmission and disease incidence. Therefore, several protein-based pneumococcal vaccines are currently under investigation. Areas covered: We aimed to better understand the host immune responses to pneumococcal proteins in the upper respiratory tract (URT) that could facilitate the development of serotype-independent pneumococcal vaccines. English peer-reviewed papers reporting immunological mechanisms involved in host immune response to pneumococcal proteins in the URT were retrieved through a PubMed search using the terms 'pneumococcal proteins,' 'nasopharyngeal colonization' and/or 'cellular/humoral host immune response.' Expert opinion: Although pneumococcal protein antigens induce humoral immune responses, as well as IL-17A-mediated immunity, none of them, when used as single antigen, is sufficient to control and broadly protect against pneumococcal colonization. Novel vaccines should contain multiple conserved protein antigens to activate both arms of the immune system and evoke protection against the whole spectrum of pneumococcal variants by reducing, rather than eradicating, pneumococcal carriage. The highest efficacy would likely be achieved when the vaccine is intranasally applied, inducing mucosal immunity and enhancing the first line of defense by restricting pneumococcal density in the URT, which in turn will lead to reduced transmission and protection against disease.
Collapse
Affiliation(s)
- Theano Lagousi
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA", Athens Medical School , Athens, Greece
| | - Paraskevi Basdeki
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA", Athens Medical School , Athens, Greece
| | - Marien I De Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands
| | - Vana Spoulou
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA", Athens Medical School , Athens, Greece
| |
Collapse
|
4
|
Fialkowski A, Gernez Y, Arya P, Weinacht KG, Kinane TB, Yonker LM. Insight into the pediatric and adult dichotomy of COVID-19: Age-related differences in the immune response to SARS-CoV-2 infection. Pediatr Pulmonol 2020; 55:2556-2564. [PMID: 32710693 DOI: 10.1002/ppul.24981] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
The difference in morbidity and mortality between adult and pediatric coronavirus disease 2019 infections is dramatic. Understanding pediatric-specific acute and delayed immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for the development of vaccination strategies, immune-targeted therapies, and treatment and prevention of multisystem inflammatory syndrome in children. The goal of this review is to highlight research developments in the understanding of the immune responses to SARS-CoV-2 infections, with a specific focus on age-related immune responses.
Collapse
Affiliation(s)
| | - Yael Gernez
- Department of Pediatric Allergy and Immunology, Stanford University, Stanford, California
| | - Puneeta Arya
- Harvard Medical School, Boston, Massachusetts.,Division of Cardiology, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Katja G Weinacht
- Department of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Stanford, California
| | - T Bernard Kinane
- Harvard Medical School, Boston, Massachusetts.,Division of Pulmonary, Massachusetts General Hospital for Children, Boston, Massachusetts
| | - Lael M Yonker
- Harvard Medical School, Boston, Massachusetts.,Division of Pulmonary, Massachusetts General Hospital for Children, Boston, Massachusetts
| |
Collapse
|
5
|
Keilich SR, Bartley JM, Haynes L. Diminished immune responses with aging predispose older adults to common and uncommon influenza complications. Cell Immunol 2019; 345:103992. [PMID: 31627841 PMCID: PMC6939636 DOI: 10.1016/j.cellimm.2019.103992] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Influenza (flu) is a serious disease for older adults, with increased severity of infection and greater risk for hospitalization and death. Flu infection is limited to pulmonary epithelial cells, yet there are many systemic symptoms and older adults are more susceptible to flu-related complications. In older adults, flu rarely comes without additional complications and there is a perfect storm for enhanced disease due to multiple factors including existing co-morbidities, plus impaired lung function and dysregulated immune responses that occur with even healthy aging. Commonly, opportunistic secondary bacterial infections prosper in damaged lungs. Intensified systemic inflammation with aging can cause dysfunction in extra-pulmonary organs and tissues such as cardiovascular, musculoskeletal, neuropathologic, hepatic, and renal complications. Often overlooked is the underappreciated connections between many of these conditions, which exacerbate one another when in parallel. This review focuses on flu infection and the numerous complications in older adults associated with diminished immune responses.
Collapse
Affiliation(s)
- Spencer R Keilich
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT 06030, USA.
| | - Jenna M Bartley
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT 06030, USA; Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA.
| | - Laura Haynes
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT 06030, USA; Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA.
| |
Collapse
|
6
|
Lymphocyte Counts are Dynamic and Associated with Survival after Transcatheter Aortic Valve Replacement. STRUCTURAL HEART-THE JOURNAL OF THE HEART TEAM 2018. [DOI: 10.1080/24748706.2018.1522680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Pilkington SM, Ogden S, Eaton LH, Dearman RJ, Kimber I, Griffiths CEM. Lower levels of interleukin-1β gene expression are associated with impaired Langerhans' cell migration in aged human skin. Immunology 2017; 153:60-70. [PMID: 28777886 PMCID: PMC5721243 DOI: 10.1111/imm.12810] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/10/2017] [Accepted: 07/29/2017] [Indexed: 01/02/2023] Open
Abstract
Langerhans' cells (LC) play pivotal roles in skin immune responses, linking innate and adaptive immunity. In aged skin there are fewer LC and migration is impaired compared with young skin. These changes may contribute to declining skin immunity in the elderly, including increased skin infections and skin cancer. Interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) are mandatory signals for LC migration and previous studies suggest that IL-1β signalling may be dysregulated in aged skin. Therefore, we sought to explore the mechanisms underlying these phenomena. In skin biopsies of photoprotected young (< 30 years) and aged (> 70 years) human skin ex vivo, we assessed the impact of trauma, and mandatory LC mobilizing signals on LC migration and gene expression. Biopsy-related trauma induced LC migration from young epidermis, whereas in aged skin, migration was greatly reduced. Interleukin-1β treatment restored LC migration in aged epidermis whereas TNF-α was without effect. In uncultured, aged skin IL-1β gene expression was lower compared with young skin; following culture, IL-1βmRNA remained lower in aged skin under control and TNF-α conditions but was elevated after culture with IL-1β. Interleukin-1 receptor type 2 (IL1R2) gene expression was significantly increased in aged, but not young skin, after cytokine treatment. Keratinocyte-derived factors secreted from young and aged primary cells did not restore or inhibit LC migration from aged and young epidermis, respectively. These data suggest that in aged skin, IL-1β signalling is diminished due to altered expression of IL1B and decoy receptor gene IL1R2.
Collapse
Affiliation(s)
- Suzanne M Pilkington
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Stephanie Ogden
- The Dermatology Centre, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Laura H Eaton
- The Dermatology Centre, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Rebecca J Dearman
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Ian Kimber
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Christopher E M Griffiths
- The Dermatology Centre, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, Flores G, Díaz A, Guevara J. Alzheimer's disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse 2017. [PMID: 28650104 DOI: 10.1002/syn.21990] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and one of the most important causes of morbidity and mortality among the aging population. AD diagnosis is made post-mortem, and the two pathologic hallmarks, particularly evident in the end stages of the illness, are amyloid plaques and neurofibrillary tangles. Currently, there is no curative treatment for AD. Additionally, there is a strong relation between oxidative stress, metabolic syndrome, and AD. The high levels of circulating lipids and glucose imbalances amplify lipid peroxidation that gradually diminishes the antioxidant systems, causing high levels of oxidative metabolism that affects cell structure, leading to neuronal damage. Accumulating evidence suggests that AD is closely related to a dysfunction of both insulin signaling and glucose metabolism in the brain, leading to an insulin-resistant brain state. Four drugs are currently used for this pathology: Three FDA-approved cholinesterase inhibitors and one NMDA receptor antagonist. However, wide varieties of antioxidants are promissory to delay or prevent the symptoms of AD and may help in treating the disease. Therefore, therapeutic efforts to achieve attenuation of oxidative stress could be beneficial in AD treatment, attenuating Aβ-induced neurotoxicity and improve neurological outcomes in AD. The term inflammaging characterizes a widely accepted paradigm that aging is accompanied by a low-grade chronic up-regulation of certain pro-inflammatory responses in the absence of overt infection, and is a highly significant risk factor for both morbidity and mortality in the elderly.
Collapse
Affiliation(s)
- Eduardo Rojas-Gutierrez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guadalupe Muñoz-Arenas
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias-INER, Ciudad de México, Mexico
| | - Raúl Chavez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karla Rojas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
9
|
Brahmakshatriya V, Kuang Y, Devarajan P, Xia J, Zhang W, Vong AM, Swain SL. IL-6 Production by TLR-Activated APC Broadly Enhances Aged Cognate CD4 Helper and B Cell Antibody Responses In Vivo. THE JOURNAL OF IMMUNOLOGY 2017; 198:2819-2833. [PMID: 28250157 DOI: 10.4049/jimmunol.1601119] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/29/2017] [Indexed: 12/15/2022]
Abstract
Naive CD4 T cell responses, especially their ability to help B cell responses, become compromised with aging. We find that using APC pretreated ex vivo with TLR agonists, polyinosinic-polycytidylic acid and CpG, to prime naive CD4 T cells in vivo, restores their ability to expand and become germinal center T follicular helpers and enhances B cell IgG Ab production. Enhanced helper responses are dependent on IL-6 production by the activated APC. Aged naive CD4 T cells respond suboptimally to IL-6 compared with young cells, such that higher doses are required to induce comparable signaling. Preactivating APC overcomes this deficiency. Responses of young CD4 T cells are also enhanced by preactivating APC with similar effects but with only partial IL-6 dependency. Strikingly, introducing just the activated APC into aged mice significantly enhances otherwise compromised Ab production to inactivated influenza vaccine. These findings reveal a central role for the production of IL-6 by APC during initial cognate interactions in the generation of effective CD4 T cell help, which becomes greater with age. Without APC activation, aging CD4 T cell responses shift toward IL-6-independent Th1 and CD4 cytotoxic Th cell responses. Thus, strategies that specifically activate and provide Ag to APC could potentially enhance Ab-mediated protection in vaccine responses.
Collapse
Affiliation(s)
| | - Yi Kuang
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - Jingya Xia
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Wenliang Zhang
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Allen Minh Vong
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
10
|
Pae M, Wu D. Nutritional modulation of age-related changes in the immune system and risk of infection. Nutr Res 2017; 41:14-35. [PMID: 28577789 DOI: 10.1016/j.nutres.2017.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/18/2017] [Accepted: 02/01/2017] [Indexed: 01/20/2023]
Abstract
The immune system undergoes some adverse alterations during aging, many of which have been implicated in the increased morbidity and mortality associated with infection in the elderly. In addition to intrinsic changes to the immune system with aging, the elderly are more likely to have poor nutritional status, which further impacts the already impaired immune function. Although the elderly often have low zinc serum levels, several manifestations commonly observed during zinc deficiency are similar to the changes in immune function with aging. In the case of vitamin E, although its deficiency is rare, the intake above recommended levels is shown to enhance immune functions in the elderly and to reduce the risk of acquiring upper respiratory infections in nursing home residents. Vitamin D is a critical vitamin in bone metabolism, and its deficiency is far more common, which has been linked to increased risk of infection as demonstrated in a number of observational studies including those in the elderly. In this review, we focus on zinc, vitamin E, and vitamin D, the 3 nutrients which are relatively well documented for their roles in impacting immune function and infection in the elderly, to discuss the findings in this context reported in both the observational studies and interventional clinical trials. A perspective will be provided based on the analysis of information under review.
Collapse
Affiliation(s)
- Munkyong Pae
- Department of Food and Nutrition, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea.
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St, Boston, MA 02111, USA.
| |
Collapse
|
11
|
Boe DM, Boule LA, Kovacs EJ. Innate immune responses in the ageing lung. Clin Exp Immunol 2016; 187:16-25. [PMID: 27711979 DOI: 10.1111/cei.12881] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
The world is undergoing an unprecedented shift in demographics, with the number of individuals over the age of 60 years projected to reach 2 billion or more by 2050, representing 22% of the global population. Elderly people are at a higher risk for chronic disease and more susceptible to infection, due in part to age-related dysfunction of the immune system resulting from low-grade chronic inflammation known as 'inflamm-ageing'. The innate immune system of older individuals exhibits a diminished ability to respond to microbial threats and clear infections, resulting in a greater occurrence of many infectious diseases in elderly people. In particular, the incidence of and mortality from lung infections increase sharply with age, with such infections often leading to worse outcomes, prolonged hospital stays and life-threatening complications, such as sepsis or acute respiratory distress syndrome. In this review, we highlight research on bacterial pneumonias and pulmonary viral infections and discuss age-related changes in innate immunity that contribute to the higher rate of these infections in older populations. By understanding more clearly the innate immune defects in elderly individuals, we can design age-specific therapies to address lung infections in such a vulnerable population.
Collapse
Affiliation(s)
- D M Boe
- Division of GI, Endocrine and Tumor Surgery, Department of Surgery, Mucosal Inflammation Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - L A Boule
- Division of GI, Endocrine and Tumor Surgery, Department of Surgery, Mucosal Inflammation Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - E J Kovacs
- Division of GI, Endocrine and Tumor Surgery, Department of Surgery, Mucosal Inflammation Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
12
|
Abstract
Increasing evidence has revealed the incidence of cancer augments with aging, which could be attributed to a multitude of age-associated changes including the dysregulation of the immune system. Although many reports demonstrate the efficacy of cancer immunotherapies in numerous preclinical studies, most experiments have been performed in young animals. Studies from our group and others show that cancer immunotherapy could be ineffective in old mice, even though the same therapeutic treatment works efficiently in young mice. Given that cancer occurs mostly in the elderly, we should take age-associated immune dysregulation into consideration to achieve the effectiveness of immunotherapeutic interventions in the old. Understanding both age-related and tumor-related immune alterations might be equally important in improving the effectiveness of immunotherapy. This article reviews a number of age-associated immune alterations with specific attention given to the impact on antitumor responses, and also discusses possible strategies for optimization of immunotherapeutic interventions in the elderly.
Collapse
Affiliation(s)
- Kei Tomihara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama City, Toyama 930-0194, Japan
| | - Tyler J Curiel
- Department of Medicine, Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
13
|
Dynamic behavior of lymphocyte subgroups correlates with clinical outcomes in human H7N9 infection. J Infect 2014; 69:358-65. [PMID: 24841136 DOI: 10.1016/j.jinf.2014.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/15/2014] [Accepted: 05/08/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To investigate peripheral blood lymphocyte subgroups response to the H7N9 virus and identify potential correlations between the anti-viral response and clinical outcomes in infected patients. METHODS T lymphocyte subgroups, cytokine/chemokine levels in peripheral blood and H7N9 viral loads in the sputum were measured for 53 H7N9 patients (14 lethal and 39 non-lethal cases). 22 H1N1 patients and 15 healthy volunteers were selected as controls. RESULTS Low proportions of T cells were observed in H7N9-infected individuals, particularly those who later died, and these correlated with clinical APACHE II scores and H7N9 virus loads in sputum. T-cell levels fluctuated during hospitalization and decreased suddenly on the day of death in those who succumbed to infection, whereas a dramatic increase in lymphocyte subgroups was observed in those who survived beyond the early stage of infection, with the levels of most lymphocyte subgroups significantly higher during the recovery phase compared to the early phase of infection. A cytokine/chemokine storm was also confirmed in this study. CONCLUSIONS H7N9-infected individuals have low proportions of peripheral blood T lymphocyte subgroups, particularly those suffering fatal infections. The numbers of CD3(+) T cells (including CD4(+) and CD8(+) T cells) may predict the clinical outcome of human H7N9 infection.
Collapse
|
14
|
Boldizsar F, Mikecz K, Glant TT. Immunosenescence and its potential modulation: lessons from mouse models. Expert Rev Clin Immunol 2014; 6:353-7. [DOI: 10.1586/eci.10.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Abstract
The oral cavity contains distinct mucosal surfaces, each with its own unique distribution of dendritic cell (DC) subsets. In addition to tissue-specific properties, such organization might confer differential immune outcomes guided by tissue-resident DCs, which translate in the lymph node into an overall immune response. This process is further complicated by continual exposure and colonization of the oral cavity with enormous numbers of diverse microbes, some of which might induce destructive immunity. As a central cell type constantly monitoring changes in oral microbiota and orchestrating T-cell function, oral DCs are of major importance in deciding whether to induce immunity or tolerance. In this review, an overview of the phenotype and distribution of DCs in the oral mucosa is provided. In addition, the role of the various oral DC subsets in inducing immunity vs. tolerance, as well as their involvement in several oral pathologies is discussed.
Collapse
|
16
|
Jiang J, Fisher E, Murasko DM. Impaired specific CD8 T cell response with aging is not due to decreased expression of CD90 on TCR transgenic T cells. Immun Ageing 2013; 10:36. [PMID: 23957960 PMCID: PMC3765213 DOI: 10.1186/1742-4933-10-36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/16/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND CD90 (Thy-1) is a small glycoprotein that is particularly abundant on the surface of mouse thymocytes and peripheral T cells, and is often used as a marker in adoptive transfer experiments to distinguish donor and recipient T cells with different CD90 subtypes. We have performed adoptive transfer experiments with T cell receptor transgenic (TCR Tg) mice to study the impaired CD8 T cell response with aging. FINDINGS After stimulation with a CD8 T cell epitope, HA518-524, the response of TCR Tg CD8 T cells from aged mice was decreased compared to the response of TCR Tg T cells from young mice. CD90 expression was also substantially decreased on the TCR Tg CD8 T cells of aged mice. However, the responses of CD90hi and CD90low CD8 T cells of the aged mice were similar in both early activation and proliferation, demonstrating that the impaired Tg T cell response with aging is not associated with the altered CD90 expression on CD8 T cells. CONCLUSIONS The impaired Tg CD8 T cell response in aged mice is not due to age-associated changes in CD90 expression on Tg CD8 T cells.
Collapse
Affiliation(s)
- Jiu Jiang
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Erin Fisher
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Donna M Murasko
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Heinbokel T, Elkhal A, Liu G, Edtinger K, Tullius SG. Immunosenescence and organ transplantation. Transplant Rev (Orlando) 2013; 27:65-75. [PMID: 23639337 PMCID: PMC3718545 DOI: 10.1016/j.trre.2013.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 12/17/2012] [Accepted: 03/19/2013] [Indexed: 12/22/2022]
Abstract
Increasing numbers of elderly transplant recipients and a growing demand for organs from older donors impose pressing challenges on transplantation medicine. Continuous and complex modifications of the immune system in parallel to aging have a major impact on transplant outcome and organ quality. Both, altered alloimmune responses and increased immunogenicity of organs present risk factors for inferior patient and graft survival. Moreover, a growing body of knowledge on age-dependent modifications of allorecognition and alloimmune responses may require age-adapted immunosuppression and organ allocation. Here, we summarize relevant aspects of immunosenescence and their possible clinical impact on organ transplantation.
Collapse
Affiliation(s)
- Timm Heinbokel
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Abdallah Elkhal
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Guangxiang Liu
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Karoline Edtinger
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Stefan G. Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Chen G, Lustig A, Weng NP. T cell aging: a review of the transcriptional changes determined from genome-wide analysis. Front Immunol 2013; 4:121. [PMID: 23730304 PMCID: PMC3657702 DOI: 10.3389/fimmu.2013.00121] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/06/2013] [Indexed: 12/14/2022] Open
Abstract
Age carries a detrimental impact on T cell function. In the past decade, analyses of the genome-scale transcriptional changes of T cells during aging have yielded a large amount of data and provided a global view of gene expression changes in T cells from aged hosts as well as subsets of T cells accumulated with age. Here, we aim to review the changes of gene expression in thymocytes and peripheral mature T cells, as well as the subsets of T cells accumulated with age, and discuss the gene networks and signaling pathways that are altered with aging in T cells. We also discuss future direction for furthering the understanding of the molecular basis of gene expression alterations in aged T cells, which could potentially provide opportunities for gene-based clinical interventions.
Collapse
Affiliation(s)
- Guobing Chen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | | | | |
Collapse
|
19
|
Khademi M, Dring AM, Gilthorpe JD, Wuolikainen A, Al Nimer F, Harris RA, Andersson M, Brundin L, Piehl F, Olsson T, Svenningsson A. Intense inflammation and nerve damage in early multiple sclerosis subsides at older age: a reflection by cerebrospinal fluid biomarkers. PLoS One 2013; 8:e63172. [PMID: 23667585 PMCID: PMC3646751 DOI: 10.1371/journal.pone.0063172] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/28/2013] [Indexed: 02/02/2023] Open
Abstract
Inflammatory mediators have crucial roles in leukocyte recruitment and subsequent central nervous system (CNS) neuroinflammation. The extent of neuronal injury and axonal loss are associated with the degree of CNS inflammation and determine physical disability in multiple sclerosis (MS). The aim of this study was to explore possible associations between a panel of selected cerebrospinal fluid biomarkers and robust clinical and demographic parameters in a large cohort of patients with MS and controls (n = 1066) using data-driven multivariate analysis. Levels of matrix metalloproteinase 9 (MMP9), chemokine (C-X-C motif) ligand 13 (CXCL13), osteopontin (OPN) and neurofilament-light chain (NFL) were measured by ELISA in 548 subjects comprising different MS subtypes (relapsing-remitting, secondary progressive and primary progressive), clinically isolated syndrome and persons with other neurological diseases with or without signs of inflammation/infection. Principal component analyses and orthogonal partial least squares methods were used for unsupervised and supervised interrogation of the data. Models were validated using data from a further 518 subjects in which one or more of the four selected markers were measured. There was a significant association between increased patient age and lower levels of CXCL13, MMP9 and NFL. CXCL13 levels correlated well with MMP9 in the younger age groups, but less so in older patients, and after approximately 54 years of age the levels of CXCL13 and MMP9 were consistently low. CXCL13 and MMP9 levels also correlated well with both NFL and OPN in younger patients. We demonstrate a strong effect of age on both inflammatory and neurodegenerative biomarkers in a large cohort of MS patients. The findings support an early use of adequate immunomodulatory disease modifying drugs, especially in younger patients, and may provide a biological explanation for the relative inefficacy of such treatments in older patients at later disease stages.
Collapse
Affiliation(s)
- Mohsen Khademi
- Karolinska Institute, Department of Clinical Neuroscience, Neuroimmunology Unit, Stockholm, Sweden
| | - Ann M. Dring
- Umeå University, Department of Pharmacology and Clinical Neuroscience, Umeå, Sweden
| | | | | | - Faiez Al Nimer
- Karolinska Institute, Department of Clinical Neuroscience, Neuroimmunology Unit, Stockholm, Sweden
- Karolinska University Hospital, Department of Neurology, Stockholm, Sweden
| | - Robert A. Harris
- Karolinska Institute, Department of Clinical Neuroscience, Neuroimmunology Unit, Stockholm, Sweden
| | - Magnus Andersson
- Karolinska University Hospital, Department of Neurology, Stockholm, Sweden
| | - Lou Brundin
- Karolinska Institute, Department of Clinical Neuroscience, Neuroimmunology Unit, Stockholm, Sweden
- Karolinska University Hospital, Department of Neurology, Stockholm, Sweden
| | - Fredrik Piehl
- Karolinska Institute, Department of Clinical Neuroscience, Neuroimmunology Unit, Stockholm, Sweden
- Karolinska University Hospital, Department of Neurology, Stockholm, Sweden
| | - Tomas Olsson
- Karolinska Institute, Department of Clinical Neuroscience, Neuroimmunology Unit, Stockholm, Sweden
- Karolinska University Hospital, Department of Neurology, Stockholm, Sweden
| | - Anders Svenningsson
- Umeå University, Department of Pharmacology and Clinical Neuroscience, Umeå, Sweden
| |
Collapse
|
20
|
Jiang J, Fisher EM, Murasko DM. Intrinsic defects in CD8 T cells with aging contribute to impaired primary antiviral responses. Exp Gerontol 2013; 48:579-86. [PMID: 23473930 DOI: 10.1016/j.exger.2013.02.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 02/01/2013] [Accepted: 02/26/2013] [Indexed: 01/09/2023]
Abstract
Aging is associated with altered immune responses, particularly with a diminished CD8 T cell response. Although both intrinsic and extrinsic factors are hypothesized to impact this decreased T cell response, the direct evidence of an intrinsic deficiency in virus-specific CD8 T cells is limited. In this study, a TCR transgenic (Tg) P14 mouse model was utilized to compare the activation and proliferation of the Tg CD8 T cells of young and aged P14 mice upon stimulation with antigen or infection with virus. The proliferation of purified Tg CD8 T cells of aged mice was significantly lower than that of young mice when cultured in vitro with both the LCMV specific peptide and antigen presenting cells from young wild type mice. In addition, expression of the activation markers, CD69, CD25, and CD44, was delayed on Tg T cells of aged mice after stimulation. Importantly, while adoptive transfer of purified Tg CD8 T cells of young or aged mice into young wild type mice resulted in expansion of the Tg CD8 T cells of both ages after LCMV infection, the expansion of the Tg T cells from aged mice was significantly decreased compared with that of the Tg T cells from young mice. However, while the number of IFN-γ secreting Tg CD8 T cells from aged mice was significantly decreased compared to that of young mice, the percentages of Tg CD8 T cells producing IFN-γ were similar in young and aged mice, demonstrating that proliferation, but not function, of the Tg CD8 T cells of aged mice was impaired. Importantly, chronological age alone was not sufficient to predict an altered proliferative response; rather, expression of high levels of CD44 on CD8 T cells of aged mice reflected a decreased proliferative response. These results reveal that alterations intrinsic to CD8 T cells can contribute to the age-associated defects in the primary CD8 T cell response during viral infection.
Collapse
Affiliation(s)
- Jiu Jiang
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
21
|
You J, Dong H, Mann ER, Knight SC, Yaqoob P. Ageing impairs the T cell response to dendritic cells. Immunobiology 2013; 218:1077-84. [PMID: 23582781 DOI: 10.1016/j.imbio.2013.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/19/2013] [Accepted: 02/21/2013] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are critical in priming adaptive T-cell responses, but the effects of ageing on interactions between DCs and T cells are unclear. This study investigated the influence of ageing on the maturation of and cytokine production by human blood-enriched DCs, and the impact on T cell responses in an allogeneic mixed leucocyte reaction (MLR). DCs from old subjects (65-75 y) produced significantly less TNF-α and IFN-γ than young subjects (20-30 y) in response to lipopolysaccharide (LPS), but expression of maturation markers and co-stimulatory molecules was preserved. In the MLR, DCs from older subjects induced significantly restricted proliferation of young T cells, activation of CD8+ T cells and expression of IL-12 and IFN-γ in T cells compared with young DCs. T cells from older subjects responded more weakly to DC stimulation compared with young T cells, regardless of whether the DCs were derived from young or older subjects. In conclusion, the capacity of DCs to induce T cell activation is significantly impaired by ageing.
Collapse
Affiliation(s)
- Jialu You
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK
| | | | | | | | | |
Collapse
|
22
|
Heinbokel T, Hock K, Liu G, Edtinger K, Elkhal A, Tullius SG. Impact of immunosenescence on transplant outcome. Transpl Int 2012. [DOI: 10.1111/tri.12013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Guangxiang Liu
- Transplant Surgery Research Laboratory and Division of Transplant Surgery; Brigham and Women's Hospital; Harvard Medical School; Boston; MA; USA
| | - Karoline Edtinger
- Transplant Surgery Research Laboratory and Division of Transplant Surgery; Brigham and Women's Hospital; Harvard Medical School; Boston; MA; USA
| | - Abdallah Elkhal
- Transplant Surgery Research Laboratory and Division of Transplant Surgery; Brigham and Women's Hospital; Harvard Medical School; Boston; MA; USA
| | - Stefan G. Tullius
- Transplant Surgery Research Laboratory and Division of Transplant Surgery; Brigham and Women's Hospital; Harvard Medical School; Boston; MA; USA
| |
Collapse
|
23
|
Lefebvre JS, Maue AC, Eaton SM, Lanthier PA, Tighe M, Haynes L. The aged microenvironment contributes to the age-related functional defects of CD4 T cells in mice. Aging Cell 2012; 11:732-40. [PMID: 22607653 PMCID: PMC3444657 DOI: 10.1111/j.1474-9726.2012.00836.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CD4 T cells, and especially T follicular helper cells, are critical for the generation of a robust humoral response to an infection or vaccination. Importantly, immunosenescence affects CD4 T-cell function, and the accumulation of intrinsic defects decreases the cognate helper functions of these cells. However, much less is known about the contribution of the aged microenvironment to this impaired CD4 T-cell response. In this study, we have employed a preclinical model to determine whether the aged environment contributes to the defects in CD4 T-cell functions with aging. Using an adoptive transfer model in mice, we demonstrate for the first time that the aged microenvironment negatively impacts at least three steps of the CD4 T-cell response to antigenic stimulation. First, the recruitment of CD4 T cells to the spleen is reduced in aged compared to young hosts, which correlates with dysregulated chemokine expression in the aged organ. Second, the priming of CD4 T cells by DCs is reduced in aged compared to young mice. Finally, naïve CD4 T cells show a reduced transition to a T follicular helper cell phenotype in the aged environment, which impairs the subsequent generation of germinal centers. These studies have provided new insights into how aging impacts the immune system and how these changes influence the development of immunity to infections or vaccinations.
Collapse
Affiliation(s)
- Julie S Lefebvre
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY 12983, USA
| | | | | | | | | | | |
Collapse
|
24
|
Moro-García MA, Alonso-Arias R, López-Vázquez A, Suárez-García FM, Solano-Jaurrieta JJ, Baltar J, López-Larrea C. Relationship between functional ability in older people, immune system status, and intensity of response to CMV. AGE (DORDRECHT, NETHERLANDS) 2012; 34:479-495. [PMID: 21487706 PMCID: PMC3312637 DOI: 10.1007/s11357-011-9240-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 03/18/2011] [Indexed: 05/30/2023]
Abstract
Shorter survival in the elderly has been associated with deterioration of the immune system and also with functional disability. To analyze the relationship between functional and immune impairment in older individuals, we studied 100 elderly who lived in a nursing home, were age matched, and grouped according to their functional status. We characterized cell subpopulations by flow cytometry, quantified TREC by RT-PCR, and measured the T-cell proliferation and activation response (IFN-γ by ELISPOT, CD69) against anti-CD3 and CMV. Specific antibody titers against influenza virus and CMV were determined by ELISA. Individuals with worse functional status had significantly higher levels of NK cells and fewer B cells. These poorly functioning elders also had a significantly lower proportion of CD4+ T cells, increased CD8+ T cells, and a decreased CD4/CD8 ratio. TREC levels in CD4+ T cells were significantly lower in individuals with a high disability. Lower TREC levels correlated with a lower frequency of naïve T-cell subpopulations (CD45RA+CCR7+) and higher percentages of effector cells (CD45RA-CCR7-). The functionally impaired group had lower anti-CD3 responses, but gradually increased responses against CMV. Similarly, the higher CMV titers were found in elderly with worse functional status. On the contrary, the functional response in vivo, and the titer of antibodies generated after vaccination against influenza virus, was higher in individuals with better performance status. In summary, we concluded that the functional decline of elderly individuals was clearly associated with the aging of their immune system, and the intensity of the response to CMV.
Collapse
Affiliation(s)
| | - Rebeca Alonso-Arias
- Immunology Department, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
| | - Antonio López-Vázquez
- Immunology Department, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
| | | | | | - José Baltar
- Health Outcomes Research Unit, Nephrology Department, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
| | - Carlos López-Larrea
- Immunology Department, Hospital Universitario Central de Asturias, 33006 Oviedo, Spain
- Fundación Renal “Iñigo Alvarez de Toledo”, Madrid, Spain
| |
Collapse
|
25
|
Inui N, Hasegawa H, Suda T, Nakamura Y, Watanabe H, Chida K. Expression and Function of Multidrug Resistance Protein 1 and Multidrug Resistance-Associated Protein 1 in Lung Dendritic Cells From Aging Mice. J Gerontol A Biol Sci Med Sci 2012; 67:1049-55. [DOI: 10.1093/gerona/gls069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
26
|
Cao W, Kim JH, Chirkova T, Reber AJ, Biber R, Shay DK, Sambhara S. Improving immunogenicity and effectiveness of influenza vaccine in older adults. Expert Rev Vaccines 2012; 10:1529-37. [PMID: 22043953 DOI: 10.1586/erv.11.137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aging is associated with a decline in immune function (immunosenescence) that leads to progressive deterioration in both innate and adaptive immune functions. These changes contribute to the subsequent increased risk for infectious diseases and their sequelae. Vaccination is the most effective and inexpensive public health strategy for prevention of infection, despite the decreased efficacy of vaccines in older adults due to immunosenescence. The rapid rise in the older adult population globally represents a great challenge for vaccination programs. This article first addresses the status of innate and adaptive immune functions in aging and then focuses on influenza vaccine. The development history of influenza vaccines, current status, and potential strategies to improve the immunogenicity and vaccine effectiveness in older adults are discussed.
Collapse
Affiliation(s)
- Weiping Cao
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Bldg 15, SSB 611 B, 1600 Clifton Road, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Tan SY, Cavanagh LL, d'Advigor W, Shackel N, Fazekas de St Groth B, Weninger W. Phenotype and functions of conventional dendritic cells are not compromised in aged mice. Immunol Cell Biol 2012; 90:722-32. [PMID: 22231652 DOI: 10.1038/icb.2011.104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging has profound effects on the immune system, including thymic involution, reduced diversity of the T cell receptor repertoire, reduced effector T cell and B cell function and chronic increase of proinflammatory cytokine production by innate immune cells. The precise effects of aging on conventional dendritic cells (cDC), the main antigen presenting cells of the immune system, however, are not well understood. We found that in aged mice the number of cDC in the spleen and lymph nodes remained stable, whereas the number of cDC in the lungs increased with age. Whereas cDC in mice showed similar cycling kinetics in all organs tested, cDC reconstitution by aged bone marrow precursors was relatively higher than that of their young counterparts. With the exception of CD86, young and aged cDC did not differ in their expression of co-stimulatory molecules at steady state. Most toll-like receptor (TLR) ligands induced comparable upregulation of co-stimulatory molecules CD40, CD86 and B7H1 on young and aged cDC, whereas TLR2 and TLR5 stimulation resulted in reduced upregulation of CD80 and CD86 on aged cDC in vitro. In vivo, influenza infection-induced upregulation of CD86, but not other co-stimulatory molecules, was lower in aged DC. Young and aged DC were equally capable of direct and cross presentation of antigens in vitro. Transcriptome analysis did not reveal any significant difference between young and aged cDC. These data show that unlike T and B cells, the maintenance of cDC throughout the life of a healthy animal is relatively robust during the aging process.
Collapse
Affiliation(s)
- Sioh-Yang Tan
- Immune Imaging Program, The Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Impaired production of TNF-α by dendritic cells of older adults leads to a lower CD8+ T cell response against influenza. Vaccine 2012; 30:1659-66. [PMID: 22230585 DOI: 10.1016/j.vaccine.2011.12.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/15/2011] [Accepted: 12/22/2011] [Indexed: 01/06/2023]
Abstract
Seasonal influenza causes more morbidity and mortality in older adults than in young adults, apparently because of a decline in immune function with increasing age, known as immunosenescence. In this study, we compared the capacity of dendritic cells (DCs) from healthy older adults (≥65 years) with DCs from healthy young adults (20-40 years) to initiate a T cell response against influenza. DCs from older adults were impaired in the induction of influenza-specific CD8+ T cells as compared to DCs from young adults, which was demonstrated by a decreased proliferation, an impaired production of IFN-γ and a reduced expression of the degranulation marker CD107a by CD8+ T cells. Importantly, DCs from older adults produced significantly less TNF-α, showed a decreased expression of HLA class I and had a lower maturation state after influenza virus infection. Supplementing TNF-α increased the expression of HLA class I and of maturation markers and enhanced the induction of the influenza-specific CD8+ T cell response. Together, these findings indicate that the impaired influenza-specific CD8+ T cell response in older adults is associated with a reduced production of TNF-α and with a lower DC maturation. We suggest that the production of TNF-α is a determining factor in the DC-mediated CD8+ T cell response against influenza.
Collapse
|
29
|
Zhao J, Zhao J, Legge K, Perlman S. Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Invest 2011; 121:4921-30. [PMID: 22105170 DOI: 10.1172/jci59777] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/05/2011] [Indexed: 01/19/2023] Open
Abstract
The morbidity and mortality associated with respiratory virus infection is felt most keenly among the elderly. T cells are necessary for viral clearance, and many age-dependent intrinsic T cell defects have been documented. However, the development of robust T cell responses in the lung also requires respiratory DCs (rDCs), which must process antigen and migrate to draining LNs (DLNs), and little is known about age-related defects in these T cell-extrinsic functions. Here, we show that increases in prostaglandin D(2) (PGD(2)) expression in mouse lungs upon aging correlate with a progressive impairment in rDC migration to DLNs. Decreased rDC migration resulted in diminished T cell responses and more severe clinical disease in older mice infected with respiratory viruses. Diminished rDC migration associated with virus-specific defects in T cell responses and was not a result of cell-intrinsic defect, rather it reflected the observed age-dependent increases in PGD(2) expression. Blocking PGD(2) function with small-molecule antagonists enhanced rDC migration, T cell responses, and survival. This effect correlated with upregulation on rDCs of CCR7, a chemokine receptor involved in DC chemotaxis. Our results suggest that inhibiting PGD(2) function may be a useful approach to enhance T cell responses against respiratory viruses in older humans.
Collapse
Affiliation(s)
- Jincun Zhao
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
30
|
Foster AD, Sivarapatna A, Gress RE. The aging immune system and its relationship with cancer. ACTA ACUST UNITED AC 2011; 7:707-718. [PMID: 22121388 DOI: 10.2217/ahe.11.56] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The incidence of most common cancers increases with age. This occurs in association with, and is possibly caused by a decline in immune function, termed immune senescence. Although the size of the T-cell compartment is quantitatively maintained into older age, several deleterious changes (including significant changes to T-cell subsets) occur over time that significantly impair immunity. This article highlights some of the recent findings regarding the aging immune system, with an emphasis on the T-cell compartment and its role in cancer.
Collapse
Affiliation(s)
- Anthony D Foster
- National Cancer Institute (NCI), Experimental Transplantation & Immunology Branch (ETIB), 10 Center Dr. 10 CRC, 3-3330 Bethesda, MD 20814, USA
| | | | | |
Collapse
|
31
|
Mirza N, Pollock K, Hoelzinger DB, Dominguez AL, Lustgarten J. Comparative kinetic analyses of gene profiles of naïve CD4+ and CD8+ T cells from young and old animals reveal novel age-related alterations. Aging Cell 2011; 10:853-67. [PMID: 21711441 DOI: 10.1111/j.1474-9726.2011.00730.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
It is well established that immune responses are diminished in the old. However, we still do not have a clear understanding of what dictates the dysfunction of old T cells at the molecular level. Although microarray analysis has been used to compare young and old T cells, identifying hundreds of genes that are differentially expressed among these populations, it has been difficult to utilize this information to pinpoint which biological pathways truly affect the function of aged T cells. To better define differences between young and old naïve CD4+ and CD8+ T cells, microarray analysis was performed pre- and post-TCR stimulation for 4, 12, 24 and 72 h. Our data indicate that many genes are differentially expressed in the old compared to the young at all five time points. These genes encode proteins involved in multiple cellular functions such as cell growth, cell cycle, cell death, inflammatory response, cell trafficking, etc. Additionally, the information from this microarray analysis allowed us to underline both intrinsic deficiencies and defects in signaling only seen after activation, such as pathways involving T-cell signaling, cytokine production, and Th2 differentiation in old T cells. With the knowledge gained, we can proceed to design strategies to restore the function of old T cells. Therefore, this microarray analysis approach is a powerful and sensitive tool that reveals the extensive changes seen between young and old CD4+ and CD8+ naïve T cells. Evaluation of these differences provides in-depth insight into potential functional and phenotypical differences among these populations.
Collapse
Affiliation(s)
- Noweeda Mirza
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA.
| | | | | | | | | |
Collapse
|
32
|
Jiang J, Fisher EM, Murasko DM. CD8 T cell responses to influenza virus infection in aged mice. Ageing Res Rev 2011; 10:422-7. [PMID: 21315186 DOI: 10.1016/j.arr.2011.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 01/15/2023]
Abstract
Influenza is one of the most common infectious diseases afflicting humans, particularly the elderly. The murine model has been widely employed for investigation of immunity to influenza virus infection. In this paper, we review the recent advances in understanding the diminished CD8 T cell immune response to influenza virus infection in aged mice. Possible mechanisms of impaired CD8 T cell responses with aging are addressed, including: (1) the role of dendritic cells (DCs); (2) the effect of age-associated changes in the T cell repertoire; and (3) the interactions with CD4 T cells, including T regulatory (Treg) cells and CD4 T helper cells. The aged murine model of the CD8 T cell response to influenza virus is helping to elucidate the mechanisms of immunosenescence which can lead to therapeutic improvements in the primary CD8 T cell response to new infections, as well as the development of new strategies for immunization to prevent influenza in the elderly.
Collapse
|
33
|
Du W, Shen H, Galan A, Goldstein DR. An age-specific CD8+ T cell pathway that impairs the effectiveness of strategies to prolong allograft survival. THE JOURNAL OF IMMUNOLOGY 2011; 187:3631-40. [PMID: 21873523 DOI: 10.4049/jimmunol.1100441] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Age-related decline in immunity can impair cell-mediated responses during an infection, malignancy, and acute allograft rejection. Although much research has been allocated to understand the immune responses that impact the former two conditions, the cellular mechanisms by which aging impacts the immune acceptance of organ allografts are not completely clear. In this study, we examined how recipient age impacts the efficacy of therapies that modulate immune recognition of allografts using an immunogenic murine skin transplant model. We found that costimulatory blockade-based treatment failed to extend allograft survival in older recipients to the same extent as that observed in younger recipients. CD8(+) T cells were critical for the inability of aged recipients to achieve maximal allograft survival. Although aged mice displayed a larger number of effector memory T cells prior to transplantation, these cells did not exhibit enhanced alloreactivity compared with young memory T cells. In contrast, naive aged CD8(+) T cells exhibited enhanced IFN-γ production to allostimulation compared with young naive T cells. Our results provide evidence that aging enhances CD8(+) T cell alloreactivity. This could impair the ability of costimulatory blockade-based therapies to prolong allograft survival. Thus, targeting CD8(+) T cells in humans may be a way to improve outcomes in older patients requiring immune modulatory therapy.
Collapse
Affiliation(s)
- Wei Du
- Department of Internal Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06525, USA
| | | | | | | |
Collapse
|
34
|
Leng J, Stout-Delgado HW, Kavita U, Jacobs A, Tang J, Du W, Tussey L, Goldstein DR. Efficacy of a vaccine that links viral epitopes to flagellin in protecting aged mice from influenza viral infection. Vaccine 2011; 29:8147-55. [PMID: 21854824 DOI: 10.1016/j.vaccine.2011.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/28/2011] [Accepted: 08/04/2011] [Indexed: 01/06/2023]
Abstract
Influenza vaccines are less effective in older people than younger people. This impaired ability to protect older people from influenza viral lung infection has important implications as older people suffer a higher morbidity and mortality from influenza viral lung infection than younger people. Therefore, the development of novel effective vaccines that induce protection from influenza viral infections in older people are urgently needed. We had previously shown that direct linking the TLR5 activator, flagellin, to viral peptides induces effective immunity to viral antigens in young mice and people, respectively. In this study, we tested the efficacy of this vaccine platform with the hemagglutinin peptide of the influenza A strain virus (vaccine denoted as STF2.HA1-2) in protecting aged mice from subsequent influenza viral lung infection. We found that a 3.0 μg dose of the vaccine was effective in reducing mortality and increasing clinical well-being during influenza viral lung infection in aged mice. However, this effect was inferior to the response induced in young mice. Defects in the adaptive immune system but not the innate immune system were associated with this reduced effectiveness of the vaccine with aging. Our results indicate that the STF2.HA1-2 vaccine is effective in protecting aged hosts from influenza lung infection, although defects in the adaptive immune system with aging may limit the effectiveness of this vaccine in older people.
Collapse
Affiliation(s)
- Jin Leng
- Department of Internal Medicine and Immunobiology, Yale University of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Agrawal A, Gupta S. Impact of aging on dendritic cell functions in humans. Ageing Res Rev 2011; 10:336-45. [PMID: 20619360 DOI: 10.1016/j.arr.2010.06.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 12/12/2022]
Abstract
Aging is a paradox of reduced immunity and chronic inflammation. Dendritic cells are central orchestrators of the immune response with a key role in the generation of immunity and maintenance of tolerance. The functions of DCs are compromised with age. There is no major effect on the numbers and phenotype of DC subsets in aged subjects; nevertheless, their capacity to phagocytose antigens and migrate is impaired with age. There is aberrant cytokine secretion by various DC subsets with CDCs secreting increased basal level of pro-inflammatory cytokines but the response on stimulation to foreign antigens is decreased. In contrast, the response to self-antigens is increased suggesting erosion of peripheral self tolerance. PDC subset also secretes reduced IFN-α in response to viruses. The capacity of DCs to prime T cell responses is also affected. Aging thus has a profound affect on DC functions. Present review summarizes the effect of advancing age on DC functions in humans in the context of both immunity and tolerance.
Collapse
Affiliation(s)
- Anshu Agrawal
- Division of Basic and Clinical Immunology, Med. Sci. I C-240A, University of California, Irvine 92697, CA, USA.
| | | |
Collapse
|
36
|
Pereira LF, de Souza APD, Borges TJ, Bonorino C. Impaired in vivo CD4+ T cell expansion and differentiation in aged mice is not solely due to T cell defects: decreased stimulation by aged dendritic cells. Mech Ageing Dev 2011; 132:187-94. [PMID: 21453718 DOI: 10.1016/j.mad.2011.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 03/09/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
Abstract
CD4+ T cells regulate humoral and cell-mediated immune responses, which are progressively impaired in aging, resulting in susceptibility to infections and cancer. Dendritic cells (DCs) are major activators of T cells, providing signals that drive their expansion and differentiation. In this study, we asked if decreased CD4+ T cell responses were influenced by the age of DCs rather than being exclusively due to T cell defects. Old T cells transferred to young recipients expanded and differentiated similarly to young T cells. However, aged recipients were poor stimulators of both old and young T cells, which failed to acquire CD44 expression and produce interferon gamma (IFN-γ). DCs in aged hosts expressed fewer MHC-peptide complexes. The CD86 expression in the DCs of both hosts was similar; however, CD40 levels were reduced in old DCs. Finally, old DCs failed to produce inflammatory cytokines in response to LPS. Our results indicate that the impairment of aged CD4+ T cell function is intimately related to multiple alterations in aged DCs, rather than being caused solely by intrinsic T cell defects, suggesting that the function of aged T cells may be partially rescued in vivo when appropriate stimulation is applied. These findings are relevant to vaccination design for elderly populations.
Collapse
Affiliation(s)
- Luciana F Pereira
- Departamento de Biologia Celular e Molecular (FABIO) and Instituto de Pesquisas Biomédicas, PUCRS, Av. Ipiranga, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
37
|
Effros RB. Telomere/telomerase dynamics within the human immune system: effect of chronic infection and stress. Exp Gerontol 2010; 46:135-40. [PMID: 20833238 DOI: 10.1016/j.exger.2010.08.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 08/18/2010] [Accepted: 08/27/2010] [Indexed: 02/08/2023]
Abstract
Aging of the immune system is a major factor responsible for the increased severity of infections, reduced responses to vaccines, and higher cancer incidence in the elderly. A major category of stressors that contribute to the alterations within the T lymphocyte compartment is the family of herpes viruses. These viruses, usually acquired early in life, persist for many decades and drive certain T cells to the end stage of replicative senescence, which is characterized by a variety of phenotypic and functional changes, including altered cytokine profile, resistance to apoptosis, and shortened telomeres. Indeed, high proportions of senescent CD8 (cytotoxic) T lymphocytess are associated with latent cytomegalovirus (CMV) infection in the elderly, and are part of a cluster of immune biomarkers that are associated with early mortality. Similar cells accumulate at younger ages in persons chronically infected with HIV-1. In addition to persistent viral infection, psychological stress as well as oxidative stress can also contribute to the generation of senescent dysfunctional T lymphocytes. Strategies such as cell culture manipulation of replicative senescence, as well as lifestyle and stress reduction techniques are discussed in terms of possible approaches to enhance immune function in older persons. This review highlights the importance of using humans in studies on immunosenescence and telomere/telomerase dynamics, since model organisms employed in other facets of aging research are not subject to the particular factors that cause the striking age-related reconfiguration of the human immune system.
Collapse
Affiliation(s)
- Rita B Effros
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA.
| |
Collapse
|
38
|
Jiang J, Fisher E, Bennett AJ, Murasko DM. Enhancement of virus-specific expansion of transgenic CD8 T cells in aged mice by dendritic cells. Mech Ageing Dev 2010; 131:580-3. [PMID: 20728463 DOI: 10.1016/j.mad.2010.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 07/02/2010] [Accepted: 08/12/2010] [Indexed: 11/16/2022]
Abstract
Aging is associated with a decreased CD8 T cell response to multiple antigens and to virus infection. Although both intrinsic and extrinsic factors have been shown to contribute to the decrease, the mechanisms are still largely unknown. In this study, the role of dendritic cells (DCs) in the age-associated decrease was examined. Influenza-specific TCR transgenic CD8 T cells of young mice demonstrated limited expansion in response to influenza infection when adoptively transferred to aged compared to young mice. This decreased response in aged mice could be significantly enhanced when DCs of young mice were co-transferred. Co-transfer of DCs had no impact in young recipient mice. Adoptive transfer of the DCs also increased the endogenous CD8 T cell response of intact aged mice, although to a lesser degree. These results suggest that the diminished CD8 T cell response to virus infection in aged mice is partially attributable to age-associated changes in DCs.
Collapse
Affiliation(s)
- Jiu Jiang
- Department of Biology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
39
|
Cicin-Sain L, Smyk-Pearson S, Smyk-Paerson S, Currier N, Byrd L, Koudelka C, Robinson T, Swarbrick G, Tackitt S, Legasse A, Fischer M, Nikolich-Zugich D, Park B, Hobbs T, Doane CJ, Mori M, Axthelm MK, Axthelm MT, Lewinsohn DA, Nikolich-Zugich J. Loss of naive T cells and repertoire constriction predict poor response to vaccination in old primates. THE JOURNAL OF IMMUNOLOGY 2010; 184:6739-45. [PMID: 20483749 DOI: 10.4049/jimmunol.0904193] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aging is usually accompanied by diminished immune protection upon infection or vaccination. Although aging results in well-characterized changes in the T cell compartment of long-lived, outbred, and pathogen-exposed organisms, their relevance for primary Ag responses remain unclear. Therefore, it remains unclear whether and to what extent the loss of naive T cells, their partial replacement by oligoclonal memory populations, and the consequent constriction of TCR repertoire limit the Ag responses in aging primates. We show in this study that aging rhesus monkeys (Macaca mulatta) exhibit poor CD8 T cell and B cell responses in the blood and poor CD8 responses in the lungs upon vaccination with the modified vaccinia strain Ankara. The function of APCs appeared to be maintained in aging monkeys, suggesting that the poor response was likely intrinsic to lymphocytes. We found that the loss of naive CD4 and CD8 T cells, and the appearance of persisting T cell clonal expansions predicted poor CD8 responses in individual monkeys. There was strong correlation between early CD8 responses in the transitory CD28+ CD62L- CD8+ T cell compartment and the peak Ab titers upon boost in individual animals, as well as a correlation of both parameters of immune response to the frequency of naive CD8+ T cells in old but not in adult monkeys. Therefore, our results argue that T cell repertoire constriction and naive cell loss have prognostic value for global immune function in aging primates.
Collapse
Affiliation(s)
- Luka Cicin-Sain
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Goldmann O, Lehne S, Medina E. Age-related susceptibility to Streptococcus pyogenes infection in mice: underlying immune dysfunction and strategy to enhance immunity. J Pathol 2010; 220:521-9. [PMID: 20020512 DOI: 10.1002/path.2664] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epidemiological studies have shown that the elderly are at higher risk of severe Streptococcus pyogenes infections. In this study, we used a mouse model that displays the age-related loss of resistance to S. pyogenes infection seen in humans to investigate the impaired immune mechanism underlying the age-associated susceptibility to this pathogen. Young (2-3 months old) and aged (>20 months old) BALB/c mice were subcutaneously or intravenously inoculated with S. pyogenes and their capacity to control infection was compared. Aged mice showed faster progression of disease, earlier morbidity, and increased mortality when compared with young animals. Since macrophages are critical for host defence against S. pyogenes, we investigated whether susceptibility of aged mice may be due to an age-associated decline in the functionality of these cells. Our results showed that macrophages from aged mice were as capable as those from young animals to uptake and kill S. pyogenes, but the number of resident tissue macrophages was significantly reduced in the aged host. Treatment of aged mice with macrophage colony-stimulating factor (M-CSF) significantly increased the number of resident macrophages and improved their response to infection. Our results indicate that treatment with M-CSF can restore, at least in part, the mechanisms affected by immunosenescence and enhance the natural resistance of aged mice to infection with S. pyogenes.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | | | | |
Collapse
|
41
|
Jiang J, Bennett AJ, Fisher E, Williams-Bey Y, Shen H, Murasko DM. Limited expansion of virus-specific CD8 T cells in the aged environment. Mech Ageing Dev 2010; 130:713-21. [PMID: 19744506 DOI: 10.1016/j.mad.2009.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 07/09/2009] [Accepted: 08/28/2009] [Indexed: 11/27/2022]
Abstract
The mechanisms responsible for the diminished immune response seen with aging are unclear. In this study, we investigate the contributions of alterations in the lymphoid microenvironment to this decrease. Using adoptive transfer of virus-specific transgenic CD8 T cells, we demonstrate that the aged environment inhibits the clonal expansion of specific CD8 T cells from young mice during virus infection. Transferred specific CD8 T cells from young mice demonstrated a response reflecting the CD8 T cell response of the intact aged host: the CD8 T cells expand more slowly and have a decreased maximal expansion in an aged compared to a young environment. While isolated DCs (MHC II(+) CD11c(+)) of aged mice maintain their ability to support CD8 T cell Ag-specific expansion in vitro, splenocytes demonstrated an age-associated decrease in this ability. Since the percentages of various populations of DCs in splenocytes demonstrate no significant alteration with age, this diminished APC activity of splenocytes of aged mice may reflect inhibitory activity of other cell populations. The results of this study demonstrate that elements of the aged environment play an important role in the alteration of T cell response to virus infection in the aged.
Collapse
Affiliation(s)
- Jiu Jiang
- Department of Bioscience and Biotechnology, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
42
|
Desai A, Grolleau-Julius A, Yung R. Leukocyte function in the aging immune system. J Leukoc Biol 2010; 87:1001-9. [PMID: 20200405 DOI: 10.1189/jlb.0809542] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aging is associated with a progressive dysregulation of immune responses. Whether these changes are solely responsible for the observed increased mortality and morbidity amongst the elderly is uncertain. Recent advances have highlighted the age-associated changes that occur beyond T and B lymphocytes. Additionally, multiple human and animal studies have identified a relationship between chronic low-grade inflammation and geriatric syndromes, such as frailty, suggesting that the phenomenon of "inflamm-aging" may provide a rationale for the increased vulnerability to chronic inflammatory diseases in older adults. In the present review, we broadly summarize our current understanding of age-dependent changes in leukocyte function and their contribution to aging-related disease processes.
Collapse
Affiliation(s)
- Anjali Desai
- Division of Geriatric Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
43
|
Espino J, Bejarano I, Paredes SD, González D, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB. Melatonin counteracts alterations in oxidative metabolism and cell viability induced by intracellular calcium overload in human leucocytes: changes with age. Basic Clin Pharmacol Toxicol 2010; 107:590-7. [PMID: 20210792 DOI: 10.1111/j.1742-7843.2010.00546.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ageing is associated with an increased production of free radicals and alterations in the mechanisms of adaptation to oxidative stress. In fact, the free radical theory of ageing proposes that deleterious actions of free radicals are responsible for the functional deterioration associated with ageing. Moreover, a close relationship exists between calcium homeostasis and oxidative stress. The current work was aimed at proving that intracellular calcium overload induced by N-formyl-methionyl-leucyl-phenylalanine (FMLP) and/or thapsigargin leads to oxidative stress. We additionally examined the effect of melatonin on the levels of reactive oxygen species (ROS) and cell viability in human leucocytes collected from young (20-30-year-old) and elderly (65-75-year-old) individuals under both basal and oxidative stress-induced conditions. Treatments with 10 nM FMLP and/or 1 microM thapsigargin induced a transient increase in cytosolic free-calcium concentration ([Ca(2 + )](c)) in human leucocytes due to calcium release from internal stores, and led in turn to oxidative stress, as assessed by intracellular ROS measurement. Non-treated leucocytes from aged individuals exhibited higher ROS levels and lower rates of cell survival when compared to leucocytes from young individuals. Similar results were obtained in FMLP and/or thapsigargin-treated leucocytes from elderly individuals when compared to those from the young individuals. Melatonin treatment significantly reduced both hydrogen peroxide (H(2)O(2)) and superoxide anion levels, likely due to its free-radical scavenging properties, and enhanced leucocyte viability in both age groups. Therefore, melatonin may be a useful tool for the treatment of disease states and processes where an excessive production of oxidative damage occurs.
Collapse
Affiliation(s)
- Javier Espino
- Department of Physiology, Faculty of Science, University of Extremadura, Badajoz, Spain
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Fulton RB, Varga SM. Effects of aging on the adaptive immune response to respiratory virus infections. ACTA ACUST UNITED AC 2009; 5:775. [PMID: 20174457 DOI: 10.2217/ahe.09.69] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Severe acute respiratory disease caused by respiratory virus infections in individuals aged 65 years and older and in high-risk adults, such as those with chronic cardiopulmonary disorders, is associated with increased hospitalization and mortality rates. Epidemiological studies have identified influenza virus and respiratory syncytial virus as the most frequent causes of virus-induced respiratory disease in elderly and high-risk adults. Studies in both humans and animal models have established fundamental defects in cell-mediated and humoral immune responses in aged individuals. However, it is not well understood how age specifically alters the immune response to respiratory pathogens. In this review, we will focus our discussion on the major causative agents of severe respiratory virus infections in elderly and high-risk adults and the age-associated defects in the immune response that probably contribute to the increased disease severity observed in these populations.
Collapse
Affiliation(s)
- Ross B Fulton
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA, Tel.: +1 319 335 8433
| | | |
Collapse
|
45
|
Ruby CE, Weinberg AD. The effect of aging on OX40 agonist-mediated cancer immunotherapy. Cancer Immunol Immunother 2009; 58:1941-7. [PMID: 19288101 PMCID: PMC11030919 DOI: 10.1007/s00262-009-0687-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 02/16/2009] [Indexed: 12/13/2022]
Abstract
Agents that enhance T cell co-stimulatory signaling have emerged as promising cancer immunotherapies. Our laboratory has been evaluating the TNF receptor co-stimulatory molecule, OX40, which has the capacity to augment critical aspects of T cell function and induce tumor regression in animal models. Effective stimulation of OX40 expressing T cells was accomplished with agonist antibodies to OX40 that were eventually translated into a clinical trial for cancer patients. A recent attempt to assess the affect of immune senescence on OX40 therapy, revealed a dramatic loss of efficacy of the agonist therapy in older tumor-bearing mice. The deficiency in OX40-enhanced anti-tumor responses in older mice correlated with a decrease in the number of differentiated effector T cells. Further investigation suggests that the underlying age-related decline in the agonist OX40-mediated T cell responses was not inherent to the T cells themselves, but related to the host environment. Thus, effective use of immunotherapies based on T cell co-stimulatory molecules may require additional modifications, such as immune stimulants to increase innate immunity, to address age-related defects that reside outside of the T cell and within the host environment.
Collapse
Affiliation(s)
- Carl E Ruby
- Earle A Chiles Research Institute, Portland Providence Medical Center, Portland, OR 97213, USA.
| | | |
Collapse
|
46
|
Toapanta FR, Ross TM. Impaired immune responses in the lungs of aged mice following influenza infection. Respir Res 2009; 10:112. [PMID: 19922665 PMCID: PMC2785782 DOI: 10.1186/1465-9921-10-112] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 11/18/2009] [Indexed: 12/20/2022] Open
Abstract
Background Each year, influenza virus infection causes severe morbidity and mortality, particularly in the most susceptible groups including children, the elderly (>65 years-old) and people with chronic respiratory diseases. Among the several factors that contribute to the increased susceptibility in elderly populations are the higher prevalence of chronic diseases (e.g. diabetes) and the senescence of the immune system. Methods In this study, aged and adult mice were infected with sublethal doses of influenza virus (A/Puerto Rico/8/1934). Differences in weight loss, morbidity, virus titer and the kinetics of lung infiltration with cells of the innate and adaptive immune responses were analyzed. Additionally, the main cytokines and chemokines produced by these cells were also assayed. Results Compared to adult mice, aged mice had higher morbidity, lost weight more rapidly, and recovered more slowly from infection. There was a delay in the accumulation of granulocytic cells and conventional dendritic cells (cDCs), but not macrophages in the lungs of aged mice compared to adult animals. The delayed infiltration kinetics of APCs in aged animals correlated with alteration in their activation (CD40 expression), which also correlated with a delayed detection of cytokines and chemokines in lung homogenates. This was associated with retarded lung infiltration by natural killer (NK), CD4+ and CD8+ T-cells. Furthermore, the percentage of activated (CD69+) influenza-specific and IL-2 producer CD8+ T-cells was higher in adult mice compared to aged ones. Additionally, activation (CD69+) of adult B-cells was earlier and correlated with a quicker development of neutralizing antibodies in adult animals. Conclusion Overall, alterations in APC priming and activation lead to delayed production of cytokines and chemokines in the lungs that ultimately affected the infiltration of immune cells following influenza infection. This resulted in delayed activation of the adaptive immune response and subsequent delay in clearance of virus and prolonged illness in aged animals. Since the elderly are the fastest growing segment of the population in developed countries, a better understanding of the changes that occur in the immune system during the aging process is a priority for the development of new vaccines and adjuvants to improve the immune responses in this population.
Collapse
|
47
|
Yager EJ, Dean HJ, Fuller DH. Prospects for developing an effective particle-mediated DNA vaccine against influenza. Expert Rev Vaccines 2009; 8:1205-20. [PMID: 19722894 DOI: 10.1586/erv.09.82] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccine strategies capable of conferring broad protection against both seasonal and pandemic strains of influenza are urgently needed. DNA vaccines are an attractive choice owing to their capacity to induce robust humoral and cellular immune responses at low doses and because they can be developed and manufactured rapidly to more effectively meet the threat of an influenza epidemic or pandemic. Particle-mediated epidermal delivery (PMED), or the gene gun, is a DNA vaccine delivery technology shown to induce protective levels of antibody and T-cell responses in animals and humans against a wide variety of diseases, including influenza. This review focuses on current advances toward the development of an effective PMED DNA vaccine against influenza, including strategies to enhance vaccine immunogenicity, the potential for PMED-based DNA vaccines to improve protection in the vulnerable elderly population, and the prospects for a vaccine capable of providing cross-protection against both seasonal and pandemic strains of influenza.
Collapse
Affiliation(s)
- Eric J Yager
- Center for Immunology & Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| | | | | |
Collapse
|
48
|
Reactive oxygen intermediate-induced pathomechanisms contribute to immunosenescence, chronic inflammation and autoimmunity. Mech Ageing Dev 2009; 130:564-87. [PMID: 19632262 DOI: 10.1016/j.mad.2009.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 06/07/2009] [Accepted: 07/15/2009] [Indexed: 02/07/2023]
Abstract
Deregulation of reactive oxygen intermediates (ROI) resulting in either too high or too low concentrations are commonly recognized to be at least in part responsible for many changes associated with aging. This article reviews ROI-dependent mechanisms critically contributing to the decline of immune function during physiologic - or premature - aging. While ROI serve important effector functions in cellular metabolism, signalling and host defence, their fine-tuned generation declines over time, and ROI-mediated damage to several cellular components and/or signalling deviations become increasingly prevalent. Although distinct ROI-associated pathomechanisms contribute to immunosenescence of the innate and adaptive immune system, mutual amplification of dysfunctions may often result in hyporesponsiveness and immunodeficiency, or in chronic inflammation with hyperresponsiveness/deregulation, or both. In this context, we point out how imbalanced ROI contribute ambiguously to driving immunosenescence, chronic inflammation and autoimmunity. Although ROI may offer a distinct potential for therapeutic targeting along with the charming opportunity to rescue from deleterious processes of aging and chronic inflammatory diseases, such modifications, owing to the complexity of metabolic interactions, may carry a marked risk of unforeseen side effects.
Collapse
|
49
|
Maue AC, Yager EJ, Swain SL, Woodland DL, Blackman MA, Haynes L. T-cell immunosenescence: lessons learned from mouse models of aging. Trends Immunol 2009; 30:301-5. [PMID: 19541537 PMCID: PMC3755270 DOI: 10.1016/j.it.2009.04.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 01/08/2023]
Abstract
It is well established that increasing age is associated with a decreased capacity of the immune system to mediate effective immune responses to vaccination and invading pathogens. Because of the inherent limitations of conducting experiments in humans, much of what we have learned is owed to the utility of experimental mouse models of aging. Recent studies performed in the mouse have demonstrated mechanisms responsible for age-related declines in the function of CD4(+) and CD8(+) cells. This review describes key findings regarding age-related defects in T-cell function and discusses the impact these defects have on vaccine efficacy and immunity.
Collapse
|
50
|
Aging and innate immunity in the mouse: impact of intrinsic and extrinsic factors. Trends Immunol 2009; 30:319-24. [PMID: 19541536 DOI: 10.1016/j.it.2009.03.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 01/12/2023]
Abstract
Aging affects every innate immune cell, including changes in cell numbers and function. Defects in the function of some cells are intrinsic, whereas for other cells, defects are extrinsic and possibly the consequence of the complex interactions with other cell types or the environmental milieu that is altered with aging. Abnormal function contributes to worsened outcomes after injury or infection and leads to diseases observed in the elderly. Knowing the mechanisms responsible for the aberrant function of innate immune cells might lead to the development of therapeutic strategies designed to improve innate immunity in aged individuals. Herein, advances in the field of innate immunity and aging with a focus on neutrophils, macrophages and dendritic cells in laboratory animals are discussed.
Collapse
|