1
|
Rommel FR, Tumala S, Urban AL, Siebenhaar F, Kruse J, Gieler U, Peters EMJ. Stress Affects Mast Cell Proteases in Murine Skin in a Model of Atopic Dermatitis-like Allergic Inflammation. Int J Mol Sci 2024; 25:5738. [PMID: 38891925 PMCID: PMC11171663 DOI: 10.3390/ijms25115738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Stress exposure worsens allergic inflammatory diseases substantially. Mast cells (MCs) play a key role in peripheral immune responses to neuroendocrine stress mediators such as nerve growth factor (NGF) and substance P (SP). Mast cell proteases (MCPs) and cholinergic factors (Chrna7, SLURP1) were recently described to modulate MC stress response. We studied MCPs and Chrna7/SLURP1 and their interplay in a mouse model for noise induced stress (NiS) and atopic dermatitis-like allergic inflammation (AlD) and in cultured MC lacking Chrna7. We found that the cholinergic stress axis interacts with neuroendocrine stress mediators and stress-mediator cleaving enzymes in AlD. SP-cleaving mMCP4+ MC were upregulated in AlD and further upregulated by stress in NiS+AlD. Anti-NGF neutralizing antibody treatment blocked the stress-induced upregulation in vivo, and mMCP4+ MCs correlated with measures of AlD disease activity. Finally, high mMCP4 production in response to SP depended on Chrna7/SLURP1 in cultured MCs. In conclusion, mMCP4 and its upstream regulation by Chrna7/SLURP1 are interesting novel targets for the treatment of allergic inflammation and its aggravation by stress.
Collapse
Affiliation(s)
- Frank R. Rommel
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Susanne Tumala
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Anna-Lena Urban
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, 12203 Berlin, Germany
| | - Johannes Kruse
- Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Uwe Gieler
- Department of Dermatology, University Hospital Giessen, 35392 Giessen, Germany
| | - Eva M. J. Peters
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus Liebig University Giessen, 35390 Giessen, Germany
- Charité Center 12 for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
2
|
Vultaggio A, Accinno M, Vivarelli E, Mecheri V, Maggiore G, Cosmi L, Parronchi P, Rossi O, Maggi E, Gallo O, Matucci A. Blood CD62L low inflammatory eosinophils are related to the severity of asthma and reduced by mepolizumab. Allergy 2023; 78:3154-3165. [PMID: 37792721 DOI: 10.1111/all.15909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Eosinophils have been divided into different subpopulations with distinct phenotypes based on CD62L expression. No data are available regarding the correlation between eosinophils subphenotypes and clinical severity of asthma, as well as the effect of anti-IL-5 therapy on these cells. The study investigates the correlation between blood CD62Llow inflammatory eosinophils (iEos) and clinical severity of severe eosinophilic asthma (SEA) and evaluates the impact of mepolizumab on iEos. METHODS 112 patients were screened and were divided in two groups: biological-naive (n = 51) and biological-treated patients (n = 61). The Biological-naive patients were analyzed before treatment (Group A) and 19 out of 51 patients, were longitudinally analyzed before and after treatment with mepolizumab 100 mg s.c/4 weeks (Group B); 32 patients were excluded because they were being treated with other biological therapies. Blood eosinophils were analyzed by FACS and correlated with clinical scores. In vitro effect of IL-5 and mepolizumab on CD62L expression was assessed. RESULTS A significant correlation between blood CD62Llow cells and clinical scores of asthma and nasal polyps, as well as the number of asthma exacerbations in the last year was shown in untreated patients. In longitudinally studied patients we observed a marked reduction of CD62Llow cells paralleled by an increase in the proportion of CD62Lbright cells, associated with clinical improvement of asthma control. In vitro, CD62L expression on eosinophils is modulated by IL-5 and anti-IL-5. CONCLUSION A positive correlation between CD62Llow iEos and the baseline clinical features of SEA with CRSwNP was shown. Furthermore mepolizumab restores the healthy balance among eosinophils sub-phenotypes in SEA patients.
Collapse
Affiliation(s)
- Alessandra Vultaggio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Accinno
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Emanuele Vivarelli
- Immunology and Cellular Therapy Unit, Careggi University Hospital, Florence, Italy
| | - Valentina Mecheri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giandomenico Maggiore
- Department of Clinical and Experimental Medicine, Otolaryngology Clinic, University of Florence, Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paola Parronchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Olivero Rossi
- Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | - Enrico Maggi
- Translational Immunology Unit, Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Oreste Gallo
- Department of Clinical and Experimental Medicine, Otolaryngology Clinic, University of Florence, Florence, Italy
| | - Andrea Matucci
- Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
3
|
Tune C, Hahn J, Autenrieth SE, Meinhardt M, Pagel R, Schampel A, Schierloh LK, Kalies K, Westermann J. Sleep restriction prior to antigen exposure does not alter the T cell receptor repertoire but impairs germinal center formation during a T cell-dependent B cell response in murine spleen. Brain Behav Immun Health 2021; 16:100312. [PMID: 34589803 PMCID: PMC8474616 DOI: 10.1016/j.bbih.2021.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
It is well known that sleep promotes immune functions. In line with this, a variety of studies in animal models and humans have shown that sleep restriction following an antigen challenge dampens the immune response on several levels which leads to e.g. worsening of disease outcome and reduction of vaccination efficiency, respectively. However, the inverse scenario with sleep restriction preceding an antigen challenge is only investigated in a few animal models where it has been shown to reduce antigen uptake and presentation as well as pathogen clearance and survival rates. Here, we use injection of sheep red blood cells to investigate the yet unknown effect on a T cell-dependent B cell response in a well-established mouse model. We found that 6 h of sleep restriction prior to the antigen challenge does not impact the T cell reaction including the T cell receptor repertoire but dampens the development of germinal centers which correlates with reduced antigen-specific antibody titer indicating an impaired B cell response. These changes concerned a functionally more relevant level than those found in the same experimental model with the inverse scenario when sleep restriction followed the antigen challenge. Taken together, our findings showed that the outcome of the T cell-dependent B cell response is indeed impacted by sleep restriction prior to the antigen challenge which highlights the clinical significance of this scenario and the need for further investigations in humans, for example concerning the effect of sleep restriction preceding a vaccination.
Collapse
Key Words
- Antigen presentation
- BCZ, B cell zone
- CCL, C–C motif ligand
- CCR, C–C motif receptor
- CD, cluster of differentiation
- CIITA, class II major histocompatibility complex transactivator
- CXCL, C-X-C motif ligand
- FDR, false discovery rate
- GC, germinal center
- Germinal center
- IFN, interferon
- IL, interleukin
- IgG, Immunglobulin G
- MHC-II, major histocompatibility complex II
- Mouse
- RP, red pulp
- SD, standard deviation
- SLO, secondary lymphoid organ
- SRBC, sheep red blood cells
- Sheep red blood cells
- Sleep deprivation
- Spleen
- T cell-dependent B cell response
- TCR, T cell receptor
- TCR-R, T cell receptor repertoire
- TCZ, T cell zone
- Tfh, follicular T helper cells
Collapse
Affiliation(s)
- Cornelia Tune
- Institute of Anatomy, University of Luebeck, Germany
| | - Julia Hahn
- Department of Internal Medicine II, University of Tuebingen, Germany
| | | | | | - Rene Pagel
- Institute of Anatomy, University of Luebeck, Germany
| | | | | | | | | |
Collapse
|
4
|
Tsuge A, Watanabe A, Kodama Y, Hisaka S, Nose M. Orengedokuto exerts anti-allergic effects via inhibition of effector T cell activation in a murine model of contact hypersensitivity. J Nat Med 2021; 76:144-151. [PMID: 34510369 DOI: 10.1007/s11418-021-01566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022]
Abstract
Orengedokuto (OGT) is a Kampo prescription that has been used for the treatment of inflammation, hypertension, gastrointestinal disorders, and liver and cerebrovascular diseases. It is also used for the treatment of skin diseases such as urticaria and atopic dermatitis. We previously studied its anti-allergic effects of OGT on the murine model of 2,4,6-trinitrochlorobenzene (TNCB)-induced contact hypersensitivity (CHS) and demonstrated that it significantly suppresses ear swelling in a dose-dependent manner. However, the mechanism underlying this activity remained unknown. Here, we sought to identify the mechanism involved. Using a murine model of TNCB-induced CHS, together with adoptive cell transfer experiments, we found that the anti-allergic effects of OGT may be due to the inhibition of effector T cell activation and not the induction and/or activation of regulatory T cells. Flow cytometry analysis revealed that oral administration of OGT suppressed the increase in CD8+CD44highCD62L+ cell number in draining lymph nodes (dLNs) of mice sensitized with 5% TNCB. Additionally, ex vivo experiments confirmed the suppressive effect of OGT on the activation of effector T cells, as interferon-γ (IFN-γ) production by cultured lymphocytes obtained from 5% TNCB-sensitized mice and stimulated with anti-CD3ε and anti-CD28 monoclonal antibodies was reduced by OGT administration. In conclusion, our finding suggests that OGT exerts anti-allergic effects by regulating the activation of effector T cells involved in inflammatory skin diseases such as atopic dermatitis.
Collapse
Affiliation(s)
- Atsushi Tsuge
- Department of Pharmacognosy, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Atsuki Watanabe
- Department of Pharmacognosy, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Yuki Kodama
- Department of Pharmacognosy, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Shinsuke Hisaka
- Department of Pharmacognosy, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Mitsuhiko Nose
- Department of Pharmacognosy, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan. .,Department of Pharmacognosy, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan.
| |
Collapse
|
5
|
Mylvaganam S, Riedl M, Vega A, Collins RF, Jaqaman K, Grinstein S, Freeman SA. Stabilization of Endothelial Receptor Arrays by a Polarized Spectrin Cytoskeleton Facilitates Rolling and Adhesion of Leukocytes. Cell Rep 2021; 31:107798. [PMID: 32579925 PMCID: PMC7548125 DOI: 10.1016/j.celrep.2020.107798] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Multivalent complexes of endothelial adhesion receptors (e.g., selectins) engage leukocytes to orchestrate their migration to inflamed tissues. Proper anchorage and sufficient density (clustering) of endothelial receptors are required for efficient leukocyte capture and rolling. We demonstrate that a polarized spectrin network dictates the stability of the endothelial cytoskeleton, which is attached to the apical membrane, at least in part, by the abundant transmembrane protein CD44. Single-particle tracking revealed that CD44 undergoes prolonged periods of immobilization as it tethers to the cytoskeleton. The CD44-spectrin "picket fence" alters the behavior of bystander molecules-notably, selectins-curtailing their mobility, inducing their apical accumulation, and favoring their clustering within caveolae. Accordingly, depletion of either spectrin or CD44 virtually eliminated leukocyte rolling and adhesion to the endothelium. Our results indicate that a unique spectrin-based apical cytoskeleton tethered to transmembrane pickets-notably, CD44-is essential for proper extravasation of leukocytes in response to inflammation.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Magdalena Riedl
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada
| | - Anthony Vega
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Richard F Collins
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
Effects of sleep on the splenic milieu in mice and the T cell receptor repertoire recruited into a T cell dependent B cell response. Brain Behav Immun Health 2020; 5:100082. [PMID: 34589857 PMCID: PMC8474558 DOI: 10.1016/j.bbih.2020.100082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep is known to improve immune function ranging from cell distribution in the naïve state to elevated antibody titers after an immune challenge. The underlying mechanisms still remain unclear, partially because most studies have focused on the analysis of blood only. Hence, we investigated the effects of sleep within the spleen in female C57BL/6J mice with normal sleep compared to short-term sleep-deprived animals both in the naïve state and after an antigen challenge. Lack of sleep decreased the expression of genes associated with immune cell recruitment into and antigen presentation within the spleen both in the naïve state and during a T cell dependent B cell response directed against sheep red blood cells (SRBC). However, neither T cell proliferation nor formation of SRBC-specific antibodies was affected. In addition, the T cell receptor repertoire recruited into the immune response within seven days was not influenced by sleep deprivation. Thus, sleep modulated the molecular milieu within the spleen whereas we could not detect corresponding changes in the primary immune response against SRBC. Further studies will show whether sleep influences the secondary immune response against SRBC or the development of the B cell receptor repertoire, and how this can be compared to other antigens. Sleep deprivation (SD) decreases expression of genes involved in T cell function. SD induces those changes in the milieu of both lymph nodes and spleen. SD dampens the expression of several genes in the spleen during an immune response. SD does not alter the T cell receptor repertoire recruited into the immune response.
Collapse
Key Words
- Antigen presentation
- BCZ, B cell zone
- CCL, C–C motif ligand
- CCR, C–C motif receptor
- CD, cluster of differentiation
- CIITA, class II major histocompatibility complex transactivator
- CXCL, C-X-C motif ligand
- FDR, false discovery rate
- GC, germinal center
- IFN, interferon
- IL, interleukin
- Lymphocyte migration
- MHC-II, major histocompatibility complex II
- SD, sleep deprivation
- SLO, secondary lymphoid organ
- SRBC, sheep red blood cells
- Sheep red blood cells
- Sleep deprivation
- T cell dependent B cell Response
- T cell receptor repertoire
- TCR, T cell receptor
- TCR-R, T cell receptor repertoire
- TCZ, T cell zone
Collapse
|
7
|
Lim HW, Pak K, Kurabi A, Ryan AF. Lack of the hyaluronan receptor CD44 affects the course of bacterial otitis media and reduces leukocyte recruitment to the middle ear. BMC Immunol 2019; 20:20. [PMID: 31226944 PMCID: PMC6588864 DOI: 10.1186/s12865-019-0302-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND CD44 is a multifunctional molecule that plays major roles in both leukocyte recruitment and tissue proliferation. Since mucosal hyperplasia and leukocyte infiltration of the middle ear cavity are major features of otitis media, we evaluated the role of CD44 in the pathophysiology and course of this disease in a mouse model of middle ear infection. Expression of genes related to CD44 function were evaluated using gene arrays in wild-type mice. The middle ears of mice deficient in CD44 were inoculated with non-typeable Haemophilus influenzae. Histopathology and bacterial clearance were compared to that seen in wild-type controls. RESULTS We observed strong up-regulation of CD44 and of genes related to its role in leukocyte extravasation into the middle ear, during the course of acute otitis media. Mice deficient in CD44 exhibited reduced early mucosal hyperplasia and leukocyte recruitment, followed by delayed resolution of infection and persistent inflammation. CONCLUSIONS CD44 plays an important role in OM pathogenesis by altering the mucosal growth and neutrophil enlistment. Targeted therapies based on CD44 could be useful adjuncts to the treatment of middle ear infections.
Collapse
Affiliation(s)
- Hyun Woo Lim
- Department of Surgery/Otolaryngology, University of California-San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0666 USA
- Department of Otolaryngology, University of Ulsan College of Medicine, Gangneung, South Korea
| | - Kwang Pak
- Department of Surgery/Otolaryngology, University of California-San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0666 USA
| | - Arwa Kurabi
- Department of Surgery/Otolaryngology, University of California-San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0666 USA
| | - Allen F. Ryan
- Department of Surgery/Otolaryngology, University of California-San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0666 USA
- San Diego VA Medical Center, La Jolla, CA USA
| |
Collapse
|
8
|
Wang W, Yan X, Lin Y, Ge H, Tan Q. Wnt7a promotes wound healing by regulation of angiogenesis and inflammation: Issues on diabetes and obesity. J Dermatol Sci 2018; 91:S0923-1811(18)30103-8. [PMID: 29853224 DOI: 10.1016/j.jdermsci.2018.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/04/2018] [Accepted: 02/12/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND Diabetic skin heals wounds poorly. Though obesity is the common risk factor of diabetes mellitus, few studies have investigated its effects on wound healing. OBJECTIVES This study aimed to evaluate the morphology and possible mechanism of human umbilical vein endothelial cells (HUVEC-C) in response to different levels of glucose and palmitic acid, and explore the role of Wnt7a in wound healing. METHODS The functional changes of HUVEC-C and mRNA expression of Wnt signaling were determined by analyzing cell viability, migration, tube formation and rt-PCR in gradients of glucose and palmitic acid. Recombinant Wnt7a protein was injected around wounds made on streptozotocin (STZ) -induced diabetic rats with (HF) or without (DM) high-fat diet. Angiogenesis and inflammatory statement were mainly analyzed by immunohistochemistry, ELISA, cytometry and Western blotting. RESULTS The expression of Wnt7a significantly decreased in high Glc/PA cultured cells or DM and HF wounded rats. Impaired wound healing was also observed in DM and HF groups. The healing rate significantly accelerated after localized injection with Wnt7a at d10. Moreover, the expression of CD31, eNOS phosphorylation and NO were increased; the reduction of local neutrophils influx, ICAM-1 and IL-6/8 expression levels were obvious especially in diabetic with obesity rats at d10 after Wnt7a treatment. CONCLUSION This study indicates the potential role of Wnt7a, which is beneficial for regeneration of damaged vessels, moderation of inflammatory statement in diabetic wound healing with or without obesity, thus demonstrating its possible utility as a topical administration to promote healing rate.
Collapse
Affiliation(s)
- Wei Wang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Xin Yan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Yue Lin
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Huaqiang Ge
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Di Liddo R, Aguiari P, Barbon S, Bertalot T, Mandoli A, Tasso A, Schrenk S, Iop L, Gandaglia A, Parnigotto PP, Conconi MT, Gerosa G. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells. Int J Nanomedicine 2016; 11:5041-5055. [PMID: 27789941 PMCID: PMC5068475 DOI: 10.2147/ijn.s115999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC) on acellular aortic (AVL) and pulmonary (PVL) valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary evaluation of heart valve prosthetic functionality.
Collapse
Affiliation(s)
- Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova; Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS
| | - Paola Aguiari
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Silvia Barbon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova; Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova
| | - Amit Mandoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova
| | - Alessia Tasso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova
| | - Sandra Schrenk
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova
| | - Laura Iop
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Alessandro Gandaglia
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova; Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS
| | - Gino Gerosa
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Poukka M, Bykachev A, Siiskonen H, Tyynelä-Korhonen K, Auvinen P, Pasonen-Seppänen S, Sironen R. Decreased expression of hyaluronan synthase 1 and 2 associates with poor prognosis in cutaneous melanoma. BMC Cancer 2016; 16:313. [PMID: 27184066 PMCID: PMC4867536 DOI: 10.1186/s12885-016-2344-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 05/08/2016] [Indexed: 12/16/2022] Open
Abstract
Background Hyaluronan is a large extracellular matrix molecule involved in several biological processes such as proliferation, migration and invasion. In many cancers, hyaluronan synthesis is altered, which implicates disease progression and metastatic potential. We have previously shown that synthesis of hyaluronan and expression of its synthases 1–2 (HAS1-2) decrease in cutaneous melanoma, compared to benign melanocytic lesions. Methods In the present study, we compared immunohistological staining results of HAS1 and HAS2 with clinical and histopathological parameters to investigate whether HAS1 or HAS2 has prognostic value in cutaneous melanoma. The specimens consisted of 129 tissue samples including superficial (Breslow ≤ 1 mm) and deep (Breslow > 4 mm) melanomas and lymph node metastases. The differences in immunostainings were analysed with non-parametric Mann–Whitney U test. Associations between immunohistological staining results and clinical parameters were determined with the χ2 test. Survival between patient groups was compared by the Kaplan-Meier method using log rank test and Cox’s regression model was used for multivariate analyses. Results The expression of HAS1 and HAS2 was decreased in deep melanomas and metastases compared to superficial melanomas. Decreased immunostaining of HAS2 in melanoma cells was significantly associated with several known unfavourable histopathologic prognostic markers like increased mitotic count, absence of tumor infiltrating lymphocytes and the nodular subtype. Furthermore, reduced HAS1 and HAS2 immunostaining in the melanoma cells was associated with increased recurrence of melanoma (p = 0.041 and p = 0.006, respectively) and shortened disease- specific survival (p = 0.013 and p = 0.001, respectively). Conclusions This study indicates that reduced expression of HAS1 and HAS2 is associated with melanoma progression and suggests that HAS1 and HAS2 have a prognostic significance in cutaneous melanoma. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2344-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mari Poukka
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | | | - Hanna Siiskonen
- Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Päivi Auvinen
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Sanna Pasonen-Seppänen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Reijo Sironen
- Institute of Clinical Medicine/Clinical Pathology, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.,Cancer Center of Eastern Finland, Kuopio, Finland
| |
Collapse
|
11
|
Selectin-mediated leukocyte trafficking during the development of autoimmune disease. Autoimmun Rev 2015; 14:984-95. [DOI: 10.1016/j.autrev.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/18/2022]
|
12
|
Kim Y, Eom S, Park D, Kim H, Jeoung D. The Hyaluronic Acid-HDAC3-miRNA Network in Allergic Inflammation. Front Immunol 2015; 6:210. [PMID: 25983734 PMCID: PMC4415435 DOI: 10.3389/fimmu.2015.00210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/17/2015] [Indexed: 12/19/2022] Open
Abstract
We previously reported the anti-allergic effect of high molecular weight form of hyaluronic acid (HMW-HA). In doing so, HA targets CD44 and inhibits FcεRI signaling and cross-talk between epidermal growth factor receptor (EGFR) and FcεRI. We previously reported the role of histone deacetylases (HDACs) in allergic inflammation and allergic inflammation-promoted enhanced tumorigenic potential. We reported regulatory role of HA in the expression of HDAC3. In this review, we will discuss molecular mechanisms associated with anti-allergic effect of HA in relation with HDACs. The role of microRNAs (miRNAs) in allergic inflammation has been reported. We will also discuss the role of miRNAs in allergic inflammation in relation with HA-mediated anti-allergic effects.
Collapse
Affiliation(s)
- Youngmi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University , Chuncheon , South Korea
| | - Sangkyung Eom
- Department of Biochemistry, College of Natural Sciences, Kangwon National University , Chuncheon , South Korea
| | - Deokbum Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University , Chuncheon , South Korea
| | - Hyuna Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University , Chuncheon , South Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University , Chuncheon , South Korea
| |
Collapse
|
13
|
McDonald B, Kubes P. Interactions between CD44 and Hyaluronan in Leukocyte Trafficking. Front Immunol 2015; 6:68. [PMID: 25741341 PMCID: PMC4330908 DOI: 10.3389/fimmu.2015.00068] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/02/2015] [Indexed: 11/17/2022] Open
Abstract
Recruitment of leukocytes from the bloodstream to inflamed tissues requires a carefully regulated cascade of binding interactions between adhesion molecules on leukocytes and endothelial cells. Adhesive interactions between CD44 and hyaluronan (HA) have been implicated in the regulation of immune cell trafficking within various tissues. In this review, the biology of CD44–HA interactions in cell trafficking is summarized, with special attention to neutrophil recruitment within the liver microcirculation. We describe the molecular mechanisms that regulate adhesion between neutrophil CD44 and endothelial HA, including recent evidence implicating serum-derived hyaluronan-associated protein as an important co-factor in the binding of HA to CD44 under flow conditions. CD44–HA-mediated neutrophil recruitment has been shown to contribute to innate immune responses to invading microbes, as well as to the pathogenesis of many inflammatory diseases, including various liver pathologies. As a result, blockade of neutrophil recruitment by targeting CD44–HA interactions has proven beneficial as an anti-inflammatory treatment strategy in a number of animal models of inflammatory diseases.
Collapse
Affiliation(s)
- Braedon McDonald
- Department of Medicine, University of British Columbia , Vancouver, BC , Canada ; Snyder Institute for Chronic Diseases, University of Calgary , Calgary, AB , Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, University of Calgary , Calgary, AB , Canada
| |
Collapse
|
14
|
Baaten BJG, Tinoco R, Chen AT, Bradley LM. Regulation of Antigen-Experienced T Cells: Lessons from the Quintessential Memory Marker CD44. Front Immunol 2012; 3:23. [PMID: 22566907 PMCID: PMC3342067 DOI: 10.3389/fimmu.2012.00023] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/08/2012] [Indexed: 01/13/2023] Open
Abstract
Despite the widespread use of the cell-surface receptor CD44 as a marker for antigen (Ag)-experienced, effector and memory T cells, surprisingly little is known regarding its function on these cells. The best-established function of CD44 is the regulation of cell adhesion and migration. As such, the interactions of CD44, primarily with its major ligand, the extracellular matrix (ECM) component hyaluronic acid (HA), can be crucial for the recruitment and function of effector and memory T cells into/within inflamed tissues. However, little is known about the signaling events following engagement of CD44 on T cells and how cooperative interactions of CD44 with other surface receptors affect T cell responses. Recent evidence suggests that the CD44 signaling pathway(s) may be shared with those of other adhesion receptors, and that these provide contextual signals at different anatomical sites to ensure the correct T cell effector responses. Furthermore, CD44 ligation may augment T cell activation after Ag encounter and promote T cell survival, as well as contribute to regulation of the contraction phase of an immune response and the maintenance of tolerance. Once the memory phase is established, CD44 may have a role in ensuring the functional fitness of memory T cells. Thus, the summation of potential signals after CD44 ligation on T cells highlights that migration and adhesion to the ECM can critically impact the development and homeostasis of memory T cells, and may differentially affect subsets of T cells. These aspects of CD44 biology on T cells and how they might be modulated for translational purposes are discussed.
Collapse
Affiliation(s)
- Bas J G Baaten
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| | | | | | | |
Collapse
|
15
|
Berdnikovs S, Pavlov VI, Abdala-Valencia H, McCary CA, Klumpp DJ, Tremblay ML, Cook-Mills JM. PTP1B deficiency exacerbates inflammation and accelerates leukocyte trafficking in vivo. THE JOURNAL OF IMMUNOLOGY 2011; 188:874-84. [PMID: 22156494 DOI: 10.4049/jimmunol.1004108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is reported that PTP1B limits cytokine signaling in vitro. However, PTP1B's function during inflammation in vivo is not known. In this report, we determined whether PTP1B deficiency affects allergic inflammation in vivo. Briefly, lungs of OVA-challenged PTP1B(-/-) mice had elevated numbers of eosinophils and eosinophil progenitors at 6 h after one OVA challenge and at 24 h after a third OVA challenge as compared with OVA-challenged wild-type mice. There was also an increase in numbers of CD11b(+)SiglecF(+)CD34(+)IL-5Rα(+) eosinophil progenitors in the bone marrow, peripheral blood, and spleens of OVA-challenged PTP1B(-/-) mice. Intravital microscopy revealed that, in OVA-challenged PTP1B(-/-) mice, blood leukocytes rapidly bound to endothelium (5-30 min), whereas, in wild-type mice, blood leukocytes bound to endothelium at the expected 6-18 h. Consistent with early recruitment of leukocytes, lung eotaxin and Th2 cytokine levels were elevated early in the PTP1B(-/-) mice. Interestingly, spleen leukocytes from PTP1B(-/-) mice exhibited an increased chemotaxis, chemokinesis, and transendothelial migration in vitro. In summary, PTP1B functions as a critical negative regulator to limit allergic responses.
Collapse
Affiliation(s)
- Sergejs Berdnikovs
- Allergy-Immunology Division, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
The role of CD44 in the acute and resolution phase of the host response during pneumococcal pneumonia. J Transl Med 2011; 91:588-97. [PMID: 21242959 DOI: 10.1038/labinvest.2010.206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pneumoniae is the most prevalent pathogen causing community-acquired pneumonia. CD44 is a transmembrane adhesion molecule, expressed by a wide variety of cell types, that has several functions in innate and adaptive immune responses. In this study, we tested the hypothesis that CD44 is involved in the host response during pneumococcal pneumonia. On intranasal infection with a lethal dose of S. pneumoniae CD44-knockout (KO) mice showed a prolonged survival when compared with wild-type mice, which was accompanied by a diminished pulmonary bacterial growth and reduced dissemination to distant body sites. Whereas, proinflammatory cytokine responses and lung pathology were not affected, CD44 deficiency resulted in increased early neutrophil influx into the lung. In separate experiments, we confirmed a detrimental role of CD44 in host defense against pneumococci during sublethal pneumonia, as demonstrated by an improved capacity of CD44 KO mice to clear a low infectious dose. In addition, CD44 appeared important for the resolution of lung inflammation during sublethal pneumonia, as shown by histopathology of lung tissue slides. In conclusion, we show here that CD44 facilitates bacterial outgrowth and dissemination during pneumococcal pneumonia, which in lethal infection results in a prolonged survival of CD44 KO mice. Moreover, during sublethal pneumonia CD44 contributes to the resolution of the inflammatory response.
Collapse
|
17
|
Nakagami Y, Kawashima K, Etori M, Yonekubo K, Suzuki C, Jojima T, Kuribayashi T, Nara F, Yamashita M. A novel CC chemokine receptor 4 antagonist RS-1269 inhibits ovalbumin-induced ear swelling and lipopolysaccharide-induced endotoxic shock in mice. Basic Clin Pharmacol Toxicol 2011; 107:793-7. [PMID: 20406201 DOI: 10.1111/j.1742-7843.2010.00578.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
There is growing evidence that chemokines recruit leukocytes in allergic, inflammatory and immune responses. CC chemokine receptor 4 (CCR4) is implicated as a preferential marker for T helper 2 cells, and the cells selectively respond to CC chemokine ligand 17 (CCL17) and CCL22. We searched for compounds having a profile as a CCR4 antagonist from an in-house library and have previously reported that 3-{2-[(2R)-2-phenyl-4-(4-pyridin-4-ylbenzyl)morpholin-2-yl]ethyl}quinazoline-2,4(1H,3H)-dione (named RS-1154) was capable of significantly inhibiting the binding of [(125) I]CCL17 to human CCR4-expressing CHO cells. From further synthesis of its derivatives, we newly focused on 3-(isobutyrylamino)-N-{2-[(2R)-2-phenyl-4-(4-pyridin-4-ylbenzyl)morpholin-2-yl]ethyl}benzamide (RS-1269), which showed potency comparable to RS-1154 in inhibiting CCL17-induced migration of DO11.10 mice-derived T helper 2 cells with an IC(50) value of 5.5 nM in vitro. We then investigated the pharmacological effects of RS-1269 on ovalbumin-induced ear swelling and lipopolysaccharide-induced endotoxic shock in mice. The ear thickness was significantly decreased by oral administration of RS-1269 at the dose of 30 mg/kg. Treatment with lipopolysaccharide significantly increased the serum level of tumour necrosis factor-α. Compared with an anti-CCL17 antibody, RS-1269 significantly inhibited the production at the dose of 100 mg/kg. These results raise the possibility that RS-1269 or one of its derivatives has potential to serve as a prototype compound to develop therapeutic agents for atopic dermatitis and inflammatory diseases.
Collapse
Affiliation(s)
- Yasuhiro Nakagami
- Biological Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
van der Windt GJW, Florquin S, de Vos AF, van't Veer C, Queiroz KCS, Liang J, Jiang D, Noble PW, van der Poll T. CD44 deficiency is associated with increased bacterial clearance but enhanced lung inflammation during Gram-negative pneumonia. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2483-94. [PMID: 20864681 DOI: 10.2353/ajpath.2010.100562] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Klebsiella pneumoniae is a frequently isolated causative pathogen in respiratory tract infections. CD44 is a transmembrane adhesion molecule that has been implicated in several immunological processes. To determine the role of CD44 during Klebsiella pneumonia, we intranasally infected wild-type and CD44 knockout (KO) mice with 10(2) to 10(4) colony-forming units of K. pneumoniae or administered Klebsiella lipopolysaccharide. During lethal infection, CD44 deficiency was associated with reduced bacterial growth and dissemination accompanied by enhanced pulmonary inflammation. After infection with lower Klebsiella doses, CD44 KO mice but not wild-type mice demonstrated mortality. After infection with even lower bacterial doses, which were cleared by most mice of both strains, CD44 KO mice displayed enhanced lung inflammation 4 and 10 days postinfection, indicating that CD44 is important for the resolution of pulmonary inflammation after nonlethal pneumonia. In accordance, CD44 KO mice showed a diminished resolution of lung inflammation 4 days after intrapulmonary delivery of lipopolysaccharide. CD44 deficiency was associated with the accumulation of hyaluronan together with reduced gene expression levels of the negative regulators of Toll-like receptor signaling, interleukin-1R-associated kinase M, A20, and suppressor of cytokine signaling 3. In conclusion, the absence of CD44 affects various components and phases of the host response during Klebsiella pneumonia, reducing bacterial outgrowth and dissemination and enhancing pulmonary pathology during lethal infection, and diminishing the resolution of lung inflammation during sublethal infection.
Collapse
Affiliation(s)
- Gerritje J W van der Windt
- Center for Infection and Immunity Amsterdam, Department of Pathology, Academic Medical Center, Meibergdreef 9, Room G2-130, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
van der Windt GJW, Schouten M, Zeerleder S, Florquin S, van der Poll T. CD44 is protective during hyperoxia-induced lung injury. Am J Respir Cell Mol Biol 2010; 44:377-83. [PMID: 20463290 DOI: 10.1165/rcmb.2010-0158oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patients with acute lung injury or respiratory distress syndrome often require supplemental oxygen to maintain tissue oxygenation; however, this treatment can cause or worsen lung inflammation. CD44 is a transmembrane adhesion molecule that is present on a wide variety of cell types, including leukocytes and parenchymal cells, and is an important player in leukocyte trafficking. The aim of this study was to determine the role of CD44 during hyperoxia-induced (> 95% oxygen) acute lung injury. Whereas all wild-type mice survived the 72-hour observation period, 37.5% of CD44 knockout (KO) mice died. CD44 deficiency was associated with a profound influx of neutrophils into the bronchoalveolar space, in the presence of similar or even lower neutrophil numbers in lung parenchyma, suggesting that CD44 is important for containing neutrophils in the pulmonary interstitium during hyperoxia. In addition, CD44 deficiency resulted in increased IL-6 and keratinocyte-derived chemokine release into bronchoalveolar lavage fluid (BALF). CD44 KO mice further displayed evidence for increased vascular leak and injury of type II respiratory epithelial cells. CD44 protected against bronchial epithelial cell death, as shown by increased epithelial cell necrosis and a trend toward increased BALF nucleosome levels in CD44 KO mice. CD44 can bind and internalize hyaluronic acid (HA), which acts proinflammatory. Concentrations of HA increased in BALF from CD44 KO but not wild-type mice during hyperoxia. These data suggest that CD44 protects against hyperoxia-induced lung injury and mortality by a mechanism that at least in part relies on its ability to clear HA from the bronchoalveolar space.
Collapse
|
20
|
CD44 deficiency is associated with enhanced Escherichia coli-induced proinflammatory cytokine and chemokine release by peritoneal macrophages. Infect Immun 2009; 78:115-24. [PMID: 19901064 DOI: 10.1128/iai.00949-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD44 is involved in several immune responses, such as cellular adhesion, migration, proliferation, and activation. Peritonitis is an important cause of sepsis, and Escherichia coli is one of the major pathogens involved therein. We sought to determine the role of CD44 in the host response to E. coli-induced abdominal sepsis and to assess the function of CD44 in the activation of primary peritoneal macrophages by E. coli or lipopolysaccharide (LPS) purified from this bacterium by using wild-type (WT) and CD44 knockout (KO) mice. CD44 KO mice already demonstrated enhanced CXC chemokine levels in peritoneal lavage fluid at 6 h after infection, whereas tumor necrosis factor alpha (TNF-alpha) and interleukin-6 levels were elevated at 20 h postinfection. In line with this, CD44 KO mouse peritoneal macrophages released more TNF-alpha and macrophage inflammatory protein 2 (MIP-2) than did WT cells upon stimulation with E. coli or LPS in the presence of autologous serum. In contrast, plasma TNF-alpha levels were lower in CD44 KO mice and CD44 KO blood leukocytes secreted similar amounts of TNF-alpha and MIP-2 upon ex vivo incubation with E. coli or LPS. The proinflammatory phenotype of CD44 KO macrophages was not associated with an altered expression of inhibitors of Toll-like receptor signaling, whereas it could be partially reversed by addition of WT serum. CD44 deficiency did not impact on leukocyte recruitment into the peritoneal cavity or organ failure. These data suggest that CD44 differentially influences cytokine and chemokine release by different leukocyte subsets.
Collapse
|
21
|
Nakagami Y, Kawashima K, Yonekubo K, Etori M, Jojima T, Miyazaki S, Sawamura R, Hirahara K, Nara F, Yamashita M. Novel CC chemokine receptor 4 antagonist RS-1154 inhibits ovalbumin-induced ear swelling in mice. Eur J Pharmacol 2009; 624:38-44. [PMID: 19818758 DOI: 10.1016/j.ejphar.2009.09.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 09/09/2009] [Accepted: 09/28/2009] [Indexed: 11/28/2022]
Abstract
CC chemokine ligand 17 (CCL17/thymus and activation-regulated chemokine: TARC) and CCL22 (macrophage-derived chemokine: MDC) selectively bind to CC chemokine receptor 4 (CCR4). The CCR4 system is considered to be responsible for the pathology of allergic diseases such as atopic dermatitis. To find and develop potential medicines against allergic diseases, we screened an in-house library to search for compounds having a profile as a CCR4 antagonist. From among the screening hits, we focused on 3-{2-[(2R)-2-phenyl-4-(4-pyridin-4-ylbenzyl)morpholin-2-yl]ethyl}quinazoline-2,4(1H,3H)-dione (named RS-1154), which had been newly synthesized in our laboratory. This compound inhibited the binding of [(125)I]CCL17 to human CCR4-expressing CHO cells with an IC(50) value of 27.7 nM and moreover inhibited CCL17-induced migration of DO11.10 mice-derived T helper 2 cells with an IC(50) value of 1.5 nM in vitro. We then examined the effect of RS-1154 in an ovalbumin-induced ear swelling assay. The ear thickness was decreased by intravenous administration of anti-CCL17 or anti-CCL22 antibodies, suggesting that the CCR4 system is involved in the ear swelling. Though partially, the oral administration of RS-1154 also significantly ameliorated the ear swelling at the doses of 30 and 100 mg/kg. Furthermore, the serum level of interleukin-4 decreased after the administration of RS-1154. In this study, we succeeded in obtaining a newly-synthesized compound, RS-1154, which has a potential to inhibit the chemotaxis of T helper 2 cells in vitro and to ameliorate ovalbumin-induced ear swelling in vivo. These results raise the possibility that RS-1154 or one of derivatives might become a therapeutic agent for atopic dermatitis patients.
Collapse
Affiliation(s)
- Yasuhiro Nakagami
- Biological Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Molecular mechanisms of leukocyte trafficking in T-cell-mediated skin inflammation: insights from intravital imaging. Expert Rev Mol Med 2009; 11:e25. [DOI: 10.1017/s146239940900115x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infiltration of T cells is a key step in the pathogenesis of the inflammatory skin diseases atopic dermatitis, allergic contact dermatitis and psoriasis. Understanding the mechanisms of T cell recruitment to the skin is therefore of fundamental importance for the discovery and application of novel therapies for these conditions. Studies of both clinical samples and experimental models of skin inflammation have implicated specific adhesion molecules and chemokines in lymphocyte recruitment. In particular, recent studies using advanced in vivo imaging techniques have greatly increased our understanding of the kinetics and molecular basis of this process. In this review, we summarise the current understanding of the cellular immunology of antigen-driven dermal inflammation and the roles of adhesion molecules and chemokines. We focus on results obtained using intravital microscopy to examine the dermal microvasculature and interstitium to determine the mechanisms of T cell recruitment and migration in experimental models of T-cell-mediated skin inflammation.
Collapse
|
23
|
Man M, Elias PM, Man W, Wu Y, Bourguignon LYW, Feingold KR, Man MQ. The role of CD44 in cutaneous inflammation. Exp Dermatol 2009; 18:962-8. [PMID: 19469887 DOI: 10.1111/j.1600-0625.2009.00882.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CD44 is a transmembrane glycoprotein expressed in various tissues including the skin. Previous studies indicated that CD44 is required for epidermal permeability barrier homeostasis and keratinocyte differentiation. Yet, while some studies have demonstrated that CD44 is critical for the development of inflammation, others have shown that CD44 is not essential for the development of cutaneous inflammation. In this study, we evaluated the changes in epidermal CD44 expression in a variety of skin inflammatory models and determined whether CD44 is required for the development of cutaneous inflammation. Inflammatory responses were compared in CD44 KO versus wild-type mice in acute models of irritant and allergic contact dermatitis, as well as in a subacute allergic contact dermatitis induced by repeated hapten treatment. Inflammatory responses were assessed by measuring ear thickness and epidermal hyperplasia in haematoxylin & eosin-stained sections. Our results demonstrate that: (i) epidermal CD44 expression increases in both acute and subacute cutaneous inflammatory models; and (ii) acute disruption of the epidermal permeability barrier function increases epidermal CD44 expression. Whereas inflammatory responses did not differ between CD44 KO and wild-type mice in acute models of irritant and allergic contact dermatitis, both inflammatory responses and epidermal hyperplasia increased in CD44 KO mice following repeated hapten challenges. These results show first, that permeability barrier disruption and inflammation stimulate epidermal CD44 expression, and second, that CD44 modulates epidermal proliferation and inflammatory responses in a subacute murine allergic contact dermatitis model.
Collapse
Affiliation(s)
- Mona Man
- Department of Dermatology, University of California School of Medicine, San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Comparative studies of lymph node cell subpopulations and cytokine expression in murine model for testing the potentials of chemicals to induce respiratory sensitization. Int J Occup Med Environ Health 2009; 21:253-62. [PMID: 19042193 DOI: 10.2478/v10001-008-0031-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES To investigate immunological changes in lymph nodes based on expression of cell-specific receptors and cytokine expression profile and accompanying inflammatory reactions in lungs of mice treated with chemicals of known potentials to induce respiratory sensitization and those in which activity in this regard is unclear. MATERIALS AND METHODS On day 1 and 7, Balb/c mice received toluene-2,4-diisocyanate (TDI), trimellitic anhydride (TMA), 1-chloro-2,4-dinitrobenzene (DNCB), glutaraldehyde (GA), formaldehyde (FA), benzalkonium chloride (ChB) or vehicle. On day 14, they received a single intranasal instillation with the same chemical or vehicle. On day 15, auricular lymph nodes (LN) were excised and used for analyzes of T-, B-cells, expression of CD44 and for the estimation of IL-4 and IFN-gamma production after in vitro stimulation with concanavalin A (ConA) and also for IL-4 and IFN-gamma mRNA expression analyses using Real-Time PCR. Inflammatory changes in lungs were observed by estimation of TNF-alpha and MIP-2 concentrations and cell numbers and their type in BAL. RESULTS There were no significant changes in cell subpopulations of T helper cells in LN. The percent of B cells was significantly increased after treatment with DNCB, TDI, and GA. Increased expression of CD44 on T cells was also observed. Both IL-4 and IFN-gamma were found increased in TDI- and FA-treated mice, while only IL-4 was increased in TMA-treated mice. Real-Time PCR analyses, however, showed increased IL-4 mRNA expression for TDI- and TMA-, and IFN-gamma mRNA expression for DNCB-treated mice. We haven't observed significant changes in inflammatory reactions in the lungs of exposed animals. CONCLUSIONS Studying immunological changes with first determining the activation status of T cells followed by analyzes of expression of mRNA for Th1 and Th2 cytokines in murine model could be a useful method for assessment of the potentials of chemicals to induce respiratory sensitization but is not sufficient. Addition of ventilatory measurements, but not necessarily inflammatory reactions, could complete the model.
Collapse
|
25
|
Morioka Y, Yamasaki K, Leung D, Gallo RL. Cathelicidin antimicrobial peptides inhibit hyaluronan-induced cytokine release and modulate chronic allergic dermatitis. THE JOURNAL OF IMMUNOLOGY 2008; 181:3915-22. [PMID: 18768846 DOI: 10.4049/jimmunol.181.6.3915] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antimicrobial peptides such as cathelicidins can modulate inflammation by interfering with TLR function. Small fragment hyaluronan (HA) is released following injury, and is an endogenous ligand for TLR4 as well as CD44. In this study, we examined the interactions of cathelicidin with HA. Cathelicidin inhibited HA induced MIP-2 release from mouse bone marrow derived macrophages in a CD44 dependent manner but did not inhibit MALP2-induced MIP-2 release. This inhibitory activity was more potent than that of a peptide inhibitor of HA binding (Pep-1) and independent of Gi protein coupled or EGF-R signaling, both targets of cathelicidin inhibited HA-induced MIP-2 release. In assay of cell binding to HA, cathelicidins also significantly inhibited this process, suggesting that this antimicrobial peptide can interfere in other membrane binding events mediated by HA. The significance of this inhibition was demonstrated in a skin inflammation model induced by repeated application of 2,4-dinitrofluorobenzene. This induced an increase in HA at the site of application and was partially CD44 dependent. Camp(-/-) mice lacking cathelicidin demonstrated a large increase in ear swelling, cell infiltration, and MIP-2 expression compared with wild type mice. These results suggest that cathelicidin has anti-inflammatory activity in skin that may be mediated in part by inhibition of HA-mediated processes.
Collapse
Affiliation(s)
- Yasuhide Morioka
- Division of Dermatology, University of California, San Diego, and Veterans Affairs San Diego Health Care System, San Diego, California 92161, USA
| | | | | | | |
Collapse
|
26
|
CD44-specific antibody treatment and CD44 deficiency exert distinct effects on leukocyte recruitment in experimental arthritis. Blood 2008; 112:4999-5006. [PMID: 18815286 DOI: 10.1182/blood-2008-04-150383] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CD44, the leukocyte adhesion receptor for hyaluronan, has been considered a therapeutic target on the basis of the robust anti-inflammatory effect of CD44-specific antibodies in animal models of immune-mediated diseases. However, CD44 deficiency does not provide substantial protection against inflammation. Using intravital video microscopy in a murine model of rheumatoid arthritis, we show that CD44 deficiency and anti-CD44 antibody treatment exert disparate effects on leukocyte recruitment in inflamed joints. Leukocyte rolling, which is increased in CD44-deficient mice, is promptly abrogated in anti-CD44-treated wild-type mice. CD44-specific antibodies also trigger platelet deposition on granulocytes and subsequent depletion of this leukocyte subset in the circulation. These in vivo effects require CD44 cross-linking and are reproducible with an antibody against Gr-1, a molecule that, like CD44, is highly expressed on granulocytes. Anticoagulant pretreatment, which prevents platelet deposition, mitigates both granulocyte depletion and the suppressive effect of CD44-specific antibody on joint swelling. Our observations suggest that cross-linking of prominent cell surface molecules, such as CD44 or Gr-1, can initiate a rapid self-elimination program in granulocytes through engagement of the coagulation system. We conclude that the robust anti-inflammatory effect of CD44-specific antibodies in arthritis is primarily the result of their ability to trigger granulocyte depletion.
Collapse
|
27
|
Zhao L, Lee E, Zukas AM, Middleton MK, Kinder M, Acharya PS, Hall JA, Rader DJ, Puré E. CD44 Expressed on Both Bone Marrow–Derived and Non–Bone Marrow–Derived Cells Promotes Atherogenesis in ApoE-Deficient Mice. Arterioscler Thromb Vasc Biol 2008; 28:1283-9. [DOI: 10.1161/atvbaha.108.165753] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective—
The purpose of this study was to distinguish the contributions of CD44 expressed on bone marrow–derived and non–bone marrow–derived cells to atherosclerosis.
Methods and Results—
Using bone marrow chimeras, we compared the contributions of CD44 expressed on bone marrow–derived cells versus non–bone marrow–derived cells to the vascular inflammation underlying atherosclerosis. We show that CD44 in both bone marrow–derived and non–bone marrow–derived compartments promotes atherosclerosis in apoE
−/−
mice and mediates macrophage and T cell recruitment to lesions in vivo. We also demonstrate that CD44 on endothelial cells (ECs) as well as on macrophages and T cells enhances leukocyte-endothelial cell adhesion and transendothelial migration in vitro. Furthermore, CD44 on vascular smooth muscle cells (VSMCs) regulates their hyaluronan (HA)-dependent migration. Interestingly, in mice lacking CD44 in both compartments, where we observed the least inflammation, we also observed enhanced fibrous cap formation.
Conclusions—
CD44 expressed on bone marrow–derived and non–bone marrow–derived cells both promote atherosclerosis in apoE-deficient mice. Furthermore, CD44 plays a pivotal role in determining the balance between inflammation and fibrosis in atherosclerotic lesions which can impact clinical outcome in humans.
Collapse
Affiliation(s)
- Liang Zhao
- From the The Wistar Institute (L.Z., E.L., A.M.Z., M.K.M., M.K., P.S.A., J.A.H., E.P.), Philadelphia, Pa; the Department of Medicine (P.S.A., D.J.R., E.P.) and the Immunology Graduate Group (M.K.M., M.K., E.P.), University of Pennsylvania School of Medicine, Philadelphia; and the Ludwig Institute for Cancer Research (E.P.), Philadelphia, Pa
| | - Eric Lee
- From the The Wistar Institute (L.Z., E.L., A.M.Z., M.K.M., M.K., P.S.A., J.A.H., E.P.), Philadelphia, Pa; the Department of Medicine (P.S.A., D.J.R., E.P.) and the Immunology Graduate Group (M.K.M., M.K., E.P.), University of Pennsylvania School of Medicine, Philadelphia; and the Ludwig Institute for Cancer Research (E.P.), Philadelphia, Pa
| | - Alicia M. Zukas
- From the The Wistar Institute (L.Z., E.L., A.M.Z., M.K.M., M.K., P.S.A., J.A.H., E.P.), Philadelphia, Pa; the Department of Medicine (P.S.A., D.J.R., E.P.) and the Immunology Graduate Group (M.K.M., M.K., E.P.), University of Pennsylvania School of Medicine, Philadelphia; and the Ludwig Institute for Cancer Research (E.P.), Philadelphia, Pa
| | - Melissa K. Middleton
- From the The Wistar Institute (L.Z., E.L., A.M.Z., M.K.M., M.K., P.S.A., J.A.H., E.P.), Philadelphia, Pa; the Department of Medicine (P.S.A., D.J.R., E.P.) and the Immunology Graduate Group (M.K.M., M.K., E.P.), University of Pennsylvania School of Medicine, Philadelphia; and the Ludwig Institute for Cancer Research (E.P.), Philadelphia, Pa
| | - Michelle Kinder
- From the The Wistar Institute (L.Z., E.L., A.M.Z., M.K.M., M.K., P.S.A., J.A.H., E.P.), Philadelphia, Pa; the Department of Medicine (P.S.A., D.J.R., E.P.) and the Immunology Graduate Group (M.K.M., M.K., E.P.), University of Pennsylvania School of Medicine, Philadelphia; and the Ludwig Institute for Cancer Research (E.P.), Philadelphia, Pa
| | - Pinak S. Acharya
- From the The Wistar Institute (L.Z., E.L., A.M.Z., M.K.M., M.K., P.S.A., J.A.H., E.P.), Philadelphia, Pa; the Department of Medicine (P.S.A., D.J.R., E.P.) and the Immunology Graduate Group (M.K.M., M.K., E.P.), University of Pennsylvania School of Medicine, Philadelphia; and the Ludwig Institute for Cancer Research (E.P.), Philadelphia, Pa
| | - Jason A. Hall
- From the The Wistar Institute (L.Z., E.L., A.M.Z., M.K.M., M.K., P.S.A., J.A.H., E.P.), Philadelphia, Pa; the Department of Medicine (P.S.A., D.J.R., E.P.) and the Immunology Graduate Group (M.K.M., M.K., E.P.), University of Pennsylvania School of Medicine, Philadelphia; and the Ludwig Institute for Cancer Research (E.P.), Philadelphia, Pa
| | - Daniel J. Rader
- From the The Wistar Institute (L.Z., E.L., A.M.Z., M.K.M., M.K., P.S.A., J.A.H., E.P.), Philadelphia, Pa; the Department of Medicine (P.S.A., D.J.R., E.P.) and the Immunology Graduate Group (M.K.M., M.K., E.P.), University of Pennsylvania School of Medicine, Philadelphia; and the Ludwig Institute for Cancer Research (E.P.), Philadelphia, Pa
| | - Ellen Puré
- From the The Wistar Institute (L.Z., E.L., A.M.Z., M.K.M., M.K., P.S.A., J.A.H., E.P.), Philadelphia, Pa; the Department of Medicine (P.S.A., D.J.R., E.P.) and the Immunology Graduate Group (M.K.M., M.K., E.P.), University of Pennsylvania School of Medicine, Philadelphia; and the Ludwig Institute for Cancer Research (E.P.), Philadelphia, Pa
| |
Collapse
|
28
|
Harper EG, Simpson EL, Takiguchi RH, Boyd MD, Kurtz SE, Bakke AC, Blauvelt A. Efalizumab Therapy for Atopic Dermatitis Causes Marked Increases in Circulating Effector Memory CD4+ T Cells That Express Cutaneous Lymphocyte Antigen. J Invest Dermatol 2008; 128:1173-81. [PMID: 18007580 DOI: 10.1038/sj.jid.5701169] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Kim Y, Lee YS, Hahn JH, Choe J, Kwon HJ, Ro JY, Jeoung D. Hyaluronic acid targets CD44 and inhibits FcepsilonRI signaling involving PKCdelta, Rac1, ROS, and MAPK to exert anti-allergic effect. Mol Immunol 2008; 45:2537-47. [PMID: 18289679 DOI: 10.1016/j.molimm.2008.01.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/05/2008] [Accepted: 01/08/2008] [Indexed: 01/24/2023]
Abstract
Effects of hyaluronic acid (HA) on allergic inflammation were investigated. HA exerted negative effects on beta-hexoaminidase secretion and histamine release in antigen-stimulated rat basophilic leukemia (RBL2H3) cells. HA inhibited interaction between IgE and FcepsilonRI and between FcepsilonRI and PKCdelta. HA inhibited CD44 interaction with PKCalpha, indicating that HA targets CD44. PKCalpha and -delta were responsible for increased Rac1 activity and expression of p47(phox), p67(phox). HA inhibited phosphorylation of PKCalpha and -delta. Rac1 was responsible for increased ROS, and NADPH oxidase was the main source for ROS. The inhibition of PKC prevented antigen from increasing phosphorylation of ERK and p38 MAPK. ERK, p38 MAPK, and ROS, were responsible for secretion of beta-hexosaminidase, histamine release, and induction of chemokines. HA suppressed induction of chemokines, such as MIP-2 and Sprr-2a. CD44 mediated effect of antigen on phosphorylation of ERK, p38MAPK, ROS production, secretion of beta-hexosaminidase, and histamine release. GPCR did not mediate allergic function of antigen or affect anti-allergic function of HA. In vivo anti-allergic effect of HA was investigated using Nc/Nga mice model of DNFB-induced atopic dermatitis. HA reduced skin lesions in Nc/Nga mice treated with DNFB, decreased expression levels of MIP-2, Sprr-2a, and serum IgE level. In conclusion, hyaluronic acid exerts negative effect on allergic inflammation by targeting CD44 and inhibiting FcepsilonRI signaling.
Collapse
Affiliation(s)
- Youngmi Kim
- College of Natural Sciences, Kangwon National University, Chunchon 200-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Mizukawa Y, Takahashi R, Yamazaki Y, Kimishima M, Shiohara T. Fucosyltransferase VII-positive, skin-homing T cells in the blood and skin lesions of atopic dermatitis patients. Exp Dermatol 2008; 17:170-6. [DOI: 10.1111/j.1600-0625.2007.00656.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|