1
|
Bertrand Y, Sánchez-Montalvo A, Hox V, Froidure A, Pilette C. IgA-producing B cells in lung homeostasis and disease. Front Immunol 2023; 14:1117749. [PMID: 36936934 PMCID: PMC10014553 DOI: 10.3389/fimmu.2023.1117749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Immunoglobulin A (IgA) is the most abundant Ig in mucosae where it plays key roles in host defense against pathogens and in mucosal immunoregulation. Whereas intense research has established the different roles of secretory IgA in the gut, its function has been much less studied in the lung. This review will first summarize the state-of-the-art knowledge on the distribution and phenotype of IgA+ B cells in the human lung in both homeostasis and disease. Second, it will analyze the studies looking at cellular and molecular mechanisms of homing and priming of IgA+ B cells in the lung, notably following immunization. Lastly, published data on observations related to IgA and IgA+ B cells in lung and airway disease such as asthma, cystic fibrosis, idiopathic pulmonary fibrosis, or chronic rhinosinusitis, will be discussed. Collectively it provides the state-of-the-art of our current understanding of the biology of IgA-producing cells in the airways and identifies gaps that future research should address in order to improve mucosal protection against lung infections and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Youri Bertrand
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
| | - Alba Sánchez-Montalvo
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, Katholieke universiteit (KU) Leuven, Leuven, Belgium
| | - Valérie Hox
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Antoine Froidure
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Charles Pilette
- Centre de Pneumologie, Otorhinolaryngologie (ORL) et Dermatologie, Institut de Recherche Expérimentale et Clinique, Faculté de Pharmacie et des Sciences Biomédicales, Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- *Correspondence: Charles Pilette,
| |
Collapse
|
2
|
Mischlinger J, Jaeger VK, Ciurea A, Gabay C, Hasler P, Mueller RB, Siegrist CA, Villiger P, Walker UA, Hatz C, Bühler S. Long-term persistence of antibodies after diphtheria/tetanus vaccination in immunosuppressed patients with inflammatory rheumatic diseases and healthy controls. Vaccine 2022; 40:4897-4904. [PMID: 35810064 DOI: 10.1016/j.vaccine.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 10/17/2022]
Abstract
Many vaccines demonstrate high effectiveness for years. This prospective multicentre study was conducted in Switzerland to assess the long-term persistence of antibodies to the diphtheria/tetanus (dT)-vaccine in adult patients with rheumatic diseases (PRDs). 163 PRDs and 169 controls were included in the study. The median age of all participants was 50 years (range: 18-83 years) and 56% were female. After a median time interval of 16 years after vaccination, the median anti-vaccine antibody concentrations were lower in PRDs than in controls for tetanus (1.68 vs 2.01; p = 0.049) and diphtheria (0.05 vs 0.22; p = 0.002). Based on the currently accepted seroprotection threshold (antibody concentration ≥ 0.1 IU/ml), PRDs had lower proportions of short-term tetanus and diphtheria protection as demonstrated by crude odds ratios (OR) of 0.30 (p = 0.017) and OR: 0.52 (p = 0.004), respectively. After adjusting for 'age' and 'time since last dT vaccination', the strength of associations became weaker; for tetanus, borderline evidence remained for a true difference between PRDs and controls (OR: 0.36 [p = 0.098]), however, not for diphtheria (OR: 0.86 [p = 0.58]). We hypothesize that in the presence of rheumatic diseases and its immunosuppressive treatment, vaccine-specific long-lived plasma cells (LLPCs) may be diminished or competitively displaced by rheumatism-specific LLPCs, a process which may decrease the persistence of vaccine-specific antibodies. Novel studies should be designed by incorporating methodologies allowing to determine the attributable fraction of immunosuppressive/immunomodulatory medications and rheumatic disease itself on long-lasting vaccine-specific antibody persistence, as well as, further study the role of LLPCs.
Collapse
Affiliation(s)
- Johannes Mischlinger
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veronika K Jaeger
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland; Institute of Epidemiology and Social Medicine, University of Münster, Germany
| | - Adrian Ciurea
- Department of Rheumatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Cem Gabay
- Division of Rheumatology, University Hospital of Geneva, Geneva, Switzerland
| | - Paul Hasler
- Division of Rheumatology, University Department of Medicine, University of Basel Medical Faculty, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Ruediger B Mueller
- Division of Rheumatology, University Department of Medicine, University of Basel Medical Faculty, Cantonal Hospital Aarau, Aarau, Switzerland; Division of Rheumatology, Department of Internal Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland; Division of Rheumatology and Clinical Immunology, Department of Internal Medicine Ludwig-Maximilians-University Munich, Germany
| | - Claire Ann Siegrist
- Center for Vaccinology, University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - Peter Villiger
- Department of Rheumatology and Clinical Immunology/Allergology, University Hospital of Bern, Bern, Switzerland
| | - Ulrich A Walker
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| | - Christoph Hatz
- Department of Public Health / Division of Infectious Diseases, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland; Department of Medicine and Diagnostics, Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Switzerland; Division of Infectious Diseases & Hospital Epidemiology, Kantonsspital St. Gallen, Switzerland
| | - Silja Bühler
- Department of Public Health / Division of Infectious Diseases, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland; Division of Hygiene and Infectious Diseases, Institute for Hygiene and Environment, Hamburg, Germany.
| |
Collapse
|
3
|
Burt P, Cornelis R, Geißler G, Hahne S, Radbruch A, Chang HD, Thurley K. Data-Driven Mathematical Model of Apoptosis Regulation in Memory Plasma Cells. Cells 2022; 11:cells11091547. [PMID: 35563853 PMCID: PMC9102437 DOI: 10.3390/cells11091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Memory plasma cells constitutively produce copious amounts of antibodies, imposing a critical risk factor for autoimmune disease. We previously found that plasma cell survival requires secreted factors such as APRIL and direct contact to stromal cells, which act in concert to activate NF-κB- and PI3K-dependent signaling pathways to prevent cell death. However, the regulatory properties of the underlying biochemical network are confounded by the complexity of potential interaction and cross-regulation pathways. Here, based on flow-cytometric quantification of key signaling proteins in the presence or absence of the survival signals APRIL and contact to the stromal cell line ST2, we generated a quantitative model of plasma cell survival. Our model emphasizes the non-redundant nature of the two plasma cell survival signals APRIL and stromal cell contact, and highlights a requirement for differential regulation of individual caspases. The modeling approach allowed us to unify distinct data sets and derive a consistent picture of the intertwined signaling and apoptosis pathways regulating plasma cell survival.
Collapse
Affiliation(s)
- Philipp Burt
- German Rheumatism Research Center, 10117 Berlin, Germany; (P.B.); (R.C.); (G.G.); (S.H.); (A.R.)
- Institute for Theoretical Biology, Humboldt University, 10115 Berlin, Germany
| | - Rebecca Cornelis
- German Rheumatism Research Center, 10117 Berlin, Germany; (P.B.); (R.C.); (G.G.); (S.H.); (A.R.)
| | - Gustav Geißler
- German Rheumatism Research Center, 10117 Berlin, Germany; (P.B.); (R.C.); (G.G.); (S.H.); (A.R.)
- Institute for Theoretical Biology, Humboldt University, 10115 Berlin, Germany
| | - Stefanie Hahne
- German Rheumatism Research Center, 10117 Berlin, Germany; (P.B.); (R.C.); (G.G.); (S.H.); (A.R.)
| | - Andreas Radbruch
- German Rheumatism Research Center, 10117 Berlin, Germany; (P.B.); (R.C.); (G.G.); (S.H.); (A.R.)
| | - Hyun-Dong Chang
- German Rheumatism Research Center, 10117 Berlin, Germany; (P.B.); (R.C.); (G.G.); (S.H.); (A.R.)
- Institute of Biotechnology, Department of Cytometry, Technische Universität, 10623 Berlin, Germany
- Correspondence: (H.-D.C.); (K.T.)
| | - Kevin Thurley
- German Rheumatism Research Center, 10117 Berlin, Germany; (P.B.); (R.C.); (G.G.); (S.H.); (A.R.)
- Institute for Theoretical Biology, Humboldt University, 10115 Berlin, Germany
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, 53127 Bonn, Germany
- Correspondence: (H.-D.C.); (K.T.)
| |
Collapse
|
4
|
Kibler A, Budeus B, Homp E, Bronischewski K, Berg V, Sellmann L, Murke F, Heinold A, Heinemann FM, Lindemann M, Bekeredjian-Ding I, Horn PA, Kirschning CJ, Küppers R, Seifert M. Systematic memory B cell archiving and random display shape the human splenic marginal zone throughout life. J Exp Med 2021; 218:211756. [PMID: 33538775 PMCID: PMC7868796 DOI: 10.1084/jem.20201952] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Human memory B cells (MBCs) are generated and diversified in secondary lymphoid tissues throughout the organism. A paired immunoglobulin (Ig)-gene repertoire analysis of peripheral blood (PB) and splenic MBCs from infant, adult, and elderly humans revealed that throughout life, circulating MBCs are comprehensively archived in the spleen. Archive MBC clones are systematically preserved and uncoupled from class-switching. Clonality in the spleen increases steadily, but boosts at midlife, thereby outcompeting small clones. The splenic marginal zone (sMZ) represents a primed MBC compartment, generated from a stochastic exchange within the archive memory pool. This is supported by functional assays, showing that PB and splenic CD21+ MBCs acquire transient CD21high expression upon NOTCH2-stimulation. Our study provides insight that the human MBC system in PB and spleen is composed of three interwoven compartments: the dynamic relationship of circulating, archive, and its subset of primed (sMZ) memory changes with age, thereby contributing to immune aging.
Collapse
Affiliation(s)
- Artur Kibler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Ekaterina Homp
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Kevin Bronischewski
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Victoria Berg
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Ludger Sellmann
- Department of Haematology, University Hospital Essen, Essen, Germany
| | - Florian Murke
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Heinold
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Chang HD, Radbruch A. Maintenance of quiescent immune memory in the bone marrow. Eur J Immunol 2021; 51:1592-1601. [PMID: 34010475 DOI: 10.1002/eji.202049012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/25/2022]
Abstract
The adaptive immune system has the important ability to generate and maintain a memory for antigens once encountered. Recent progress in understanding the organization of immunological memory has challenged the established paradigm of maintenance of memory by restless, circulating, and "homeostatically" proliferating lymphocytes. Among other tissues, the bone marrow has emerged as a preferred resting place for memory lymphocytes providing both local and systemic long-term protection. Why the bone marrow? There, mesenchymal stromal cells provide a privileged environment for quiescent memory B and T lymphocytes, the protagonists of secondary immune reactions, and for memory plasma cells providing persistent humoral immunity. In this review, we discuss the dedicated role of the bone marrow for the maintenance of memory lymphocytes and its implications for immunological memory.
Collapse
Affiliation(s)
- Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.,Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
6
|
Abstract
As one of the most important weapons against infectious diseases, vaccines have saved countless lives since their first use in the late eighteenth century. Antibodies produced by effector B cells upon vaccination play a critical role in mediating protection. The past several decades of research have led to a revolution in our understanding of B cell response to vaccination. Vaccines against SARS-CoV-2 coronavirus were developed at an unprecedented speed to power our global fight against COVID-19 pandemic. Nevertheless, we still face many challenges in the development of vaccines against many other deadly viruses, such as human immunodeficiency virus (HIV) and influenza virus. In this review, we summarize the latest findings on B cell response to vaccination and pathogen infection. We also discuss the current challenges in the field and the potential strategies targeting B cell response to improve vaccine efficacy.Key abbreviations box: BCR: B cell receptor; bNAb: broadly neutralizing antibody; DC: dendritic cells; DZ: dark zone; EF response: extrafollicular response; FDC: follicular dendritic cell; GC: germinal center; HIV: human immunodeficiency virus; IC: immune complex; LLPC: long-lived plasma cell; LZ: light zone; MBC: memory B cell; SLPB: short-lived plasmablast; TFH: T follicular helper cells; TLR: Toll-like receptor.
Collapse
Affiliation(s)
- Wei Luo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Qian Yin
- Institute for Immunity, Transplantation & Infection, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Hada-Neeman S, Weiss-Ottolenghi Y, Wagner N, Avram O, Ashkenazy H, Maor Y, Sklan EH, Shcherbakov D, Pupko T, Gershoni JM. Domain-Scan: Combinatorial Sero-Diagnosis of Infectious Diseases Using Machine Learning. Front Immunol 2021; 11:619896. [PMID: 33643301 PMCID: PMC7902724 DOI: 10.3389/fimmu.2020.619896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 12/30/2022] Open
Abstract
The presence of pathogen-specific antibodies in an individual's blood-sample is used as an indication of previous exposure and infection to that specific pathogen (e.g., virus or bacterium). Measurement of the diagnostic antibodies is routinely achieved using solid phase immuno-assays such as ELISA tests and western blots. Here, we describe a sero-diagnostic approach based on phage-display of epitope arrays we term "Domain-Scan". We harness Next-generation sequencing (NGS) to measure the serum binding to dozens of epitopes derived from HIV-1 and HCV simultaneously. The distinction of healthy individuals from those infected with either HIV-1 or HCV, is modeled as a machine-learning classification problem, in which each determinant ("domain") is considered as a feature, and its NGS read-out provides values that correspond to the level of determinant-specific antibodies in the sample. We show that following training of a machine-learning model on labeled examples, we can very accurately classify unlabeled samples and pinpoint the domains that contribute most to the classification. Our experimental/computational Domain-Scan approach is general and can be adapted to other pathogens as long as sufficient training samples are provided.
Collapse
Affiliation(s)
- Smadar Hada-Neeman
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Weiss-Ottolenghi
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Oren Avram
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Haim Ashkenazy
- Max Planck Institute for Developmental Biology, Max Planck Society (MPG), Tübingen, Germany
| | - Yaakov Maor
- Institute of Gastroenterology and Hepatology, Kaplan Medical Center, Rehovot, Israel
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dmitry Shcherbakov
- Russian-American Anti-Cancer Center, Altai State University, Barnaul, Russia
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan M Gershoni
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Miao R, Lim VY, Kothapalli N, Ma Y, Fossati J, Zehentmeier S, Sun R, Pereira JP. Hematopoietic Stem Cell Niches and Signals Controlling Immune Cell Development and Maintenance of Immunological Memory. Front Immunol 2020; 11:600127. [PMID: 33324418 PMCID: PMC7726109 DOI: 10.3389/fimmu.2020.600127] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Studies over the last couple of decades have shown that hematopoietic stem cells (HSCs) are critically dependent on cytokines such as Stem Cell Factor and other signals provided by bone marrow niches comprising of mesenchymal stem and progenitor cells (MSPCs) and endothelial cells (ECs). Because of their critical roles in HSC maintenance the niches formed by MSPCs and ECs are commonly referred to as HSC niches. For the most part, the signals required for HSC maintenance act in a short-range manner, which imposes the necessity for directional and positional cues in order for HSCs to localize and be retained properly in stem cell niches. The chemokine CXCL12 and its Gαi protein coupled receptor CXCR4, besides promoting HSC quiescence directly, also play instrumental roles in enabling HSCs to access bone marrow stem cell niches. Recent studies have revealed, however, that HSC niches also provide a constellation of hematopoietic cytokines that are critical for the production of most, if not all, blood cell types. Some hematopoietic cytokines, namely IL-7 and IL-15 produced by HSC niches, are not only required for lymphopoiesis but are also essential for memory T cell maintenance. Consequently, hematopoietic progenitors and differentiated immune cells, such as memory T cell subsets, also depend on the CXCL12/CXCR4 axis for migration into bone marrow and interactions with MSPCs and ECs. Similarly, subsets of antibody-secreting plasma cells also reside in close association with CXCL12-producing MSPCs in the bone marrow and require the CXCR4/CXCL12 axis for survival and long-term maintenance. Collectively, these studies demonstrate a broad range of key physiological roles, spanning blood cell production and maintenance of immunological memory, that are orchestrated by stem cell niches through a common and simple mechanism: CXCL12/CXCR4-mediated cell recruitment followed by receipt of a maintenance and/or instructive signal. A fundamental flaw of this type of cellular organization is revealed by myeloid and lymphoid leukemias, which target stem cell niches and induce profound transcriptomic changes that result in reduced hematopoietic activity and altered mesenchymal cell differentiation.
Collapse
Affiliation(s)
- Runfeng Miao
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Vivian Y Lim
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Neeharika Kothapalli
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Yifan Ma
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Julia Fossati
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Sandra Zehentmeier
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Ruifeng Sun
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - João P Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
9
|
Xu AQ, Barbosa RR, Calado DP. Genetic timestamping of plasma cells in vivo reveals tissue-specific homeostatic population turnover. eLife 2020; 9:e59850. [PMID: 33136000 PMCID: PMC7682985 DOI: 10.7554/elife.59850] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/01/2020] [Indexed: 12/17/2022] Open
Abstract
Plasma cells (PCs) are essential for protection from infection, and at the origin of incurable cancers. Current studies do not circumvent the limitations of removing PCs from their microenvironment and confound formation and maintenance. Also, the investigation of PC population dynamics has mostly relied on nucleotide analog incorporation that does not label quiescent cells, a property of most PCs. The main impediment is the lack of tools to perform specific genetic manipulation in vivo. Here we characterize a genetic tool (JchaincreERT2) in the mouse that permits first-ever specific genetic manipulation in PCs in vivo, across immunoglobulin isotypes. Using this tool, we found that splenic and bone marrow PC numbers remained constant over-time with the decay in genetically labeled PCs being compensated by unlabeled PCs, supporting homeostatic population turnover in these tissues. The JchaincreERT2 tool paves the way for an in-depth mechanistic understanding of PC biology and pathology in vivo, in their microenvironment.
Collapse
Affiliation(s)
- An Qi Xu
- Immunity and Cancer, The Francis Crick InstituteLondonUnited Kingdom
| | - Rita R Barbosa
- Immunity and Cancer, The Francis Crick InstituteLondonUnited Kingdom
| | - Dinis Pedro Calado
- Immunity and Cancer, The Francis Crick InstituteLondonUnited Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
10
|
Kwun J, Knechtle S. Experimental modeling of desensitization: What have we learned about preventing AMR? Am J Transplant 2020; 20 Suppl 4:2-11. [PMID: 32538533 PMCID: PMC7522789 DOI: 10.1111/ajt.15873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/25/2023]
Abstract
During the past 5 decades, short-term outcomes in kidney transplant have significantly improved, in large part due to reduced rates and severity of acute rejection. Development of better immunosuppressive maintenance agents, as well as new induction therapies, helped make these advances. Nonhuman primate models provided a rigorous testing platform to evaluate candidate biologics during this process. However, antibody-mediated rejection remains a major cause of late failure of kidney allografts despite advances made in pharmacologic immunosuppression and strategies developed to facilitate improved donor-recipient matching. Our laboratory has been actively working to develop strategies to prevent and treat antibody-mediated rejection and immunologic sensitization in organ transplant, relying largely on a nonhuman primate model of kidney transplant. In this review, we will cover outcomes achieved by managing antibody-mediated rejection or sensitization in nonhuman primate models and discuss promises, limitations, and future directions for this model.
Collapse
Affiliation(s)
- Jean Kwun
- Address all correspondence and requests for reprints to: Jean Kwun, PhD, 207 Research Drive, Jones 362, DUMC Box 2645, Durham, NC 27710, USA Phone: 919-668-6792; Fax: 919-684-8716;
| | | |
Collapse
|
11
|
Chang HD, Tokoyoda K, Hoyer B, Alexander T, Khodadadi L, Mei H, Dörner T, Hiepe F, Burmester GR, Radbruch A. Pathogenic memory plasma cells in autoimmunity. Curr Opin Immunol 2019; 61:86-91. [PMID: 31675681 PMCID: PMC6908965 DOI: 10.1016/j.coi.2019.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/09/2019] [Accepted: 09/22/2019] [Indexed: 01/06/2023]
Abstract
Memory plasma cells are long-lived but require specialized niches for their survival. Memory plasma cells are refractory to conventional immunosuppression. Pathogenic memory plasma cells represent ‘roadblocks’ to response to conventional therapy. Strategies for (selective) targeting of memory plasma cells are in preclinical and clinical tests.
Collapse
Affiliation(s)
- Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute (DRFZ), Charitéplatz 1, 10117 Berlin, Germany
| | - Koji Tokoyoda
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute (DRFZ), Charitéplatz 1, 10117 Berlin, Germany
| | - Bimba Hoyer
- Universitätsklinikum Schleswig-Holstein, Clinic for Internal Medicine I, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Tobias Alexander
- Charité Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany
| | - Laleh Khodadadi
- Charité Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany
| | - Henrik Mei
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute (DRFZ), Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Dörner
- Charité Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany
| | - Falk Hiepe
- Charité Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany
| | - Gerd-Rüdiger Burmester
- Charité Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute (DRFZ), Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
12
|
Lightman SM, Utley A, Lee KP. Survival of Long-Lived Plasma Cells (LLPC): Piecing Together the Puzzle. Front Immunol 2019; 10:965. [PMID: 31130955 PMCID: PMC6510054 DOI: 10.3389/fimmu.2019.00965] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
Durable humoral immunity is dependent upon the generation of antigen-specific antibody titers, produced by non-proliferating bone marrow resident long-lived plasma cells (LLPC). Longevity is the hallmark of LLPC, but why and how they survive and function for years after antigen exposure is only beginning to be understood. LLPC are not intrinsically long-lived; they require continuous signals from the LLPC niche to survive. Signals unique to LLPC survival (vs. PC survival in general) most notably include those that upregulate the anti-apoptotic factor Mcl-1 and activation of the CD28 receptor expressed on LLPC. Other potential factors include expression of BCMA, upregulation of the transcription factor ZBTB20, and upregulation of the enzyme ENPP1. Metabolic fitness is another key component of LLPC longevity, facilitating the diversion of glucose to generate pyruvate during times of stress to facilitate long term survival. A third major component of LLPC survival is the microenvironment/LLPC niche itself. Cellular partners such as stromal cells, dendritic cells, and T regulatory cells establish a niche for LLPC and drive survival signaling by expressing ligands such as CD80/CD86 for CD28 and producing soluble and stromal factors that contribute to LLPC longevity. These findings have led to the current paradigm wherein both intrinsic and extrinsic mechanisms are required for the survival of LLPC. Here we outline this diverse network of signals and highlight the mechanisms thought to regulate and promote the survival of LLPC. Understanding this network of signals has direct implications in increasing our basic understanding of plasma cell biology, but also in vaccine and therapeutic drug development to address the pathologies that can arise from this subset.
Collapse
Affiliation(s)
- Shivana M Lightman
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Adam Utley
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
13
|
Khodadadi L, Cheng Q, Radbruch A, Hiepe F. The Maintenance of Memory Plasma Cells. Front Immunol 2019; 10:721. [PMID: 31024553 PMCID: PMC6464033 DOI: 10.3389/fimmu.2019.00721] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/18/2019] [Indexed: 12/20/2022] Open
Abstract
It is now well accepted that plasma cells can become long-lived (memory) plasma cells and secrete antibodies for months, years or a lifetime. However, the mechanisms involved in this process of humoral memory, which is crucial for both protective immunity and autoimmunity, still are not fully understood. This article will address a number of open questions. For example: Is longevity of plasma cells due to their intrinsic competence, extrinsic factors, or a combination of both? Which internal signals are involved in this process? What factors provide external support? What survival factors play a part in inflammation and autoreactive disease? Internal and external factors that contribute to the maintenance of memory long-lived plasma cells will be discussed. The aim is to provide useful additional information about the maintenance of protective and autoreactive memory plasma cells that will help researchers design effective vaccines for the induction of life-long protection against infectious diseases and to efficiently target pathogenic memory plasma cells.
Collapse
Affiliation(s)
- Laleh Khodadadi
- Deutsches Rheuma-Forschungszentrum Berlin-A Leibniz Institute, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Berlin, Germany
| | - Qingyu Cheng
- Deutsches Rheuma-Forschungszentrum Berlin-A Leibniz Institute, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin-A Leibniz Institute, Berlin, Germany
| | - Falk Hiepe
- Deutsches Rheuma-Forschungszentrum Berlin-A Leibniz Institute, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Berlin, Germany
| |
Collapse
|
14
|
Palermo A, Nesterov-Mueller A. Serological Number for Characterization of Circulating Antibodies. Int J Mol Sci 2019; 20:ijms20030604. [PMID: 30704134 PMCID: PMC6387039 DOI: 10.3390/ijms20030604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 11/16/2022] Open
Abstract
The dissociation constant of the circulating IgG antibodies is suggested to be proportional to the partial concentrations of these antibodies in blood serum in equilibrium. This coefficient, called serological number, is a dimensionless parameter and may be equal for all antibodies in a serum. Based on the serological number, we derived the equilibrium equation of the humoral immune system which allows estimating the number of different binding motifs in a serum. This equation also allows estimating the number of binding motifs of posttranslational and conformational nature. The feasibility of measuring the serological number via peptide arrays was demonstrated. Fifteen peptides with unique binding motifs were incubated and stained with the blood serum of a healthy adult at different dilutions. From these experiments, the serological number was determined. The serological number may explain the pre-existing antibody response after vaccination.
Collapse
Affiliation(s)
- Andrea Palermo
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany.
| | - Alexander Nesterov-Mueller
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
15
|
Romero-Ramírez S, Navarro-Hernandez IC, Cervantes-Díaz R, Sosa-Hernández VA, Acevedo-Ochoa E, Kleinberg-Bild A, Valle-Rios R, Meza-Sánchez DE, Hernández-Hernández JM, Maravillas-Montero JL. Innate-like B cell subsets during immune responses: Beyond antibody production. J Leukoc Biol 2018; 105:843-856. [PMID: 30457676 DOI: 10.1002/jlb.mr0618-227r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
B lymphocytes are recognized for their crucial role in the adaptive immunity since they represent the only leukocyte lineage capable of differentiating into Ab-secreting cells. However, it has been demonstrated that these lymphocytes can exert several Ab-independent functions, including engulfing and processing Ags for presentation to T cells, secreting soluble mediators, providing co-stimulatory signals, and even participating in lymphoid tissues development. Beyond that, several reports claiming the existence of multiple B cell subsets contributing directly to innate immune responses have appeared. These "innate-like" B lymphocytes, whose phenotype, development pathways, tissue distribution, and functions are in most cases notoriously different from those of conventional B cells, are crucial to early protective responses against pathogens by exerting "crossover" defensive strategies that blur the established boundaries of innate and adaptive branches of immunity. Examples of these mechanisms include the rapid secretion of the polyspecific natural Abs, increased susceptibility to innate receptors-mediated activation, cytokine secretion, downstream priming of other innate cells, usage of specific variable immunoglobulin gene-segments, and other features. As these new insights emerge, it is becoming preponderant to redefine the functionality of B cells beyond their classical adaptive-immune tasks.
Collapse
Affiliation(s)
- Sandra Romero-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Itze C Navarro-Hernandez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodrigo Cervantes-Díaz
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Víctor A Sosa-Hernández
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ernesto Acevedo-Ochoa
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Ari Kleinberg-Bild
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ricardo Valle-Rios
- División de Investigación de la Facultad de Medicina, Universidad Nacional Autónoma de México y Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - David E Meza-Sánchez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José M Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
16
|
Mohr M, Hose D, Seckinger A, Marciniak-Czochra A. Quantification of plasma cell dynamics using mathematical modelling. ROYAL SOCIETY OPEN SCIENCE 2018; 5:170759. [PMID: 29410799 PMCID: PMC5792876 DOI: 10.1098/rsos.170759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/15/2017] [Indexed: 05/26/2023]
Abstract
Plasma cells (PCs) are the main antibody-producing cells in humans. They are long-lived so that specific antibodies against either pathogens or vaccines are produced for decades. PC longevity is attributed to specific areas within the bone marrow micro-environment, the so-called 'niche', providing the cells with required growth and survival factors. With antigen encounters, e.g. infection or vaccination, new PCs are generated and home to the bone marrow where they compete with resident PCs for the niche. We propose a parametrized mathematical model describing healthy PC dynamics in the bone marrow. The model accounts for competition for the niche between newly produced PCs owing to vaccination and resident PCs. Mathematical analysis and numerical simulations of the model allow explanation of the recovery of PC homoeostasis after a vaccine-induced perturbation, and the fraction of vaccine-specific PCs inside the niche. The model enables quantification of the niche-related dynamics of PCs, i.e. the duration of PC transition into the niche and the impact of different rates for PC transitions into and out of the niche on the observed cell dynamics. Ultimately, it provides a potential basis for further investigations in health and disease.
Collapse
Affiliation(s)
- Marcel Mohr
- Heidelberg University, Institute of Applied Mathematics, BIOQUANT and IWR, Heidelberg, Germany
- Heidelberg University Hospital, Medical Clinic V, Heidelberg, Germany
| | - Dirk Hose
- Heidelberg University Hospital, Medical Clinic V, Heidelberg, Germany
| | - Anja Seckinger
- Heidelberg University Hospital, Medical Clinic V, Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Heidelberg University, Institute of Applied Mathematics, BIOQUANT and IWR, Heidelberg, Germany
| |
Collapse
|
17
|
Hoyer BF, Radbruch A. Protective and pathogenic memory plasma cells. Immunol Lett 2017; 189:10-12. [PMID: 28455167 DOI: 10.1016/j.imlet.2017.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
The immune system can be divided into two major parts: innate and adaptive immunity. Adaptive immunity is characterized by its major cellular players: the B and T cells. B cells will, in the context of an immune reaction, differentiate into plasma cells. These plasma cells produce antibodies, which are secreted. Antibodies are characterized by their specificity against a selected antigen and by their isotype. The isotype changes with the duration or phase of the immune reaction. Early immune reactions are usually characterized by the predominant production of IgM antibodies. With the persistence of the immune reaction immunoglobulin class switch occurs and plasma cells will produce IgG, IgE or IgA-antibodies (Radbruch et al., 2006) [1].
Collapse
Affiliation(s)
- Bimba F Hoyer
- Charité Universitätsmedizin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum-a Leibniz Institute Berlin, Germany.
| | - Andreas Radbruch
- Charité Universitätsmedizin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum-a Leibniz Institute Berlin, Germany
| |
Collapse
|
18
|
Cox F, Juraszek J, Stoop EJM, Goudsmit J. Universal influenza vaccine design: directing the antibody repertoire. Future Virol 2016. [DOI: 10.2217/fvl-2016-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Influenza infections are responsible for a large health and economic burden. Vaccination is the best strategy to reduce influenza-related disease burden, but current vaccines have limited breadth and need near-annual reformulation. Developing new influenza vaccines that provide broad and long-lasting protection is an important goal. This review represents an overview of the current knowledge of the universal vaccine approach that focuses on the induction of broadly neutralizing antibodies targeting the hemagglutinin (HA) stem of influenza viruses. Adjuvation of existing influenza vaccines has so far had limited effect on the induction of broadly neutralizing antibodies. HA stem-based immunogens that lack the immunodominant HA head have shown promising results in preclinical models, providing evidence that a universal influenza vaccine is within reach.
Collapse
Affiliation(s)
- Freek Cox
- Infectious Diseases & Vaccines Therapeutic Area, Janssen Research & Development, Archimedesweg 4-6, 2301 CA Leiden, The Netherlands
| | - Jarek Juraszek
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 4-6, 2301 CA Leiden, The Netherlands
| | - Esther JM Stoop
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 4-6, 2301 CA Leiden, The Netherlands
| | - Jaap Goudsmit
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, Archimedesweg 4-6, 2301 CA Leiden, The Netherlands
| |
Collapse
|
19
|
Lemke A, Kraft M, Roth K, Riedel R, Lammerding D, Hauser AE. Long-lived plasma cells are generated in mucosal immune responses and contribute to the bone marrow plasma cell pool in mice. Mucosal Immunol 2016; 9:83-97. [PMID: 25943272 DOI: 10.1038/mi.2015.38] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 03/24/2015] [Indexed: 02/04/2023]
Abstract
During systemic immune responses, plasma blasts are generated in secondary lymphoid organs and migrate to the bone marrow, where they can become long-lived, being responsible for the maintenance of long-term antibody titers. Plasma blasts generated in mucosal immune responses of the small intestine home to the lamina propria (LP), producing mainly immunoglobulin A. The migration of these antibody-secreting cells is well characterized during acute immune responses. Less is known about their lifetime and contribution to the long-lived bone marrow compartment. Here we investigate the lifetime of plasma cells (PCs) and the relationship between the PC compartments of the gut and bone marrow after oral immunization. Our findings indicate that PCs in the LP can survive for extended time periods. PCs specific for orally administered antigens can be detected in the bone marrow for at least 9 months after immunization, indicating that the mucosal PC compartment can contribute to the long-lived PC pool in this organ, independent of the participation of splenic B cells. Our findings suggest that the compartmentalization between mucosal and systemic PC pools is less strict than previously thought. This may have implications for the development of vaccines as well as for autoantibody-mediated diseases.
Collapse
Affiliation(s)
- A Lemke
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - M Kraft
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Charitéplatz 1, Berlin, Germany
| | - K Roth
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - R Riedel
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - D Lammerding
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Charitéplatz 1, Berlin, Germany
| | - A E Hauser
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Charitéplatz 1, Berlin, Germany
| |
Collapse
|
20
|
Cowan G, Weston-Bell NJ, Bryant D, Seckinger A, Hose D, Zojer N, Sahota SS. Massive parallel IGHV gene sequencing reveals a germinal center pathway in origins of human multiple myeloma. Oncotarget 2015; 6:13229-40. [PMID: 25929340 PMCID: PMC4537010 DOI: 10.18632/oncotarget.3644] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/24/2015] [Indexed: 12/14/2022] Open
Abstract
Human multiple myeloma (MM) is characterized by accumulation of malignant terminally differentiated plasma cells (PCs) in the bone marrow (BM), raising the question when during maturation neoplastic transformation begins. Immunoglobulin IGHV genes carry imprints of clonal tumor history, delineating somatic hypermutation (SHM) events that generally occur in the germinal center (GC). Here, we examine MM-derived IGHV genes using massive parallel deep sequencing, comparing them with profiles in normal BM PCs. In 4/4 presentation IgG MM, monoclonal tumor-derived IGHV sequences revealed significant evidence for intraclonal variation (ICV) in mutation patterns. IGHV sequences of 2/2 normal PC IgG populations revealed dominant oligoclonal expansions, each expansion also displaying mutational ICV. Clonal expansions in MM and in normal BM PCs reveal common IGHV features. In such MM, the data fit a model of tumor origins in which neoplastic transformation is initiated in a GC B-cell committed to terminal differentiation but still targeted by on-going SHM. Strikingly, the data parallel IGHV clonal sequences in some monoclonal gammopathy of undetermined significance (MGUS) known to display on-going SHM imprints. Since MGUS generally precedes MM, these data suggest origins of MGUS and MM with IGHV gene mutational ICV from the same GC B-cell, arising via a distinctive pathway.
Collapse
Affiliation(s)
- Graeme Cowan
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, UK
| | - Nicola J. Weston-Bell
- Tumour Immunogenetics Group, Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, UK
| | - Dean Bryant
- Tumour Immunogenetics Group, Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, UK
| | - Anja Seckinger
- Medizinische Klinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Dirk Hose
- Medizinische Klinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Niklas Zojer
- Center for Oncology and Hematology, 1st Department of Medicine, Wilhelminenspital, Vienna, Austria
| | - Surinder S. Sahota
- Tumour Immunogenetics Group, Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, UK
| |
Collapse
|
21
|
Pritz T, Lair J, Ban M, Keller M, Weinberger B, Krismer M, Grubeck-Loebenstein B. Plasma cell numbers decrease in bone marrow of old patients. Eur J Immunol 2014; 45:738-46. [PMID: 25430805 DOI: 10.1002/eji.201444878] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/04/2014] [Accepted: 11/24/2014] [Indexed: 02/02/2023]
Abstract
The BM is well understood to play a key role in plasma cell homing and survival in mice. In humans, BM plasma cells and their functions are less well characterized. In this study, we used paired bone biopsies from the femur shaft and blood samples from persons of different ages to analyze age-related changes of plasma and memory B cells. Our results demonstrated that plasma cells were mainly located in the BM, while a higher percentage of memory B cells was in the peripheral blood than in the BM. The frequency of plasma and memory B cells from both sources decreased with age, while immature and naïve B cells were unaffected. An age-related decline of tetanus- and diphtheria-specific BM plasma cells was observed, whereas influenza A- and cytomegalovirus-specific BM plasma cells were not affected. With the exception of cytomegalovirus, peripheral antibody concentrations correlated with BM plasma cells of the same specificity, but were independent of antigen-specific peripheral blood memory B cells. Our results demonstrate that the BM houses decreased numbers of plasma cells in old age. The number of cells of certain specificity may reflect the number and time point of previous antigen encounters and intrinsic age-related changes in the BM.
Collapse
Affiliation(s)
- Theresa Pritz
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
22
|
Lavinder JJ, Horton AP, Georgiou G, Ippolito GC. Next-generation sequencing and protein mass spectrometry for the comprehensive analysis of human cellular and serum antibody repertoires. Curr Opin Chem Biol 2014; 24:112-20. [PMID: 25461729 DOI: 10.1016/j.cbpa.2014.11.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
Recent developments of high-throughput technologies are enabling the molecular-level analysis and bioinformatic mining of antibody-mediated (humoral) immunity in humans at an unprecedented level. These approaches explore either the sequence space of B-cell receptor repertoires using next-generation deep sequencing (BCR-seq), or the amino acid identities of antibody in blood using protein mass spectrometry (Ig-seq), or both. Generalizable principles about the molecular composition of the protective humoral immune response are being defined, and as such, the field could supersede traditional methods for the development of diagnostics, vaccines, and antibody therapeutics. Three key challenges remain and have driven recent advances: (1) incorporation of innovative techniques for paired BCR-seq to ascertain the complete antibody variable-domain VH:VL clonotype, (2) integration of proteomic Ig-seq with BCR-seq to reveal how the serum antibody repertoire compares with the antibody repertoire encoded by circulating B cells, and (3) a demand to link antibody sequence data to functional meaning (binding and protection).
Collapse
Affiliation(s)
- Jason J Lavinder
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-1062, USA
| | - Andrew P Horton
- Center for Systems & Synthetic Biology, University of Texas at Austin, Austin, TX 78712-1062, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-1062, USA; Center for Systems & Synthetic Biology, University of Texas at Austin, Austin, TX 78712-1062, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712-1062, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712-1062, USA.
| |
Collapse
|
23
|
Greiff V, Menzel U, Haessler U, Cook SC, Friedensohn S, Khan TA, Pogson M, Hellmann I, Reddy ST. Quantitative assessment of the robustness of next-generation sequencing of antibody variable gene repertoires from immunized mice. BMC Immunol 2014; 15:40. [PMID: 25318652 PMCID: PMC4233042 DOI: 10.1186/s12865-014-0040-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) of antibody variable regions has emerged as a powerful tool in systems immunology by providing quantitative molecular information on polyclonal humoral immune responses. Reproducible and robust information on antibody repertoires is valuable for basic and applied immunology studies: thus, it is essential to establish the reliability of antibody NGS data. RESULTS We isolated RNA from antibody-secreting cells (ASCs) from either 1 mouse or a pool of 9 immunized mice in order to simulate both normal and high diversity populations. Next, we prepared three technical replicates of antibody libraries by RT-PCR from each diversity scenario, which were sequenced using the Illumina MiSeq platform resulting in >106 250 bp paired-end reads per replicate. We then assessed the robustness of antibody repertoire data based on clonal identification defined by amino acid sequence of either full-length VDJ region or the complementarity determining region 3 (CDR3). Leveraging modeling approaches adapted from mathematical ecology, we found that in either diversity scenario both CDR3 and VDJ detection nears completeness indicating deep coverage of ASC repertoires. Additionally, we defined reliability thresholds for accurate quantification and ranking of CDR3s and VDJs. Importantly, we show that both factors-(i) replicate sequencing and (ii) sequencing depth-are crucial for robust CDR3 and VDJ detection and ranking. CONCLUSIONS In summary, we established widely applicable experimental and computational guidelines for robust antibody NGS and analysis, which will help advance systems immunology studies related to the quantitative profiling of antibody responses following infection and vaccination.
Collapse
Affiliation(s)
- Victor Greiff
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Ulrike Menzel
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Ulrike Haessler
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Skylar C Cook
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Tarik A Khan
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Mark Pogson
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Ina Hellmann
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| |
Collapse
|
24
|
Menzel U, Greiff V, Khan TA, Haessler U, Hellmann I, Friedensohn S, Cook SC, Pogson M, Reddy ST. Comprehensive evaluation and optimization of amplicon library preparation methods for high-throughput antibody sequencing. PLoS One 2014; 9:e96727. [PMID: 24809667 PMCID: PMC4014543 DOI: 10.1371/journal.pone.0096727] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/10/2014] [Indexed: 11/18/2022] Open
Abstract
High-throughput sequencing (HTS) of antibody repertoire libraries has become a powerful tool in the field of systems immunology. However, numerous sources of bias in HTS workflows may affect the obtained antibody repertoire data. A crucial step in antibody library preparation is the addition of short platform-specific nucleotide adapter sequences. As of yet, the impact of the method of adapter addition on experimental library preparation and the resulting antibody repertoire HTS datasets has not been thoroughly investigated. Therefore, we compared three standard library preparation methods by performing Illumina HTS on antibody variable heavy genes from murine antibody-secreting cells. Clonal overlap and rank statistics demonstrated that the investigated methods produced equivalent HTS datasets. PCR-based methods were experimentally superior to ligation with respect to speed, efficiency, and practicality. Finally, using a two-step PCR based method we established a protocol for antibody repertoire library generation, beginning from inputs as low as 1 ng of total RNA. In summary, this study represents a major advance towards a standardized experimental framework for antibody HTS, thus opening up the potential for systems-based, cross-experiment meta-analyses of antibody repertoires.
Collapse
Affiliation(s)
- Ulrike Menzel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Victor Greiff
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Tarik A Khan
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ulrike Haessler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Ina Hellmann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Skylar C Cook
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Mark Pogson
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
25
|
Schosser R, Reichert A, Mansmann U, Unger B, Heininger U, Kaiser R. Irregular tick-borne encephalitis vaccination schedules: The effect of a single catch-up vaccination with FSME-IMMUN. A prospective non-interventional study. Vaccine 2014; 32:2375-81. [DOI: 10.1016/j.vaccine.2014.01.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/16/2014] [Accepted: 01/28/2014] [Indexed: 12/30/2022]
|
26
|
Identification and characterization of the constituent human serum antibodies elicited by vaccination. Proc Natl Acad Sci U S A 2014; 111:2259-64. [PMID: 24469811 DOI: 10.1073/pnas.1317793111] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most vaccines confer protection via the elicitation of serum antibodies, yet more than 100 y after the discovery of antibodies, the molecular composition of the human serum antibody repertoire to an antigen remains unknown. Using high-resolution liquid chromatography tandem MS proteomic analyses of serum antibodies coupled with next-generation sequencing of the V gene repertoire in peripheral B cells, we have delineated the human serum IgG and B-cell receptor repertoires following tetanus toxoid (TT) booster vaccination. We show that the TT(+) serum IgG repertoire comprises ∼100 antibody clonotypes, with three clonotypes accounting for >40% of the response. All 13 recombinant IgGs examined bound to vaccine antigen with Kd ∼ 10(-8)-10(-10) M. Five of 13 IgGs recognized the same linear epitope on TT, occluding the binding site used by the toxin for cell entry, suggesting a possible explanation for the mechanism of protection conferred by the vaccine. Importantly, only a small fraction (<5%) of peripheral blood plasmablast clonotypes (CD3(-)CD14(-)CD19(+)CD27(++)CD38(++)CD20(-)TT(+)) at the peak of the response (day 7), and an even smaller fraction of memory B cells, were found to encode antibodies that could be detected in the serological memory response 9 mo postvaccination. This suggests that only a small fraction of responding peripheral B cells give rise to the bone marrow long-lived plasma cells responsible for the production of biologically relevant amounts of vaccine-specific antibodies (near or above the Kd). Collectively, our results reveal the nature and dynamics of the serological response to vaccination with direct implications for vaccine design and evaluation.
Collapse
|
27
|
|
28
|
Haessler U, Reddy ST. Using next-generation sequencing for discovery of high-frequency monoclonal antibodies in the variable gene repertoires from immunized mice. Methods Mol Biol 2014; 1131:191-203. [PMID: 24515467 DOI: 10.1007/978-1-62703-992-5_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Historically, isolation of antigen-specific monoclonal antibodies has relied on screening-based approaches. Here we describe a simple and rapid method for antibody isolation without screening, which capitalizes on next-generation DNA sequencing and bioinformatic analysis of antibody variable region (V) gene repertoires from the bone marrow plasma cells of immunized mice. The highest frequency antibody variable heavy (VH) and variable light (VL) gene sequences are paired based on their relative frequency, and their respective antibody genes are constructed by DNA synthesis and recombinantly expressed, purified, and validated for antigen-binding specificity.
Collapse
Affiliation(s)
- Ulrike Haessler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | |
Collapse
|
29
|
Pötschke C, Kessler W, Maier S, Heidecke CD, Bröker BM. Experimental sepsis impairs humoral memory in mice. PLoS One 2013; 8:e81752. [PMID: 24312349 PMCID: PMC3842948 DOI: 10.1371/journal.pone.0081752] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/16/2013] [Indexed: 12/24/2022] Open
Abstract
Patients with sepsis are often immune suppressed, and experimental mouse models of sepsis also display this feature. However, acute sepsis in mice is also characterized by a generalized B cell activation and plasma cell differentiation, resulting in a marked increase in serum antibody concentration. Its effects on humoral memory are not clearly defined. We measured the effects of experimental sepsis on long-term immunological memory for a defined antigen: we induced colon ascendens stent peritonitis (CASP) 8 weeks after 2 rounds of immunization with ovalbumin. Four weeks later, the antigen-specific bone marrow plasma cell count had doubled in immunized non-septic animals, but remained unchanged in immunized septic animals. Sepsis also caused a decrease in antigen-specific serum antibody concentration. We conclude that sepsis weakens humoral memory by impeding the antigen-specific plasma cell pool's development, which is not complete 8 weeks after secondary immunization.
Collapse
Affiliation(s)
- Christian Pötschke
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Wolfram Kessler
- Department of Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Maier
- Department of Surgery, University Medicine Greifswald, Greifswald, Germany
| | | | - Barbara M. Bröker
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- E-mail:
| |
Collapse
|
30
|
Roth K, Oehme L, Zehentmeier S, Zhang Y, Niesner R, Hauser AE. Tracking plasma cell differentiation and survival. Cytometry A 2013; 85:15-24. [PMID: 24700574 DOI: 10.1002/cyto.a.22355] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/22/2013] [Accepted: 08/18/2013] [Indexed: 01/21/2023]
Abstract
Plasma cells play a crucial role for the humoral immune response as they represent the body's factories for antibody production. The differentiation from a B cell into a plasma cell is controlled by a complex transcriptional network and happens within secondary lymphoid organs. Based on their lifetime, two types of antibody secreting cells can be distinguished: Short-lived plasma cells are located in extrafollicular sites of secondary lymphoid organs such as lymph node medullary cords and the splenic red pulp. A fraction of plasmablasts migrate from secondary lymphoid organs to the bone marrow where they can become long-lived plasma cells. Bone marrow plasma cells reside in special microanatomical environments termed survival niches, which provide factors promoting their longevity. Reticular stromal cells producing the chemokine CXCL12, which is known to attract plasmablasts to the bone marrow but also to promote plasma cell survival, play a crucial role in the maintenance of these niches. In addition, hematopoietic cells are contributing to the niches by providing other soluble survival factors. Here, we review the current knowledge on the factors involved in plasma cell differentiation, their localization and migration. We also give an overview on what is known regarding the maintenance of long lived plasma cells in survival niches of the bone marrow.
Collapse
Affiliation(s)
- Katrin Roth
- Deutsches Rheuma Forschungszentrum (DRFZ), a Leibniz Institute, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Hanazawa A, Löhning M, Radbruch A, Tokoyoda K. CD49b/CD69-Dependent Generation of Resting T Helper Cell Memory. Front Immunol 2013; 4:183. [PMID: 23847623 PMCID: PMC3706785 DOI: 10.3389/fimmu.2013.00183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/24/2013] [Indexed: 11/13/2022] Open
Abstract
In the absence of antigen, memory T helper (Th) cells are maintained in a resting state. Recently it has been shown that bone marrow (BM) is a major reservoir of resting memory Th cells. In a given immune response, less than 10% of the activated CD4 T cells are recruited to the pool of resting BM memory Th cells. Here we review recent evidence that CD69 and CD49b control homing of memory Th cell precursors to the BM. During the effector phase of an immune response, about 10% of activated CD4 T cells in the spleen express both CD69 and CD49b, and thus qualify as precursors of resting memory Th cells of BM. Loss or blockade of CD69 and CD49b expression on CD4 T cells impairs the generation of resting memory Th cells in the BM. Moreover, in the absence of BM memory Th cells in CD69-deficient mice, T-cell help for B cells is impaired, confirming the central role of BM memory Th cells in the maintenance of immunological memory.
Collapse
Affiliation(s)
- Asami Hanazawa
- Deutsches Rheuma-Forschungszentrum (DRFZ) , Berlin , Germany
| | | | | | | |
Collapse
|
32
|
Weigert O, von Spee C, Undeutsch R, Kloke L, Humrich JY, Riemekasten G. CD4+Foxp3+ regulatory T cells prolong drug-induced disease remission in (NZBxNZW) F1 lupus mice. Arthritis Res Ther 2013; 15:R35. [PMID: 23446139 PMCID: PMC3672693 DOI: 10.1186/ar4188] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 02/12/2013] [Indexed: 12/12/2022] Open
Abstract
Introduction The ability to ameliorate murine lupus renders regulatory T cells (Treg) a promising tool for the treatment of systemic lupus erythematosus (SLE). In consideration to the clinical translation of a Treg-based immunotherapy of SLE, we explored the potential of CD4+Foxp3+ Treg to maintain disease remission after induction of remission with an established cyclophosphamide (CTX) regimen in lupus-prone (NZBxNZW) F1 mice. As a prerequisite for this combined therapy, we also investigated the impact of CTX on the biology of endogenous Treg and conventional CD4+ T cells (Tcon). Methods Remission of disease was induced in diseased (NZBxNZW) F1 mice with an established CTX regimen consisting of a single dose of glucocorticosteroids followed by five day course with daily injections of CTX. Five days after the last CTX injection, differing amounts of purified CD4+Foxp3+CD25+ Treg were adoptively transferred and clinical parameters, autoantibody titers, the survival and changes in peripheral blood lymphocyte subsets were determined at different time points during the study. The influence of CTX on the numbers, frequencies and proliferation of endogenous Treg and Tcon was analyzed in lymphoid organs by flow cytometry. Results Apart from abrogating the proliferation of Tcon, we found that treatment with CTX induced also a significant inhibition of Treg proliferation and a decline in Treg numbers in lymphoid organs. Additional adoptive transfer of 1.5 × 106 purified Treg after the CTX regimen significantly increased the survival and prolonged the interval of remission by approximately five weeks compared to mice that received only the CTX regimen. The additional clinical amelioration was associated with an increase in the Treg frequency in the peripheral blood indicating a compensation of CTX-induced Treg deficiency by the Treg transfer. Conclusions Treg were capable to prolong the interval of remission induced by conventional cytostatic drugs. This study provides valuable information and a first proof-of-concept for the feasibility of a Treg-based immunotherapy in the maintenance of disease remission in SLE.
Collapse
|
33
|
Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmunity. Arthritis Res Ther 2012; 14 Suppl 5:S1. [PMID: 23281743 PMCID: PMC3535716 DOI: 10.1186/ar3909] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anti-CD20 therapy using rituximab directly targeting B cells has been approved for treatment of non-Hodgkin lymphoma, rheumatoid arthritis and anti-neutrophil cytoplasmic antibody-associated vasculitides and has led to reappreciation of B-lineage cells for anti-rheumatic treatment strategies. Moreover, blocking B-cell activating factor with belimumab, a drug that is licensed for treatment of active, seropositive systemic lupus erythematosus (SLE), represents an alternative, indirect anti-B-cell approach interfering with proper B-cell development. While these approaches apparently have no substantial impact on antibody-secreting plasma cells, challenges to improve the treatment of difficult-to-treat patients with SLE remain. In this context, anti-CD19 antibodies have the promise to directly target autoantibody-secreting plasmablasts and plasma cells as well as early B-cell differentiation stages not covered by anti-CD20 therapy. Currently known distinct expression profiles of CD19 by human plasma cell subsets, experiences with anti-CD19 therapies in malignant conditions as well as the rationale of targeting autoreactive plasma cells in patients with SLE are discussed in this review.
Collapse
|
34
|
Ryvkin A, Ashkenazy H, Smelyanski L, Kaplan G, Penn O, Weiss-Ottolenghi Y, Privman E, Ngam PB, Woodward JE, May GD, Bell C, Pupko T, Gershoni JM. Deep Panning: steps towards probing the IgOme. PLoS One 2012; 7:e41469. [PMID: 22870226 PMCID: PMC3409857 DOI: 10.1371/journal.pone.0041469] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/21/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Polyclonal serum consists of vast collections of antibodies, products of differentiated B-cells. The spectrum of antibody specificities is dynamic and varies with age, physiology, and exposure to pathological insults. The complete repertoire of antibody specificities in blood, the IgOme, is therefore an extraordinarily rich source of information-a molecular record of previous encounters as well as a status report of current immune activity. The ability to profile antibody specificities of polyclonal serum at exceptionally high resolution has been an important and serious challenge which can now be overcome. METHODOLOGY/PRINCIPAL FINDINGS Here we illustrate the application of Deep Panning, a method that combines the flexibility of combinatorial phage display of random peptides with the power of high-throughput deep sequencing. Deep Panning is first applied to evaluate the quality and diversity of naïve random peptide libraries. The production of very large data sets, hundreds of thousands of peptides, has revealed unexpected properties of combinatorial random peptide libraries and indicates correctives to ensure the quality of the libraries generated. Next, Deep Panning is used to analyze a model monoclonal antibody in addition to allowing one to follow the dynamics of biopanning and peptide selection. Finally Deep Panning is applied to profile polyclonal sera derived from HIV infected individuals. CONCLUSIONS/SIGNIFICANCE The ability to generate and characterize hundreds of thousands of affinity-selected peptides creates an effective means towards the interrogation of the IgOme and understanding of the humoral response to disease. Deep Panning should open the door to new possibilities for serological diagnostics, vaccine design and the discovery of the correlates of immunity to emerging infectious agents.
Collapse
Affiliation(s)
- Arie Ryvkin
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Haim Ashkenazy
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Larisa Smelyanski
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Kaplan
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Penn
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | | | - Eyal Privman
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Peter B. Ngam
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - James E. Woodward
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Gregory D. May
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Callum Bell
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Tal Pupko
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan M. Gershoni
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
35
|
Mumtaz IM, Hoyer BF, Panne D, Moser K, Winter O, Cheng QY, Yoshida T, Burmester GR, Radbruch A, Manz RA, Hiepe F. Bone marrow of NZB/W mice is the major site for plasma cells resistant to dexamethasone and cyclophosphamide: implications for the treatment of autoimmunity. J Autoimmun 2012; 39:180-8. [PMID: 22727274 DOI: 10.1016/j.jaut.2012.05.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 12/11/2022]
Abstract
Antibodies contribute to the pathogenesis of many chronic inflammatory diseases, including autoimmune disorders and allergies. They are secreted by proliferating plasmablasts, short-lived plasma cells and non-proliferating, long-lived memory plasma cells. Memory plasma cells refractory to immunosuppression are critical for the maintenance of both protective and pathogenic antibody titers. Here, we studied the response of plasma cells in spleen, bone marrow and inflamed kidneys of lupus-prone NZB/W mice to high-dose dexamethasone and/or cyclophosphamide. BrdU+, dividing plasmablasts and short-lived plasma cells in the spleen were depleted while BrdU- memory plasma cells survived. In contrast, all bone marrow plasma cells including anti-DNA secreting cells were refractory to both drugs. Unlike bone marrow and spleen, which showed a predominance of IgM-secreting plasma cells, inflamed kidneys mainly accommodated IgG-secreting plasma cells, including anti-DNA secreting cells, some of which survived the treatments. These results indicate that the bone marrow is the major site of memory plasma cells resistant to treatment with glucocorticoids and anti-proliferative drugs, and that inflamed tissues and secondary lymphoid organs can contribute to the autoreactive plasma cell memory. Therefore, new strategies targeting autoreactive plasma cell memory should be considered. This could be the key to finding a curative approach to the treatment of chronic inflammatory autoantibody-mediated diseases.
Collapse
Affiliation(s)
- Imtiaz M Mumtaz
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The germinal center (GC) is a unique histological structure found in peripheral lymphoid organs. GCs provide an important source of humoral immunity by generating high affinity antibodies against a pathogen. The GC response is tightly regulated during clonal expansion, immunoglobulin modification, and affinity maturation, whereas its deregulation has a detrimental effect on immune function, leading to development of diseases, such as lymphoma and autoimmunity. LRF (lymphoma/leukemia-related factor), encoded by the ZBTB7A gene, is a transcriptional repressor belonging to the POK (POZ and Krüppel)/ZBTB (zing finger and BTB) protein family. LRF was originally identified as a PLZF (promyelocytic leukemia zinc finger) homolog that physically interacts with BCL6 (B-cell lymphoma 6), whose expression is required for GC formation and associated with non-Hodgkin's lymphoma. Recently, our group demonstrated that LRF plays critical roles in regulating lymphoid lineage commitment, mature B-cell development, and the GC response via distinct mechanisms. Herein, we review POK/ZBTB protein function in lymphoid development, with particular emphasis on the role of LRF in GC B cells.
Collapse
Affiliation(s)
- Sung-Uk Lee
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Takahiro Maeda
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
BAFF and innate immunity: new therapeutic targets for systemic lupus erythematosus. Immunol Cell Biol 2012; 90:293-303. [PMID: 22231653 DOI: 10.1038/icb.2011.111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, the B cell has emerged as a cornerstone of systemic lupus erythematosus (SLE) pathogenesis. This has been highlighted by studies of the cytokine B-cell-activating factor of the tumour necrosis factor (TNF) family (BAFF), a crucial factor regulating B-cell maturation, survival and function. Overexpression of BAFF in mice leads to the development of an SLE-like disease, independent of T cells but instead relying on innate immunity mechanisms. Moreover, BAFF has been shown to be elevated in the serum of patients suffering from autoimmune conditions, especially SLE, and may correlate with disease activity. These findings challenge the previous notion that T:B-cell collaboration is the sole driver of SLE. In recent years, controlled trials have for the first time tested targeted therapeutics for SLE. However, agents designed to target B cells failed to meet primary endpoints in clinical trials in SLE, suggesting that a more complex role for B cells in SLE awaited elucidation. By contrast, on 9 March 2011, the US Food and Drug Administration approved belimumab, a fully human anti-BAFF monoclonal antibody, as a new B-cell-specific treatment for SLE. This article will review over 10 years of research on the BAFF system, key findings that led to this recent positive clinical outcome and propose a model potentially explaining why this B-cell-specific therapy has yielded positive results in clinical trials. We will also review promising therapies presently in clinical trials targeting innate immunity, which are likely to revolutionize SLE management towards a personalized and targeted therapy approach.
Collapse
|
38
|
Kinetics of humoral and memory B cell response induced by the Plasmodium falciparum 19-kilodalton merozoite surface protein 1 in mice. Infect Immun 2011; 80:633-42. [PMID: 22104109 DOI: 10.1128/iai.05188-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 19-kDa carboxyl-terminal fragment of the merozoite surface protein-1 (MSP-1(19)) has been shown to regulate antibody (Ab)-mediated protective immunity to blood-stage malaria infection. But the serological memory to this antigen tends to be short-lived, and little is known of the mechanisms that regulate the formation of B cell memory to MSP-1(19) antigen. We studied the formation of B cell memory response after immunization with the recombinant 19-kDa Plasmodium falciparum merozoite surface protein 1 (PfMSP-1(19)). Immunization with PfMSP-1(19) resulted in delayed increase in germinal center (GC) B cell numbers. This poor GC reaction correlated with short-lived PfMSP-1(19)-specific antibodies in serum and the short life of PfMSP-1(19)-specific plasma cells and memory B cells (MBCs) in spleen and bone marrow. PfMSP-1(19)-specific MBCs were capable of producing antigen (Ag)-specific Ab-secreting cell (ASC) responses that were short-lived following challenge immunization of the immune mice with antigen or transgenic Plasmodium berghei parasite expressing PfMSP-1(19) in place of native P. berghei MSP-1(19) at 8 weeks after the last immunization or following adoptive transfer into naive hosts. However, no protection was achieved in PfMSP-1(19) immune mice or recipient mice with PfMSP-1(19)-specific MBCs following challenge with transgenic P. berghei. Our findings suggest that PfMSP-1(19)-specific IgG production by short-lived plasma cells combined with the poor ability of the PfMSP-1(19)-induced MBCs to maintain the anamnestic IgG responses failed to contribute to protection against infection.
Collapse
|
39
|
Garçon N, Van Mechelen M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines 2011; 10:471-86. [PMID: 21506645 DOI: 10.1586/erv.11.29] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The immunostimulants 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and the saponin QS-21 are part of licensed or candidate vaccines. MPL and QS-21 directly affect the innate immune response to orchestrate the quality and intensity of the adaptive immune response to the vaccine antigens. The combination of immunostimulants in different adjuvant formulations forms the basis of Adjuvant Systems (AS) as a way to promote appropriate protective immune responses following vaccination. MPL and aluminum salts are present in AS04, and both MPL and QS-21 are present in AS01 and AS02, which are liposome- and emulsion-based formulations, respectively. The recent clinical performance of AS01-, AS02- and AS04-adjuvanted vaccines will be discussed in the context of the diseases being targeted. The licensing of two AS04-adjuvanted vaccines and the initiation of Phase III trials with an AS01-adjuvanted vaccine demonstrate the potential to develop new or improved human vaccines that contain MPL or MPL and QS-21.
Collapse
|
40
|
Ex vivo characterization and isolation of rare memory B cells with antigen tetramers. Blood 2011; 118:348-57. [PMID: 21551230 DOI: 10.1182/blood-2011-03-341917] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Studying human antigen-specific memory B cells has been challenging because of low frequencies in peripheral blood, slow proliferation, and lack of antibody secretion. Therefore, most studies have relied on conversion of memory B cells into antibody-secreting cells by in vitro culture. To facilitate direct ex vivo isolation, we generated fluorescent antigen tetramers for characterization of memory B cells by using tetanus toxoid as a model antigen. Brightly labeled memory B cells were identified even 4 years after last immunization, despite low frequencies ranging from 0.01% to 0.11% of class-switched memory B cells. A direct comparison of monomeric to tetrameric antigen labeling demonstrated that a substantial fraction of the B-cell repertoire can be missed when monomeric antigens are used. The specificity of the method was confirmed by antibody reconstruction from single-cell sorted tetramer(+) B cells with single-cell RT-PCR of the B-cell receptor. All antibodies bound to tetanus antigen with high affinity, ranging from 0.23 to 2.2 nM. Furthermore, sequence analysis identified related memory B cell and plasmablast clones isolated more than a year apart. Therefore, antigen tetramers enable specific and sensitive ex vivo characterization of rare memory B cells as well as the production of fully human antibodies.
Collapse
|
41
|
Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat Rev Rheumatol 2011; 7:170-8. [DOI: 10.1038/nrrheum.2011.1] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Bermejo DA, Amezcua Vesely MC, Khan M, Acosta Rodríguez EV, Montes CL, Merino MC, Toellner KM, Mohr E, Taylor D, Cunningham AF, Gruppi A. Trypanosoma cruzi infection induces a massive extrafollicular and follicular splenic B-cell response which is a high source of non-parasite-specific antibodies. Immunology 2010; 132:123-33. [PMID: 20875075 DOI: 10.1111/j.1365-2567.2010.03347.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Acute infection with Trypanosoma cruzi, the aetiological agent of Chagas' disease, results in parasitaemia and polyclonal lymphocyte activation. It has been reported that polyclonal B-cell activation is associated with hypergammaglobulinaemia and delayed parasite-specific antibody response. In the present study we analysed the development of a B-cell response within the different microenvironments of the spleen during acute T. cruzi infection. We observed massive germinal centre (GC) and extrafollicular (EF) responses at the peak of infection. However, the EF foci were evident since day 3 post-infection (p.i.), and, early in the infection, they mainly provided IgM. The EF foci response reached its peak at 11 days p.i. and extended from the red pulp into the periarteriolar lymphatic sheath. The GCs were detected from day 8 p.i. At the peak of parasitaemia, CD138(+) B220(+) plasma cells in EF foci, red pulp and T-cell zone expressed IgM and all the IgG isotypes. Instead of the substantial B-cell response, most of the antibodies produced by splenic cells did not target the parasite, and parasite-specific IgG isotypes could be detected in sera only after 18 days p.i. We also observed that the bone marrow of infected mice presented a strong reduction in CD138(+) B220(+) cells compared with that of normal mice. Hence, in acute infection with T. cruzi, the spleen appears to be the most important lymphoid organ that lodges plasma cells and the main producer of antibodies. The development of a B-cell response during T. cruzi infection shows features that are particular to T. cruzi and other protozoan infection but different to other infections or immunization with model antigens.
Collapse
Affiliation(s)
- Daniela A Bermejo
- Immunology, School of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rizzi M, Knoth R, Hampe CS, Lorenz P, Gougeon ML, Lemercier B, Venhoff N, Ferrera F, Salzer U, Thiesen HJ, Peter HH, Walker UA, Eibel H. Long-lived plasma cells and memory B cells produce pathogenic anti-GAD65 autoantibodies in Stiff Person Syndrome. PLoS One 2010; 5:e10838. [PMID: 20520773 PMCID: PMC2877104 DOI: 10.1371/journal.pone.0010838] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 04/22/2010] [Indexed: 11/25/2022] Open
Abstract
Stiff person syndrome (SPS) is a rare, neurological disorder characterized by sudden cramps and spasms. High titers of enzyme-inhibiting IgG autoantibodies against the 65 kD isoform of glutamic acid decarboxylase (GAD65) are a hallmark of SPS, implicating an autoimmune component in the pathology of the syndrome. Studying the B cell compartment and the anti-GAD65 B cell response in two monozygotic twins suffering from SPS, who were treated with the B cell-depleting monoclonal anti-CD20 antibody rituximab, we found that the humoral autoimmune response in SPS is composed of a rituximab-sensitive part that is rapidly cleared after treatment, and a rituximab-resistant component, which persists and acts as a reservoir for autoantibodies inhibiting GAD65 enzyme activity. Our data show that these potentially pathogenic anti-GAD65 autoantibodies are secreted by long-lived plasma cells, which may either be persistent or develop from rituximab-resistant memory B lymphocytes. Both subsets represent only a fraction of anti-GAD65 autoantibody secreting cells. Therefore, the identification and targeting of this compartment is a key factor for successful treatment planning of SPS and of similar autoimmune diseases.
Collapse
Affiliation(s)
- Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
- Centre of Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Clinical Research Unit for Rheumatology, University Medical Center Freiburg, Freiburg, Germany
| | - Rolf Knoth
- Department of Neuropathology, Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Christiane S. Hampe
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Peter Lorenz
- Institute of Immunology, University of Rostock, Rostock, Germany
| | - Marie-Lise Gougeon
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Paris, France
| | - Brigitte Lemercier
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Paris, France
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
- Centre of Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Francesca Ferrera
- Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
- Centre of Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | | | - Hans-Hartmut Peter
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
- Centre of Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Ulrich A. Walker
- Department of Rheumatology at Basel University, Basel, Switzerland
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
- Centre of Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Clinical Research Unit for Rheumatology, University Medical Center Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
44
|
Bergen MJ, Pan CH, Greer CE, Legg HS, Polo JM, Griffin DE. Comparison of the immune responses induced by chimeric alphavirus-vectored and formalin-inactivated alum-precipitated measles vaccines in mice. PLoS One 2010; 5:e10297. [PMID: 20421972 PMCID: PMC2858653 DOI: 10.1371/journal.pone.0010297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 03/25/2010] [Indexed: 02/07/2023] Open
Abstract
A variety of vaccine platforms are under study for development of new vaccines for measles. Problems with past measles vaccines are incompletely understood and underscore the need to understand the types of immune responses induced by different types of vaccines. Detailed immune response evaluation is most easily performed in mice. Although mice are not susceptible to infection with wild type or vaccine strains of measles virus, they can be used for comparative evaluation of the immune responses to measles vaccines of other types. In this study we compared the immune responses in mice to a new protective alphavirus replicon particle vaccine expressing the measles virus hemagglutinin (VEE/SIN-H) with a non-protective formalin-inactivated, alum-precipitated measles vaccine (FI-MV). MV-specific IgG levels were similar, but VEE/SIN-H antibody was high avidity IgG2a with neutralizing activity while FI-MV antibody was low-avidity IgG1 without neutralizing activity. FI-MV antibody was primarily against the nucleoprotein with no priming to H. Germinal centers appeared, peaked and resolved later for FI-MV. Lymph node MV antibody-secreting cells were more numerous after FI-MV than VEE/SIN-H, but were similar in the bone marrow. VEE/SIN-H-induced T cells produced IFN-gamma and IL-4 both spontaneously ex vivo and after stimulation, while FI-MV-induced T cells produced IL-4 only after stimulation. In summary, VEE/SIN-H induced a balanced T cell response and high avidity neutralizing IgG2a while FI-MV induced a type 2 T cell response, abundant plasmablasts, late germinal centers and low avidity non-neutralizing IgG1 against the nucleoprotein.
Collapse
Affiliation(s)
- M. Jeff Bergen
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Chien-Hsiung Pan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Catherine E. Greer
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Harold S. Legg
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - John M. Polo
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Diane E. Griffin
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
45
|
Cao Y, Gordic M, Kobold S, Lajmi N, Meyer S, Bartels K, Hildebrandt Y, Luetkens T, Ihloff AS, Kröger N, Bokemeyer C, Atanackovic D. An optimized assay for the enumeration of antigen-specific memory B cells in different compartments of the human body. J Immunol Methods 2010; 358:56-65. [PMID: 20302874 DOI: 10.1016/j.jim.2010.03.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/09/2010] [Accepted: 03/11/2010] [Indexed: 12/18/2022]
Abstract
OBJECT In the framework of our current study we set out to develop an optimized assay for the quantification of antigen-specific B cells in different compartments of the human body. METHODS Mononuclear cells (MNC) derived from the peripheral blood, bone marrow (BM), or human tonsils were incubated with different combinations of stimuli. The stimulated cells and culture supernatants were then applied to IgG-ELISPOT and ELISA read-out assays and tetanus toxoid (TT)-specific B cell responses were quantified. RESULTS We found that a combination of CD40L, CpG, and IL21 was optimal for the induction of TT-specific IgG-producing cells from memory B cell (mBc) precursors. This cocktail of stimuli led to a proliferation-dependent induction of CD19(intermediate)CD38(high)CD138(high)IgD(negative) terminally differentiated plasma cells. Applying our optimized methodology we were also able to quantify mBc specific for cytomegalovirus and influenza virus A. Most importantly, the same method proved useful for the comparison of mBc frequencies between different compartments of the body and, accordingly, we were able to demonstrate that TT-specific mBc preferably reside within tonsillar tissue. CONCLUSION Here, we optimized an assay for the quantification of antigen-specific B cells in different human tissues demonstrating, for example, that TT-specific mBc preferably reside in human tonsils but not in the BM or the peripheral blood. We suggest that our approach can be used for the enumeration of mBc specific for a wide variety of Ag (microbial, tumor-related, auto-antigens), which will lead to significant improvements regarding our knowledge about the biology of humoral immunity.
Collapse
Affiliation(s)
- Yanran Cao
- Department of Internal Medicine II (Oncology, Haematology, Stem Cell Transplantation), University Cancer Centre Hamburg (Hubertus Wald Tumorzentrum), Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rossi JF, Moreaux J, Hose D, Requirand G, Rose M, Rouillé V, Nestorov I, Mordenti G, Goldschmidt H, Ythier A, Klein B. Atacicept in relapsed/refractory multiple myeloma or active Waldenström's macroglobulinemia: a phase I study. Br J Cancer 2009; 101:1051-8. [PMID: 19789533 PMCID: PMC2768101 DOI: 10.1038/sj.bjc.6605241] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: Advanced multiple myeloma (MM) and Waldenström's macroglobulinemia (WM) are incurable B-cell malignancies. This is the first full clinical report of atacicept, a fusion protein that binds to and neutralises the B-cell survival factors, B-lymphocyte stimulator (BLyS) and A proliferation-inducing ligand (APRIL), in MM and WM. Methods: In this open-label phase-I study, 16 patients with advanced disease (12 MM, 4 WM) received one cycle of five once-weekly subcutaneous injections of atacicept (2, 4, 7 or 10 mg kg−1). Patients with stable disease after cycle 1 entered an extension study (either two additional cycles (2, 4 and 7 mg kg−1 cohorts) or 15 consecutive weekly injections of atacicept 10 mg kg−1). Results: Atacicept was well tolerated, systemically and locally; the maximum tolerated dose was not identified. Of 11 patients with MM who completed initial treatment, five patients were progression-free after cycle 1 and four patients were progression-free after extended therapy. Of four patients with WM, three patients were progression-free after cycle 1. Consistent with atacicept's mechanism of action, polyclonal immunoglobulin isotypes and total B cells were reduced. Bone-marrow density, myeloma cell numbers and plasma concentrations of soluble CD138 also decreased. Conclusion: Atacicept is well tolerated in patients with MM and WM, and shows clinical and biological activity consistent with its mechanism of action.
Collapse
Affiliation(s)
- J-F Rossi
- CIC-Biothérapie BT 509, CHU Montpellier, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Traore B, Koné Y, Doumbo S, Doumtabé D, Traoré A, Crompton PD, Mircetic M, Huang CY, Kayentao K, Dicko A, Sagara I, Ellis RD, Miura K, Guindo A, Miller LH, Doumbo OK, Pierce SK. The TLR9 agonist CpG fails to enhance the acquisition of Plasmodium falciparum-specific memory B cells in semi-immune adults in Mali. Vaccine 2009; 27:7299-303. [PMID: 19712767 DOI: 10.1016/j.vaccine.2009.08.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/03/2009] [Accepted: 08/06/2009] [Indexed: 11/26/2022]
Abstract
Antibodies play a key role in controlling blood stage malaria infections, and an effective blood stage malaria vaccine will likely require that it induce vaccine-specific memory B cells (MBCs). Our previous studies showed that the addition of the TLR9 agonist CpG to Plasmodium falciparum protein subunit vaccines greatly increased their efficacy in inducing MBCs in nonimmune U.S. volunteers. Here we show that in contrast the same CpG-containing malaria vaccine did not enhance the acquisition of MBCs in semi-immune adults living in Mali. Understanding the molecular basis of this apparent refractoriness to TLR9 agonist will be of significant interest in vaccine design.
Collapse
Affiliation(s)
- Boubacar Traore
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Odonto-Stomatology, Department of Epidemiology of Parasitic Diseases-BP 1805 Bamako, Mali.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Benson MJ, Elgueta R, Schpero W, Molloy M, Zhang W, Usherwood E, Noelle RJ. Distinction of the memory B cell response to cognate antigen versus bystander inflammatory signals. ACTA ACUST UNITED AC 2009; 206:2013-25. [PMID: 19703988 PMCID: PMC2737154 DOI: 10.1084/jem.20090667] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypothesis that bystander inflammatory signals promote memory B cell (B(MEM)) self-renewal and differentiation in an antigen-independent manner is critically evaluated herein. To comprehensively address this hypothesis, a detailed analysis is presented examining the response profiles of B-2 lineage B220(+)IgG(+) B(MEM) toward cognate protein antigen in comparison to bystander inflammatory signals. After in vivo antigen encounter, quiescent B(MEM) clonally expand. Surprisingly, proliferating B(MEM) do not acquire germinal center (GC) B cell markers before generating daughter B(MEM) and differentiating into plasma cells or form structurally identifiable GCs. In striking contrast to cognate antigen, inflammatory stimuli, including Toll-like receptor agonists or bystander T cell activation, fail to induce even low levels of B(MEM) proliferation or differentiation in vivo. Under the extreme conditions of adjuvanted protein vaccination or acute viral infection, no detectable bystander proliferation or differentiation of B(MEM) occurred. The absence of a B(MEM) response to nonspecific inflammatory signals clearly shows that B(MEM) proliferation and differentiation is a process tightly controlled by the availability of cognate antigen.
Collapse
Affiliation(s)
- Micah J Benson
- Department of Microbiology and Immunology, Dartmouth Medical School and Norris Cotton Cancer Center, Lebanon, NH 03756, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Looney RJ, Anolik J, Sanz I. A perspective on B-cell-targeting therapy for SLE. Mod Rheumatol 2009; 20:1-10. [PMID: 19669389 DOI: 10.1007/s10165-009-0213-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/13/2009] [Indexed: 01/10/2023]
Abstract
In recent years, large controlled trials have tested several new agents for systemic lupus erythematosus (SLE). Unfortunately, none of these trials has met its primary outcome. This does not mean progress has not been made. In fact, a great deal has been learned about doing clinical trials in lupus and about the biological and clinical effects of the drugs being tested. Many of these drugs were designed to target B cells directly, e.g., rituximab, belimumab, epratuzumab, and transmembrane activator and calcium modulator and cyclophilin ligand interactor-immunoglobulin (TACI-Ig). The enthusiasm for targeting B cells derives from substantial evidence showing the critical role of B cells in murine models of SLE, as well promising results from multiple open trials with rituximab, a chimeric anti-CD20 monoclonal antibody that specifically depletes B cells (Martin and Chan in Immunity 20(5):517-527, 2004; Sobel et al. in J Exp Med 173:1441-1449, 1991; Silverman and Weisman in Arthritis Rheum 48:1484-1492, 2003; Silverman in Arthritis Rheum 52(4):1342, 2005; Shlomchik et al. in Nat Rev Immunol 1:147-153, 2001; Looney et al. in Arthritis Rheum 50:2580-2589, 2004; Lu et al. in Arthritis Rheum 61(4):482-487, 2009; Saito et al. in Lupus 12(10):798-800, 2003; van Vollenhoven et al. in Scand J Rheumatol 33(6):423-427, 2004; Sfikakis et al. Arthritis Rheum 52(2):501-513, 2005). Why have the controlled trials of B-cell-targeting therapies failed to demonstrate efficacy? Were there flaws in design or execution of these trials? Or, were promising animal studies and open trials misleading, as so often happens? This perspective discusses the current state of B-cell-targeting therapies for human lupus and the future development of these therapies.
Collapse
Affiliation(s)
- R John Looney
- Division of Allergy Immunology Rheumatology, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Room G-6427C, Rochester, NY, 14642, USA.
| | | | | |
Collapse
|
50
|
Kantele JM, Savilahti E, Westerholm-Ormio M, Pakkanen S, Arvilommi HS, Reunala T, Kantele AM. Decreased numbers of circulating plasmablasts and differences in IgA1-plasmablast homing to skin in coeliac disease and dermatitis herpetiformis. Clin Exp Immunol 2009; 156:535-41. [PMID: 19438608 DOI: 10.1111/j.1365-2249.2009.03922.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The two clinical phenotypes of gluten enteropathy, coeliac disease (CD) and dermatitis herpetiformis (DH), were characterized for numbers and homing profiles of circulating final effector B cells, plasmablasts, identified as immunoglobulin (Ig)-secreting cells (ISC). In CD, the numbers of ISC were approximately 50% lower than in DH or controls. ISC expressed peripheral lymph node homing receptor (HR), L-selectin, less frequently in CD (54%) and DH (52%) patients than in controls (70%). The expression of gut mucosal HR, alpha(4)beta(7), was less frequent in CD (42%) than in DH (65%) or controls (60%). In DH, but not in CD or controls, a higher proportion of IgA1-ISC (40%) than IgA2-ISC (25%) expressed the skin HR, cutaneous lymphocyte-associated antigen. In gluten enteropathy circulating plasmablasts are more mature, but decreased in number, and have distorted homing profiles. Differential IgA1-plasmablast homing could be associated with the development of skin rash with IgA1-deposits in DH but not in CD.
Collapse
Affiliation(s)
- J M Kantele
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|