1
|
Thouaye M, Yalcin I. Neuropathic pain: From actual pharmacological treatments to new therapeutic horizons. Pharmacol Ther 2023; 251:108546. [PMID: 37832728 DOI: 10.1016/j.pharmthera.2023.108546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/07/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Neuropathic pain, caused by a lesion or disease affecting the somatosensory system, affects between 3 and 17% of the general population. The treatment of neuropathic pain is challenging due to its heterogeneous etiologies, lack of objective diagnostic tools and resistance to classical analgesic drugs. First-line treatments recommended by the Special Interest Group on Neuropathic Pain (NeuPSIG) and European Federation of Neurological Societies (EFNS) include gabapentinoids, tricyclic antidepressants (TCAs) and selective serotonin noradrenaline reuptake inhibitors (SNRIs). Nevertheless these treatments have modest efficacy or dose limiting side effects. There is therefore a growing number of preclinical and clinical studies aim at developing new treatment strategies to treat neuropathic pain with better efficacy, selectivity, and less side effects. In this review, after a brief description of the mechanisms of action, efficacy, and limitations of current therapeutic drugs, we reviewed new preclinical and clinical targets currently under investigation, as well as promising non-pharmacological alternatives and their potential co-use with pharmacological treatments.
Collapse
Affiliation(s)
- Maxime Thouaye
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
2
|
Havlík M, Hlinka J, Klírová M, Adámek P, Horáček J. Towards causal mechanisms of consciousness through focused transcranial brain stimulation. Neurosci Conscious 2023; 2023:niad008. [PMID: 37089451 PMCID: PMC10120840 DOI: 10.1093/nc/niad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/10/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Conscious experience represents one of the most elusive problems of empirical science, namely neuroscience. The main objective of empirical studies of consciousness has been to describe the minimal sets of neural events necessary for a specific neuronal state to become consciously experienced. The current state of the art still does not meet this objective but rather consists of highly speculative theories based on correlates of consciousness and an ever-growing list of knowledge gaps. The current state of the art is defined by the limitations of past stimulation techniques and the emphasis on the observational approach. However, looking at the current stimulation technologies that are becoming more accurate, it is time to consider an alternative approach to studying consciousness, which builds on the methodology of causal explanations via causal alterations. The aim of this methodology is to move beyond the correlates of consciousness and focus directly on the mechanisms of consciousness with the help of the currently focused brain stimulation techniques, such as geodesic transcranial electric neuromodulation. This approach not only overcomes the limitations of the correlational methodology but will also become another firm step in the following science of consciousness.
Collapse
Affiliation(s)
- Marek Havlík
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
| | - Jaroslav Hlinka
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 271/2, Prague 182 07, Czech Republic
| | - Monika Klírová
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| | - Petr Adámek
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| | - Jiří Horáček
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| |
Collapse
|
3
|
Sasaki R, Watanabe H, Onishi H. Therapeutic benefits of noninvasive somatosensory cortex stimulation on cortical plasticity and somatosensory function: a systematic review. Eur J Neurosci 2022; 56:4669-4698. [PMID: 35804487 DOI: 10.1111/ejn.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Optimal limb coordination requires efficient transmission of somatosensory information to the sensorimotor cortex. The primary somatosensory cortex (S1) is frequently damaged by stroke, resulting in both somatosensory and motor impairments. Noninvasive brain stimulation (NIBS) to the primary motor cortex is thought to induce neural plasticity that facilitates neurorehabilitation. Several studies have also examined if NIBS to the S1 can enhance somatosensory processing as assessed by somatosensory-evoked potentials (SEPs) and improve behavioral task performance, but it remains uncertain if NIBS can reliably modulate S1 plasticity or even whether SEPs can reflect this plasticity. This systematic review revealed that NIBS has relatively minor effects on SEPs or somatosensory task performance, but larger early SEP changes after NIBS can still predict improved performance. Similarly, decreased paired-pulse inhibition in S1 post-NIBS is associated with improved somatosensory performance. However, several studies still debate the role of inhibitory function in somatosensory performance after NIBS in terms of the direction of the change (that, disinhibition or inhibition). Altogether, early SEP and paired-pulse inhibition (particularly inter-stimulus intervals of 30-100 ms) may become useful biomarkers for somatosensory deficits, but improved NIBS protocols are required for therapeutic applications.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
4
|
Swissa Y, Hacohen S, Friedman J, Frenkel-Toledo S. Sensorimotor performance after high-definition transcranial direct current stimulation over the primary somatosensory or motor cortices in men versus women. Sci Rep 2022; 12:11117. [PMID: 35778465 PMCID: PMC9249866 DOI: 10.1038/s41598-022-15226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
The primary somatosensory (S1) cortex is a central structure in motor performance. However, transcranial direct current stimulation (tDCS) research aimed at improving motor performance usually targets the primary motor cortex (M1). Recently, sex was found to mediate tDCS response. Thus, we investigated whether tDCS with an anodal electrode placed over S1 improves motor performance and sensation perception in men versus women. Forty-five participants randomly received 15-min high-definition tDCS (HD-tDCS) at 1 mA to S1, M1, or sham stimulation. Reaching performance was tested before and immediately following stimulation. Two-point orientation discrimination (TPOD) of fingers and proprioception of a reaching movement were also tested. Although motor performance did not differ between groups, reaching reaction time improved in the M1 group men. Reaching movement time and endpoint error improved in women and men, respectively. Correct trials percentage for TPOD task was higher in the S1 compared to the M1 group in the posttest and improved only in the S1 group. Reaching movement time for the proprioception task improved, overall, and endpoint error did not change. Despite the reciprocal connections between S1 and M1, effects of active tDCS over S1 and M1 may specifically influence sensation perception and motor performance, respectively. Also, sex may mediate effects of HD-tDCS on motor performance.
Collapse
Affiliation(s)
- Yochai Swissa
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Shlomi Hacohen
- Department of Mechanical Engineering, Ariel University, Ariel, Israel
| | - Jason Friedman
- Department of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Silvi Frenkel-Toledo
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel. .,Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel.
| |
Collapse
|
5
|
Schaal NK, Kloos S, Pollok B, Herff SA. The influence of anodal transcranial direct current stimulation over the right auditory cortex on interference effects in memory for melodies. Brain Cogn 2021; 154:105798. [PMID: 34530286 DOI: 10.1016/j.bandc.2021.105798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/03/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
The study investigates how transcranial direct current stimulation (tDCS) over the auditory cortex (AC) modulates memory for melodies under different noise conditions, whilst also considering cumulative disruptive interference effects. Forty-one participants completed a continuous recognition melody task, as well as a visual control task, which included four noise conditions for which noise was either present only during encoding (N-C), only during retrieval (C-N), during both (N-N) or not at all (C-C) and completed the tasks after receiving anodal or sham tDCS over the right AC. The results of the sham session replicate previous findings by revealing that memory for melodies is worse when noise in added to the encoding phase (N-C) whereas the N-N condition shows good performance, highlighting a context effect, and that cumulative disruptive interference is not present in memory for melodies except in the N-C condition. After anodal stimulation the memory pattern differs such as that memory performance is best in the C-C condition and furthermore the cumulative disruptive interference effect in the N-C condition is diminished. In sum, the study highlights the involvement of the right AC for memory for melodies and the results indicate an association of the AC for creating context effects.
Collapse
Affiliation(s)
- Nora K Schaal
- Department of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Stefanie Kloos
- Department of Experimental Psychology, Heinrich-Heine-University, Düsseldorf, Germany; Department of Clinical Psychology, University of Konstanz, Konstanz, Germany
| | - Bettina Pollok
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Steffen A Herff
- École Polytechnique fédérale de Lausanne, Switzerland; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
| |
Collapse
|
6
|
Lerud KD, Vines BW, Shinde AB, Schlaug G. Modulating short-term auditory memory with focal transcranial direct current stimulation applied to the supramarginal gyrus. Neuroreport 2021; 32:702-710. [PMID: 33852539 PMCID: PMC8085037 DOI: 10.1097/wnr.0000000000001647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that transcranial direct current stimulation (tDCS) can affect performance by decreasing regional excitability in a brain region that contributes to the task of interest. To our knowledge, no research to date has found both enhancing and diminishing effects on performance, depending upon which polarity of the current is applied. The supramarginal gyrus (SMG) is an ideal brain region for testing tDCS effects because it is easy to identify using the 10-20 electroencephalography coordinate system, and results of neuroimaging studies have implicated the left SMG in short-term memory for phonological and nonphonological sounds. In the present study, we found that applying tDCS to the left SMG affected pitch memory in a manner that depended upon the polarity of stimulation: cathodal tDCS had a negative impact on performance whereas anodal tDCS had a positive impact. These effects were significantly different from sham stimulation, which did not influence performance; they were also specific to the left hemisphere - no effect was found when applying cathodal stimulation to the right SMG - and were unique to pitch memory as opposed to memory for visual shapes. Our results provide further evidence that the left SMG is a nodal point for short-term auditory storage and demonstrate the potential of tDCS to influence cognitive performance and to causally examine hypotheses derived from neuroimaging studies.
Collapse
Affiliation(s)
- Karl D. Lerud
- Department of Neurology and Pioneer Valley Life Sciences Institute, Baystate Medical Center – UMass Medical School, Springfield, MA, USA
| | - Bradley W. Vines
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Anant B. Shinde
- Department of Neurology and Pioneer Valley Life Sciences Institute, Baystate Medical Center – UMass Medical School, Springfield, MA, USA
- Department of Biomedical Engineering and Institute of Applied Life Sciences, UMass Amherst, Amherst, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Gottfried Schlaug
- Department of Neurology and Pioneer Valley Life Sciences Institute, Baystate Medical Center – UMass Medical School, Springfield, MA, USA
- Department of Biomedical Engineering and Institute of Applied Life Sciences, UMass Amherst, Amherst, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Scarpelli S, Alfonsi V, Gorgoni M, Giannini AM, De Gennaro L. Investigation on Neurobiological Mechanisms of Dreaming in the New Decade. Brain Sci 2021; 11:brainsci11020220. [PMID: 33670180 PMCID: PMC7916906 DOI: 10.3390/brainsci11020220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
Dream research has advanced significantly over the last twenty years, thanks to the new applications of neuroimaging and electrophysiological techniques. Many findings pointed out that mental activity during sleep and wakefulness shared similar neural bases. On the other side, recent studies have highlighted that dream experience is promoted by significant brain activation, characterized by reduced low frequencies and increased rapid frequencies. Additionally, several studies confirmed that the posterior parietal area and prefrontal cortex are responsible for dream experience. Further, early results revealed that dreaming might be manipulated by sensory stimulations that would provoke the incorporation of specific cues into the dream scenario. Recently, transcranial stimulation techniques have been applied to modulate the level of consciousness during sleep, supporting previous findings and adding new information about neural correlates of dream recall. Overall, although multiple studies suggest that both the continuity and activation hypotheses provide a growing understanding of neural processes underlying dreaming, several issues are still unsolved. The impact of state-/trait-like variables, the influence of circadian and homeostatic factors, and the examination of parasomnia-like events to access dream contents are all opened issues deserving further deepening in future research.
Collapse
Affiliation(s)
- Serena Scarpelli
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (V.A.); (L.D.G.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
- Correspondence: ; Tel.: +39-06-4991-7508
| | - Valentina Alfonsi
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (V.A.); (L.D.G.)
| | - Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| | - Anna Maria Giannini
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| | - Luigi De Gennaro
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (V.A.); (L.D.G.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| |
Collapse
|
8
|
Sánchez-León CA, Cordones I, Ammann C, Ausín JM, Gómez-Climent MA, Carretero-Guillén A, Sánchez-Garrido Campos G, Gruart A, Delgado-García JM, Cheron G, Medina JF, Márquez-Ruiz J. Immediate and after effects of transcranial direct-current stimulation in the mouse primary somatosensory cortex. Sci Rep 2021; 11:3123. [PMID: 33542338 PMCID: PMC7862679 DOI: 10.1038/s41598-021-82364-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/24/2020] [Indexed: 01/30/2023] Open
Abstract
Transcranial direct-current stimulation (tDCS) is a non-invasive brain stimulation technique consisting in the application of weak electric currents on the scalp. Although previous studies have demonstrated the clinical value of tDCS for modulating sensory, motor, and cognitive functions, there are still huge gaps in the knowledge of the underlying physiological mechanisms. To define the immediate impact as well as the after effects of tDCS on sensory processing, we first performed electrophysiological recordings in primary somatosensory cortex (S1) of alert mice during and after administration of S1-tDCS, and followed up with immunohistochemical analysis of the stimulated brain regions. During the application of cathodal and anodal transcranial currents we observed polarity-specific bidirectional changes in the N1 component of the sensory-evoked potentials (SEPs) and associated gamma oscillations. On the other hand, 20 min of cathodal stimulation produced significant after-effects including a decreased SEP amplitude for up to 30 min, a power reduction in the 20-80 Hz range and a decrease in gamma event related synchronization (ERS). In contrast, no significant changes in SEP amplitude or power analysis were observed after anodal stimulation except for a significant increase in gamma ERS after tDCS cessation. The polarity-specific differences of these after effects were corroborated by immunohistochemical analysis, which revealed an unbalance of GAD 65-67 immunoreactivity between the stimulated versus non-stimulated S1 region only after cathodal tDCS. These results highlight the differences between immediate and after effects of tDCS, as well as the asymmetric after effects induced by anodal and cathodal stimulation.
Collapse
Affiliation(s)
- Carlos A. Sánchez-León
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Isabel Cordones
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Claudia Ammann
- grid.428486.40000 0004 5894 9315HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - José M. Ausín
- grid.157927.f0000 0004 1770 5832Instituto de Investigación E Innovación en Bioingeniería, Universidad Politécnica de Valencia, Valencia, Spain
| | - María A. Gómez-Climent
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Alejandro Carretero-Guillén
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Guillermo Sánchez-Garrido Campos
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Agnès Gruart
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - José M. Delgado-García
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Guy Cheron
- grid.8364.90000 0001 2184 581XLaboratory of Electrophysiology, Université de Mons, Mons, Belgium ,grid.4989.c0000 0001 2348 0746Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Javier F. Medina
- grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Javier Márquez-Ruiz
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| |
Collapse
|
9
|
Kurmakaeva D, Blagovechtchenski E, Gnedykh D, Mkrtychian N, Kostromina S, Shtyrov Y. Acquisition of concrete and abstract words is modulated by tDCS of Wernicke's area. Sci Rep 2021; 11:1508. [PMID: 33452288 PMCID: PMC7811021 DOI: 10.1038/s41598-020-79967-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022] Open
Abstract
Previous behavioural and neuroimaging research suggested distinct cortical systems involved in processing abstract and concrete semantics; however, there is a dearth of causal evidence to support this. To address this, we applied anodal, cathodal, or sham (placebo) tDCS over Wernicke’s area before a session of contextual learning of novel concrete and abstract words (n = 10 each), presented five times in short stories. Learning effects were assessed at lexical and semantic levels immediately after the training and, to attest any consolidation effects of overnight sleep, on the next day. We observed successful learning of all items immediately after the session, with decreased performance in Day 2 assessment. Importantly, the results differed between stimulation conditions and tasks. Whereas the accuracy of semantic judgement for abstract words was significantly lower in the sham and anodal groups on Day 2 vs. Day 1, no significant performance drop was observed in the cathodal group. Similarly, the cathodal group showed no significant overnight performance reduction in the free recall task for either of the stimuli, unlike the other two groups. Furthermore, between-group analysis showed an overall better performance of both tDCS groups over the sham group, particularly expressed for abstract semantics and cathodal stimulation. In sum, the results suggest overlapping but diverging brain mechanisms for concrete and abstract semantics and indicate a larger degree of involvement of core language areas in storing abstract knowledge. Furthermore, they demonstrate a possiblity to improve learning outcomes using neuromodulatory techniques.
Collapse
Affiliation(s)
- Diana Kurmakaeva
- Laboratory of Behavioural Neurodynamics, Saint Petersburg University, Saint Petersburg, 199004, Russian Federation.
| | - Evgeny Blagovechtchenski
- Laboratory of Behavioural Neurodynamics, Saint Petersburg University, Saint Petersburg, 199004, Russian Federation
| | - Daria Gnedykh
- Laboratory of Behavioural Neurodynamics, Saint Petersburg University, Saint Petersburg, 199004, Russian Federation
| | - Nadezhda Mkrtychian
- Laboratory of Behavioural Neurodynamics, Saint Petersburg University, Saint Petersburg, 199004, Russian Federation
| | - Svetlana Kostromina
- Laboratory of Behavioural Neurodynamics, Saint Petersburg University, Saint Petersburg, 199004, Russian Federation
| | - Yury Shtyrov
- Laboratory of Behavioural Neurodynamics, Saint Petersburg University, Saint Petersburg, 199004, Russian Federation.,Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, 8000, Aarhus, Denmark
| |
Collapse
|
10
|
Effects of tDCS on Tactile Perception Depend on Tactile Expertise in Both Musicians and Non-Musicians. Brain Sci 2020; 10:brainsci10110843. [PMID: 33198132 PMCID: PMC7697490 DOI: 10.3390/brainsci10110843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Brain plasticity in the somatosensory cortex and tactile performance can be facilitated by brain stimulation. Here, we investigated the effects of transcranial direct current stimulation (tDCS) on tactile perception in musicians and non-musicians to elucidate how tDCS-effects might depend on tactile expertise. On three separate days, 17 semi-professional musicians (e.g., piano or violin players) and 16 non-musicians aged 18-27 years received 15 min of 1 mA anodal (a-tDCS), cathodal (c-tDCS) or sham tDCS in a pseudorandomized design. Pre and post tDCS, tactile sensitivity (Touch Detection Task; TDT) and discrimination performance (Grating Orientation Task; GOT) were assessed. For further analysis, the weekly hours of instrument-playing and computer-typing were combined into a "tactile experience" variable. For GOT, but not TDT, a significant group effect at baseline was revealed with musicians performing better than non-musicians. TDT thresholds were significantly reduced after a-tDCS but not c-tDCS or sham stimulation. While both musicians' and non-musicians' performance improved after anodal stimulation, neither musical nor tactile expertise was directly associated with the magnitude of this improvement. Low performers in TDT with high tactile experience profited most from a-tDCS. We conclude that tactile expertise may facilitate somatosensory cortical plasticity and tactile learning in low performers.
Collapse
|
11
|
D'Imperio D, Avesani R, Rossato E, Aganetto S, Scandola M, Moro V. Recovery from tactile agnosia: a single case study. Neurocase 2020; 26:18-28. [PMID: 31755352 DOI: 10.1080/13554794.2019.1694951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In a patient suffering from tactile agnosia a comparison was made (using the ABABAB paradigm) between three blocks of neuropsychological rehabilitation sessions involving off-line anodal transcranial direct current stimulation (anodal-tDCS) and three blocks of rehabilitation sessions without tDCS. During the blocks with anodal-tDCS, the stimulation was administered in counterbalanced order to two sites: i) the perilesional parietal area (specific stimulation) and ii) an occipital area far from the lesion (nonspecific stimulation).Rehabilitation associated with anodal-tDCS (in particular in the perilesional areas) is more efficacious than without stimulation.
Collapse
Affiliation(s)
- Daniela D'Imperio
- Social Neuroscience Laboratory, Department of Psychology, Sapienza University, Rome, Italy.,NPSY.Lab-Vr, Department of Human Sciences, University of Verona, Verona, Italy
| | - Renato Avesani
- Department of Rehabilitation, IRCSS Sacro Cuore-Don Calabria, Negrar, Italy
| | - Elena Rossato
- Department of Rehabilitation, IRCSS Sacro Cuore-Don Calabria, Negrar, Italy
| | - Serena Aganetto
- Department of Rehabilitation, IRCSS Sacro Cuore-Don Calabria, Negrar, Italy
| | - Michele Scandola
- NPSY.Lab-Vr, Department of Human Sciences, University of Verona, Verona, Italy
| | - Valentina Moro
- NPSY.Lab-Vr, Department of Human Sciences, University of Verona, Verona, Italy
| |
Collapse
|
12
|
Berra E, Bergamaschi R, De Icco R, Dagna C, Perrotta A, Rovaris M, Grasso MG, Anastasio MG, Pinardi G, Martello F, Tamburin S, Sandrini G, Tassorelli C. The Effects of Transcutaneous Spinal Direct Current Stimulation on Neuropathic Pain in Multiple Sclerosis: Clinical and Neurophysiological Assessment. Front Hum Neurosci 2019; 13:31. [PMID: 30809137 PMCID: PMC6379270 DOI: 10.3389/fnhum.2019.00031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/21/2019] [Indexed: 01/26/2023] Open
Abstract
Background: Central neuropathic pain represents one of the most common symptoms in multiple sclerosis (MS) and it seriously affects quality of life. Spinal mechanisms may contribute to the pathogenesis of neuropathic pain in MS. Converging evidence from animal models and neurophysiological and clinical studies in humans suggests a potential effect of transcranial direct current stimulation (tc-DCS) on neuropathic pain. Spinal application of DCS, i.e., transcutaneous spinal DCS (ts-DCS), may modulate nociception through inhibition of spinal reflexes. Therefore, ts-DCS could represents an effective, safe and well-tolerated treatment for neuropathic pain in MS, a largely unexplored topic. This study is a pilot randomized double-blind sham-controlled trial to evaluate the efficacy of ts-DCS on central neuropathic pain in MS patients. Methods: Thirty-three MS patients with central neuropathic pain were enrolled and randomly assigned to two groups in a double-blind sham-controlled design: anodal ts-DCS group (n = 19, 10 daily 20-min sessions, 2 mA) or sham ts-DCS group (n = 14, 10 daily 20-min sessions, 0 mA). The following clinical outcomes were evaluated before ts-DCS treatment (T0), after 10 days of treatment (T1) and 1 month after the end of treatment (T2): neuropathic pain symptoms inventory (NPSI), Ashworth Scale (AS) for spasticity and Fatigue Severity Scale (FSS). A subgroup of patients treated with anodal ts-DCS (n = 12) and sham ts-DCS (n = 11) also underwent a parallel neurophysiological study of the nociceptive withdrawal reflex (NWR) and the NWR temporal summation threshold (TST), two objective markers of pain processing at spinal level. Results: Anodal ts-DCS group showed a significant improvement in NPSI at T1, which persisted at T2, while we did not detect any significant change in AS and FSS. Sham ts-DCS group did not show any significant change in clinical scales. We observed a non-significant trend towards an inhibition of NWR responses in the anodal ts-DCS group at T1 and T2 when compared to baseline. Conclusions: Anodal ts-DCS seems to have an early and persisting (i.e., 1 month after treatment) clinical efficacy on central neuropathic pain in MS patients, probably through modulation of spinal nociception. Clinical Trial Registration:www.ClinicalTrials.gov, identifier #NCT02331654.
Collapse
Affiliation(s)
- Eliana Berra
- Neurorehabilitation Unit, Department of Neurology, IRCCS C. Mondino Foundation, Pavia, Italy
| | - Roberto Bergamaschi
- Neurorehabilitation Unit, Department of Neurology, IRCCS C. Mondino Foundation, Pavia, Italy.,Multiple Sclerosis Center, IRCCS C. Mondino Foundation, Pavia, Italy
| | - Roberto De Icco
- Neurorehabilitation Unit, Department of Neurology, IRCCS C. Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Carlotta Dagna
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | | | - Marco Rovaris
- Neurorehabilitation Unit and Multiple Sclerosis Center, IRCCS Santa Maria Nascente, Don Carlo Gnocchi Foundation, Milan, Italy
| | - Maria Grazia Grasso
- Multiple Sclerosis Unit, Rehabilitation Hospital Santa Lucia Foundation, Rome, Italy
| | | | - Giovanna Pinardi
- Neurorehabilitation Unit and Multiple Sclerosis Center, IRCCS Santa Maria Nascente, Don Carlo Gnocchi Foundation, Milan, Italy
| | - Federico Martello
- Multiple Sclerosis Unit, Rehabilitation Hospital Santa Lucia Foundation, Rome, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giorgio Sandrini
- Neurorehabilitation Unit, Department of Neurology, IRCCS C. Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Neurorehabilitation Unit, Department of Neurology, IRCCS C. Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
13
|
Paradoxical, causal effects of sensory gain modulation on motor inhibitory control - a tDCS, EEG-source localization study. Sci Rep 2018; 8:17486. [PMID: 30504787 PMCID: PMC6269458 DOI: 10.1038/s41598-018-35879-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/12/2018] [Indexed: 11/08/2022] Open
Abstract
Response inhibition is a key component of executive functioning, but the role of perceptual processes has only recently been focused. Although the interrelation of incoming information and resulting behavioural (motor) effects is well-known to depend on gain control mechanisms, the causal role of sensory gain modulation for response inhibition is elusive. We investigate it using a somatosensory response inhibition (Go/Nogo) task and examine the effects of parietal (somatosensory) cathodal and sham tDCS stimulation on a behavioural and neurophysiological level. For the latter, we combine event-related potential (ERP) and source localization analyses. Behavioural results reveal that cathodal stimulation leads to superior inhibition performance as compared to sham stimulation depending on the intensity of tDCS stimulation. The neurophysiological data show that an early (perceptual) subprocess of the Nogo-N2 ERP-component is differentially modulated by the type of stimulation but not a later (response-related) Nogo-N2 subcomponent. Under cathodal stimulation, the early N2 amplitude is reduced and the right inferior frontal gyrus (BA45) is less active. Cathodal tDCS likely enhances inhibition performance via decreasing the efficiency of gain control and the impact of sensory stimuli to trigger prepotent responses. Thereby, response inhibition processes, associated with structures of the response inhibition network, become less demanded.
Collapse
|
14
|
Pruvost-Robieux E, Calvet D, Ben Hassen W, Turc G, Marchi A, Mélé N, Seners P, Oppenheim C, Baron JC, Mas JL, Gavaret M. Design and Methodology of a Pilot Randomized Controlled Trial of Transcranial Direct Current Stimulation in Acute Middle Cerebral Artery Stroke (STICA). Front Neurol 2018; 9:816. [PMID: 30356889 PMCID: PMC6190876 DOI: 10.3389/fneur.2018.00816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023] Open
Abstract
Background: Stroke is a major cause of death and disability worldwide. The related burden is expected to further increase due to aging populations, calling for more efficient treatment. Ischemic stroke results from a focal reduction in cerebral blood flow due to the sudden occlusion of a brain artery. Ischemic brain injury results from a sequence of pathophysiological events that evolve over time and space. This cascade includes excitotoxicity and peri-infarct depolarizations (PIDs). Focal impairment of cerebral blood flow restricts the delivery of energetics substrates and impairs ionic gradients. Membrane potential is eventually lost, and neurons depolarize. Although recanalization therapies target the ischemic penumbra, they can only rescue the penumbra still present at the time of reperfusion. A promising novel approach is to "freeze" the penumbra until reperfusion occurs. Transcranial direct current stimulation (tDCS) is a non-invasive method of neuromodulation. Based on preclinical evidence, we propose to test the penumbra freezing concept in a clinical phase IIa trial assessing whether cathodal tDCS-shown in rodents to reduce infarction volume-prevents early infarct growth in human acute Middle Cerebral Artery (MCA) stroke, in adjunction to conventional revascularization methods. Methods: This is a monocentric randomized, double-blind, and placebo-controlled trial performed in patients with acute MCA stroke eligible to revascularization procedures. Primary outcome is infarct volume growth on diffusion weighted imaging (DWI) at day 1 relative to baseline. Secondary outcomes include safety and clinical efficacy. Significance: Results from this clinical trial are expected to provide rationale for a phase III study. Clinical trial registration-EUDRACT: 2016-A00160-51.
Collapse
Affiliation(s)
- Estelle Pruvost-Robieux
- Department of Neurophysiology, Sainte-Anne Hospital, Paris, France.,Faculty of Medicine, Paris Descartes University, Paris, France
| | - David Calvet
- Faculty of Medicine, Paris Descartes University, Paris, France.,INSERM UMR S894, Paris, France.,Department of Neurology, Sainte-Anne Hospital, Paris, France
| | - Wagih Ben Hassen
- Faculty of Medicine, Paris Descartes University, Paris, France.,INSERM UMR S894, Paris, France.,Department of Neuroradiology, Sainte-Anne Hospital, Paris, France
| | - Guillaume Turc
- Faculty of Medicine, Paris Descartes University, Paris, France.,INSERM UMR S894, Paris, France.,Department of Neurology, Sainte-Anne Hospital, Paris, France
| | - Angela Marchi
- Department of Neurophysiology, Sainte-Anne Hospital, Paris, France
| | - Nicolas Mélé
- Department of Neurology, Sainte-Anne Hospital, Paris, France
| | - Pierre Seners
- Faculty of Medicine, Paris Descartes University, Paris, France.,INSERM UMR S894, Paris, France.,Department of Neurology, Sainte-Anne Hospital, Paris, France
| | - Catherine Oppenheim
- Faculty of Medicine, Paris Descartes University, Paris, France.,INSERM UMR S894, Paris, France.,Department of Neuroradiology, Sainte-Anne Hospital, Paris, France
| | - Jean-Claude Baron
- Faculty of Medicine, Paris Descartes University, Paris, France.,INSERM UMR S894, Paris, France.,Department of Neurology, Sainte-Anne Hospital, Paris, France
| | - Jean-Louis Mas
- Faculty of Medicine, Paris Descartes University, Paris, France.,INSERM UMR S894, Paris, France.,Department of Neurology, Sainte-Anne Hospital, Paris, France
| | - Martine Gavaret
- Department of Neurophysiology, Sainte-Anne Hospital, Paris, France.,Faculty of Medicine, Paris Descartes University, Paris, France.,INSERM UMR S894, Paris, France
| |
Collapse
|
15
|
Abstract
Direct current stimulation is a neuromodulatory noninvasive brain stimulation tool, which was first introduced in animal and human experiments in the 1950s, and added to the standard arsenal of methods to alter brain physiology as well as psychological, motor, and behavioral processes and clinical symptoms in neurological and psychiatric diseases about 20 years ago. In contrast to other noninvasive brain stimulation tools, such as transcranial magnetic stimulation, it does not directly induce cerebral activity, but rather alters spontaneous brain activity and excitability by subthreshold modulation of neuronal membranes. Beyond acute effects on brain functions, specific protocols are suited to induce long-lasting alterations of cortical excitability and activity, which share features with long-term potentiation and depression. These neuroplastic processes are important foundations for various cognitive functions such as learning and memory formation and are pathologically altered in numerous neurological and psychiatric diseases. This explains the increasing interest to investigate transcranial direct current stimulation (tDCS) as a therapeutic tool. However, for tDCS to be used effectively, it is crucial to be informed about physiological mechanisms of action. These have been increasingly elucidated during the last years. This review gives an overview of the current knowledge available regarding physiological mechanisms of tDCS, spanning from acute regional effects, over neuroplastic effects to its impact on cerebral networks. Although knowledge about the physiological effects of tDCS is still not complete, this might help to guide applications on a scientifically sound foundation.
Collapse
Affiliation(s)
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center Göttingen, University of Göttingen, Göttingen
| | | |
Collapse
|
16
|
Effects of Anodal Transcranial Direct Current Stimulation on Somatosensory Recovery After Stroke. Am J Phys Med Rehabil 2018; 97:507-513. [DOI: 10.1097/phm.0000000000000910] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Wunder S, Hunold A, Fiedler P, Schlegelmilch F, Schellhorn K, Haueisen J. Novel bifunctional cap for simultaneous electroencephalography and transcranial electrical stimulation. Sci Rep 2018; 8:7259. [PMID: 29740054 PMCID: PMC5940899 DOI: 10.1038/s41598-018-25562-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/23/2018] [Indexed: 01/30/2023] Open
Abstract
Neuromodulation induced by transcranial electric stimulation (TES) exhibited promising potential for clinical practice. However, the underlying mechanisms remain subject of research. The combination of TES and electroencephalography (EEG) offers great potential for investigating these mechanisms and brain function in general, especially when performed simultaneously. In conventional applications, the combination of EEG and TES suffers from limitations on the electrode level (gel for electrode-skin interface) and the usability level (preparation time, reproducibility of positioning). To overcome these limitations, we designed a bifunctional cap for simultaneous TES-EEG applications. We used novel electrode materials, namely textile stimulation electrodes and dry EEG electrodes integrated in a flexible textile cap. We verified the functionality of this cap by analysing the effect of TES on visual evoked potentials (VEPs). In accordance with previous reports using standard TES, the amplitude of the N75 component was significantly decreased post-stimulation, indicating the feasibility of using this novel flexible cap for simultaneous TES and EEG. Further, we found a significant reduction of the P100 component only during TES, indicating a different brain modulation effect during and after TES. In conclusion, the novel bifunctional cap offers a novel tool for simultaneous TES-EEG applications in clinical research, therapy monitoring and closed-loop stimulation.
Collapse
Affiliation(s)
- Sophia Wunder
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany
- neuroConn GmbH, 98693, Ilmenau, Germany
| | - Alexander Hunold
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany.
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | | | | | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany
- Department of Neurology, Biomagnetic Center, Jena University Hospital, 07747, Jena, Germany
| |
Collapse
|
18
|
Folmli B, Turman B, Johnson P, Abbott A. Dose response of somatosensory cortex repeated anodal transcranial direct current stimulation on vibrotactile detection: a randomized sham-controlled trial. J Neurophysiol 2018; 120:610-616. [PMID: 29726731 DOI: 10.1152/jn.00926.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This randomized sham-controlled trial investigated anodal transcranial direct current stimulation (tDCS) over the somatosensory cortex contralateral to hand dominance for dose-response (1 mA, 20 min × 5 days) effects on vibrotactile detection thresholds (VDT). VDT was measured before and after tDCS on days 1, 3, and 5 for low- (30 Hz) and high-frequency (200 Hz) vibrations on the dominant and nondominant hands in 29 healthy adults (mean age = 22.86 yr; 15 men, 14 women). Only the dominant-hand 200-Hz VDT displayed statistically significant medium effect size improvement for mixed-model analysis of variance time-by-group interaction for active tDCS compared with sham. Post hoc contrasts were statistically significant for dominant-hand 200-Hz VDT on day 5 after tDCS compared with day 1 before tDCS, day 1 after tDCS, and day 3 before tDCS. There was a linear dose-response improvement with dominant-hand 200-Hz VDT mean difference decreasing from day 1 before tDCS peaking at -15.5% (SD = 34.9%) on day 5 after tDCS. Both groups showed learning effect trends over time for all VDT test conditions, but only the nondominant-hand 30-Hz VDT was statistically significant ( P = 0.03), although post hoc contrasts were nonsignificant after Šidák adjustment. No adverse effects for tDCS were reported. In conclusion, anodal tDCS at 1 mA, 20 min × 5 days on the dominant sensory cortex can modulate a linear improvement of dominant-hand high-frequency VDT but not low-frequency or nondominant-hand VDT. NEW & NOTEWORTHY Repeated weak anodal transcranial direct current stimulation (1 mA, 20 min) on the dominant sensory cortex provides linear improvement in dominant-hand high-frequency vibration detection thresholds. No effects were observed for low-frequency or nondominant-hand vibration detection thresholds.
Collapse
Affiliation(s)
- Brookes Folmli
- Faculty of Health Sciences & Medicine, Bond University , Gold Coast, Queensland , Australia
| | - Bulent Turman
- Faculty of Health Sciences & Medicine, Bond University , Gold Coast, Queensland , Australia
| | - Peter Johnson
- Faculty of Health Sciences & Medicine, Bond University , Gold Coast, Queensland , Australia
| | - Allan Abbott
- Faculty of Health Sciences & Medicine, Bond University , Gold Coast, Queensland , Australia.,Department of Medical and Health Sciences, Division of Physiotherapy, Faculty of Medicine and Health Sciences, Linköping University , Linköping , Sweden
| |
Collapse
|
19
|
Hohmann A, Loui P, Li CH, Schlaug G. Reverse Engineering Tone-Deafness: Disrupting Pitch-Matching by Creating Temporary Dysfunctions in the Auditory-Motor Network. Front Hum Neurosci 2018; 12:9. [PMID: 29441004 PMCID: PMC5797547 DOI: 10.3389/fnhum.2018.00009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/10/2018] [Indexed: 01/07/2023] Open
Abstract
Perceiving and producing vocal sounds are important functions of the auditory-motor system and are fundamental to communication. Prior studies have identified a network of brain regions involved in pitch production, specifically pitch matching. Here we reverse engineer the function of the auditory perception-production network by targeting specific cortical regions (e.g., right and left posterior superior temporal (pSTG) and posterior inferior frontal gyri (pIFG)) with cathodal transcranial direct current stimulation (tDCS)—commonly found to decrease excitability in the underlying cortical region—allowing us to causally test the role of particular nodes in this network. Performance on a pitch-matching task was determined before and after 20 min of cathodal stimulation. Acoustic analyses of pitch productions showed impaired accuracy after cathodal stimulation to the left pIFG and the right pSTG in comparison to sham stimulation. Both regions share particular roles in the feedback and feedforward motor control of pitched vocal production with a differential hemispheric dominance.
Collapse
Affiliation(s)
- Anja Hohmann
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Psyche Loui
- Department of Psychology, Wesleyan University, Middletown, CT, United States
| | - Charles H Li
- Music, Neuroimaging and Stroke Recovery Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Gottfried Schlaug
- Music, Neuroimaging and Stroke Recovery Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Xue H, Zhao L, Wang Y, Dong Q, Chen C, Xue G. Anodal transcranial direct current stimulation over the left temporoparietal cortex facilitates assembled phonology. Trends Neurosci Educ 2017. [DOI: 10.1016/j.tine.2017.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Ellison A, Ball KL, Lane AR. The Behavioral Effects of tDCS on Visual Search Performance Are Not Influenced by the Location of the Reference Electrode. Front Neurosci 2017; 11:520. [PMID: 28983233 PMCID: PMC5613168 DOI: 10.3389/fnins.2017.00520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/04/2017] [Indexed: 11/17/2022] Open
Abstract
We investigated the role of reference electrode placement (ipsilateral v contralateral frontal pole) on conjunction visual search task performance when the transcranial direct current stimulation (tDCS) cathode is placed over right posterior parietal cortex (rPPC) and over right frontal eye fields (rFEF), both of which have been shown to be causally involved in the processing of this task using TMS. This resulted in four experimental manipulations in which sham tDCS was applied in week one followed by active tDCS the following week. Another group received sham stimulation in both sessions to investigate practice effects over 1 week in this task. Results show that there is no difference between effects seen when the anode is placed ipsi or contralaterally. Cathodal stimulation of rPPC increased search times straight after stimulation similarly for ipsi and contralateral references. This finding does not extend to rFEF stimulation. However, for both sites and both montages, practice effects as seen in the sham/sham condition were negated. This can be taken as evidence that for this task, reference placement on either frontal pole is not important, but also that care needs to be taken when contextualizing tDCS “effects” that may not be immediately apparent particularly in between-participant designs.
Collapse
Affiliation(s)
- Amanda Ellison
- Cognitive Neuroscience Research Unit, Department of Psychology, Durham UniversityDurham, United Kingdom.,Wolfson Research Institute for Health and Wellbeing, Durham UniversityDurham, United Kingdom
| | - Keira L Ball
- Cognitive Neuroscience Research Unit, Department of Psychology, Durham UniversityDurham, United Kingdom.,Wolfson Research Institute for Health and Wellbeing, Durham UniversityDurham, United Kingdom
| | - Alison R Lane
- Cognitive Neuroscience Research Unit, Department of Psychology, Durham UniversityDurham, United Kingdom.,Wolfson Research Institute for Health and Wellbeing, Durham UniversityDurham, United Kingdom
| |
Collapse
|
22
|
Fujimoto S, Tanaka S, Laakso I, Yamaguchi T, Kon N, Nakayama T, Kondo K, Kitada R. The Effect of Dual-Hemisphere Transcranial Direct Current Stimulation Over the Parietal Operculum on Tactile Orientation Discrimination. Front Behav Neurosci 2017; 11:173. [PMID: 28979197 PMCID: PMC5611440 DOI: 10.3389/fnbeh.2017.00173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022] Open
Abstract
The parietal operculum (PO) often shows ipsilateral activation during tactile object perception in neuroimaging experiments. However, the relative contribution of the PO to tactile judgment remains unclear. Here, we examined the effect of transcranial direct current stimulation (tDCS) over bilateral PO to test the relative contributions of the ipsilateral PO to tactile object processing. Ten healthy adults participated in this study, which had a double-blind, sham-controlled, cross-over design. Participants discriminated grating orientation during three tDCS and sham conditions. In the dual-hemisphere tDCS conditions, anodal and cathodal electrodes were placed over the left and right PO. In the uni-hemisphere tDCS condition, anodal and cathodal electrodes were applied over the left PO and contralateral orbit, respectively. In the tDCS and sham conditions, we applied 2 mA for 15 min and for 15 s, respectively. Computational models of electric fields (EFs) during tDCS indicated that the strongest electric fields were located in regions in and around the PO. Compared with the sham condition, dual-hemisphere tDCS improved the discrimination threshold of the index finger contralateral to the anodal electrode. Importantly, dual-hemisphere tDCS with the anodal electrode over the left PO yielded a decreased threshold in the right finger compared with the uni-hemisphere tDCS condition. These results suggest that the ipsilateral PO inhibits tactile processing of grating orientation, indicating interhemispheric inhibition (IHI) of the PO.
Collapse
Affiliation(s)
- Shuhei Fujimoto
- Tokyo Bay Rehabilitation HospitalChiba, Japan.,Department of Public Health, Kyoto University Graduate School of MedicineKyoto, Japan.,Link & Communication Inc.Tokyo, Japan.,Laboratory of Psychology, Hamamatsu University School of MedicineShizuoka, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of MedicineShizuoka, Japan
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto UniversityEspoo, Finland
| | - Tomofumi Yamaguchi
- Department of Rehabilitation Medicine, Keio University School of MedicineTokyo, Japan.,Department of Neuroscience and Pharmacology, University of CopenhagenCopenhagen, Denmark.,Department of Physical Therapy, Yamagata Prefectural University of Health SciencesYamagata, Japan
| | - Noriko Kon
- Department of Therapy, Kawakita Rehabilitation HospitalTokyo, Japan
| | - Takeo Nakayama
- Department of Public Health, Kyoto University Graduate School of MedicineKyoto, Japan
| | | | - Ryo Kitada
- Division of Psychology, School of Social Sciences (SSS), College of Humanities, Arts, & Social Sciences, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
23
|
Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol 2017; 128:1774-1809. [PMID: 28709880 PMCID: PMC5985830 DOI: 10.1016/j.clinph.2017.06.001] [Citation(s) in RCA: 683] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
Abstract
Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity 'conventional' TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3-13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6-7, 2016 and were refined thereafter by email correspondence.
Collapse
Affiliation(s)
- A Antal
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany.
| | - I Alekseichuk
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - M Bikson
- Department of Biomedical Engineering, The City College of New York, New York, USA
| | - J Brockmöller
- Department of Clinical Pharmacology, University Medical Center Goettingen, Germany
| | - A R Brunoni
- Service of Interdisciplinary Neuromodulation, Department and Institute of Psychiatry, Laboratory of Neurosciences (LIM-27) and Interdisciplinary Center for Applied Neuromodulation University Hospital, University of São Paulo, São Paulo, Brazil
| | - R Chen
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke NIH, Bethesda, USA
| | | | - J Ellrich
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany; EBS Technologies GmbH, Europarc Dreilinden, Germany
| | - A Flöel
- Universitätsmedizin Greifswald, Klinik und Poliklinik für Neurologie, Greifswald, Germany
| | - F Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - M S George
- Brain Stimulation Division, Medical University of South Carolina, and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - R Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - J Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Germany
| | - C S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany
| | - F C Hummel
- Defitech Chair of Clinical Neuroengineering, Centre of Neuroprosthetics (CNP) and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Swiss Federal Institute of Technology (EPFL Valais), Sion, Switzerland
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, and EA 4391, Nerve Excitability and Therapeutic Team (ENT), Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - D Liebetanz
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - C K Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - C D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - C Miniussi
- Center for Mind/Brain Sciences CIMeC, University of Trento, Rovereto, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - P C Miranda
- Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - V Moliadze
- Institute of Medical Psychology and Medical Sociology, University Hospital of Schleswig-Holstein (UKSH), Campus Kiel, Christian-Albrechts-University, Kiel, Germany
| | - M A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Hospital Bergmannsheil, Bochum, Germany
| | - R Nowak
- Neuroelectrics, Barcelona, Spain
| | - F Padberg
- Department of Psychiatry and Psychotherapy, Munich Center for Brain Stimulation, Ludwig-Maximilian University Munich, Germany
| | - A Pascual-Leone
- Division of Cognitive Neurology, Harvard Medical Center and Berenson-Allen Center for Noninvasive Brain Stimulation at Beth Israel Deaconess Medical Center, Boston, USA
| | - W Poppendieck
- Department of Information Technology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - A Priori
- Center for Neurotechnology and Experimental Brain Therapeutich, Department of Health Sciences, University of Milan Italy; Deparment of Clinical Neurology, University Hospital Asst Santi Paolo E Carlo, Milan, Italy
| | - S Rossi
- Department of Medicine, Surgery and Neuroscience, Human Physiology Section and Neurology and Clinical Neurophysiology Section, Brain Investigation & Neuromodulation Lab, University of Siena, Italy
| | - P M Rossini
- Area of Neuroscience, Institute of Neurology, University Clinic A. Gemelli, Catholic University, Rome, Italy
| | | | - M A Rueger
- Department of Neurology, University Hospital of Cologne, Germany
| | | | | | - H R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Y Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan
| | - A Wexler
- Department of Science, Technology & Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - M Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - W Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| |
Collapse
|
24
|
Lenoir C, Huang G, Vandermeeren Y, Hatem SM, Mouraux A. Human primary somatosensory cortex is differentially involved in vibrotaction and nociception. J Neurophysiol 2017; 118:317-330. [PMID: 28446584 DOI: 10.1152/jn.00615.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 04/10/2017] [Accepted: 04/23/2017] [Indexed: 01/13/2023] Open
Abstract
The role of the primary somatosensory cortex (S1) in vibrotaction is well established. In contrast, its involvement in nociception is still debated. Here we test whether S1 is similarly involved in the processing of nonnociceptive and nociceptive somatosensory input in humans by comparing the aftereffects of high-definition transcranial direct current stimulation (HD-tDCS) of S1 on the event-related potentials (ERPs) elicited by nonnociceptive and nociceptive somatosensory stimuli delivered to the ipsilateral and contralateral hands. Cathodal HD-tDCS significantly affected the responses to nonnociceptive somatosensory stimuli delivered to the contralateral hand: both early-latency ERPs from within S1 (N20 wave elicited by transcutaneous electrical stimulation of median nerve) and late-latency ERPs elicited outside S1 (N120 wave elicited by short-lasting mechanical vibrations delivered to index fingertip, thought to originate from bilateral operculo-insular and cingulate cortices). These results support the notion that S1 constitutes an obligatory relay for the cortical processing of nonnociceptive tactile input originating from the contralateral hemibody. Contrasting with this asymmetric effect of HD-tDCS on the responses to nonnociceptive somatosensory input, HD-tDCS over the sensorimotor cortex led to a bilateral and symmetric reduction of the magnitude of the N240 wave of nociceptive laser-evoked potentials elicited by stimulation of the hand dorsum. Taken together, our results demonstrate in humans a differential involvement of S1 in vibrotaction and nociception.NEW & NOTEWORTHY Whereas the role of the primary somatosensory cortex (S1) in vibrotaction is well established, its involvement in nociception remains strongly debated. By assessing, in healthy volunteers, the effect of high-definition transcranial direct current stimulation over S1, we demonstrate a differential involvement of S1 in vibrotaction and nociception.
Collapse
Affiliation(s)
- Cédric Lenoir
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Gan Huang
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Yves Vandermeeren
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,NeuroModulation Unit, Neurology Department, CHU UCL Namur (Godinne), Université catholique de Louvain, Yvoir, Belgium.,Louvain Bionics, Université catholique de Louvain, Louvain-la-Neuve, Belgium; and
| | - Samar Marie Hatem
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Physical Medicine and Rehabilitation, Brugmann University Hospital, and Vrije Universiteit Brussel, Université Libre de Bruxelles, Brussels, Belgium
| | - André Mouraux
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium;
| |
Collapse
|
25
|
Lee S, Hwang E, Lee D, Choi JH. Pulse-train Stimulation of Primary Somatosensory Cortex Blocks Pain Perception in Tail Clip Test. Exp Neurobiol 2017; 26:90-96. [PMID: 28442945 PMCID: PMC5403911 DOI: 10.5607/en.2017.26.2.90] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 11/19/2022] Open
Abstract
Human studies of brain stimulation have demonstrated modulatory effects on the perception of pain. However, whether the primary somatosensory cortical activity is associated with antinociceptive responses remains unknown. Therefore, we examined the antinociceptive effects of neuronal activity evoked by optogenetic stimulation of primary somatosensory cortex. Optogenetic transgenic mice were subjected to continuous or pulse-train optogenetic stimulation of the primary somatosensory cortex at frequencies of 15, 30, and 40 Hz, during a tail clip test. Reaction time was measured using a digital high-speed video camera. Pulse-train optogenetic stimulation of primary somatosensory cortex showed a delayed pain response with respect to a tail clip, whereas no significant change in reaction time was observed with continuous stimulation. In response to the pulse-train stimulation, video monitoring and local field potential recording revealed associated paw movement and sensorimotor rhythms, respectively. Our results show that optogenetic stimulation of primary somatosensory cortex at beta and gamma frequencies blocks transmission of pain signals in tail clip test.
Collapse
Affiliation(s)
- Soohyun Lee
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea.,Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Eunjin Hwang
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Dongmyeong Lee
- Center for Cognition and Sociality, Institute of Basic Science, Daejeon 34047, Korea
| | - Jee Hyun Choi
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea.,Department of Neuroscience, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
26
|
Brückner S, Kammer T. Both anodal and cathodal transcranial direct current stimulation improves semantic processing. Neuroscience 2017; 343:269-275. [DOI: 10.1016/j.neuroscience.2016.12.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/15/2016] [Accepted: 12/08/2016] [Indexed: 11/28/2022]
|
27
|
Beyer L, Batsikadze G, Timmann D, Gerwig M. Cerebellar tDCS Effects on Conditioned Eyeblinks using Different Electrode Placements and Stimulation Protocols. Front Hum Neurosci 2017; 11:23. [PMID: 28203151 PMCID: PMC5285376 DOI: 10.3389/fnhum.2017.00023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/11/2017] [Indexed: 11/13/2022] Open
Abstract
There is good evidence that the human cerebellum is involved in the acquisition and timing of classically conditioned eyeblink responses (CRs). Animal studies suggest that the cerebellum is also important in CR extinction and savings. Cerebellar transcranial direct current stimulation (tDCS) was reported to modulate CR acquisition and timing in a polarity dependent manner. To extent previous findings three experiments were conducted using standard delay eyeblink conditioning. In a between-group design, effects of tDCS were assessed with stimulation over the right cerebellar hemisphere ipsilaterally to the unconditioned stimulus (US). An extracephalic reference electrode was used in Experiment 1 and a cephalic reference in Experiment 2. In both parts the influence on unconditioned eyeblink responses (UR) was investigated by starting stimulation in the second half of the pseudoconditioning phase lasting throughout the first half of paired trials. In a third experiment, effects of cerebellar tDCS during 40 extinction trials were assessed on extinction and reacquisition on the next day. In each experiment, 30 subjects received anodal, cathodal or sham stimulation in a double-blinded fashion. Using the extracephalic reference electrode, no significant effects on CR incidences comparing stimulation groups were observed. Using the cephalic reference anodal as well as cathodal cerebellar tDCS increased CR acquisition compared to sham only on a trend level. Analysis of timing parameters did not reveal significant effects on CR onset and peaktime latencies nor on UR timing. In the third experiment, cerebellar tDCS during extinction trials had no significant effect on extinction and savings on the next day. The present study did not reveal clear polarity dependent effects of cerebellar tDCS on CR acquisition and timing as previously described. Weaker effects may be explained by start of tDCS before the learning phase i.e., offline, individual thresholds and current flow based on individual anatomy may also play role. Likewise cerebellar tDCS during extinction did not modulate extinction or reacquisition. Further studies are needed in larger subject populations to determine parameters of stimulation and learning paradigms yielding robust cerebellar tDCS effects.
Collapse
Affiliation(s)
- Linda Beyer
- Department of Neurology, University of Duisburg-EssenEssen, Germany
| | | | - Dagmar Timmann
- Department of Neurology, University of Duisburg-EssenEssen, Germany
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-EssenEssen, Germany
| |
Collapse
|
28
|
Ammann C, Spampinato D, Márquez-Ruiz J. Modulating Motor Learning through Transcranial Direct-Current Stimulation: An Integrative View. Front Psychol 2016; 7:1981. [PMID: 28066300 PMCID: PMC5179543 DOI: 10.3389/fpsyg.2016.01981] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/05/2016] [Indexed: 02/05/2023] Open
Abstract
Motor learning consists of the ability to improve motor actions through practice playing a major role in the acquisition of skills required for high-performance sports or motor function recovery after brain lesions. During the last decades, it has been reported that transcranial direct-current stimulation (tDCS), consisting in applying weak direct current through the scalp, is able of inducing polarity-specific changes in the excitability of cortical neurons. This low-cost, painless and well-tolerated portable technique has found a wide-spread use in the motor learning domain where it has been successfully applied to enhance motor learning in healthy individuals and for motor recovery after brain lesion as well as in pathological states associated to motor deficits. The main objective of this mini-review is to offer an integrative view about the potential use of tDCS for human motor learning modulation. Furthermore, we introduce the basic mechanisms underlying immediate and long-term effects associated to tDCS along with important considerations about its limitations and progression in recent years.
Collapse
Affiliation(s)
- Claudia Ammann
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Institution Baltimore, MD, USA
| | - Danny Spampinato
- Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Institution Baltimore, MD, USA
| | | |
Collapse
|
29
|
Luu P, Essaki Arumugam EM, Anderson E, Gunn A, Rech D, Turovets S, Tucker DM. Slow-Frequency Pulsed Transcranial Electrical Stimulation for Modulation of Cortical Plasticity Based on Reciprocity Targeting with Precision Electrical Head Modeling. Front Hum Neurosci 2016. [PMID: 27531976 DOI: 10.3339/fnhum.2016.00377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In pain management as well as other clinical applications of neuromodulation, it is important to consider the timing parameters influencing activity-dependent plasticity, including pulsed versus sustained currents, as well as the spatial action of electrical currents as they polarize the complex convolutions of the cortical mantle. These factors are of course related; studying temporal factors is not possible when the spatial resolution of current delivery to the cortex is so uncertain to make it unclear whether excitability is increased or decreased with anodal vs. cathodal current flow. In the present study we attempted to improve the targeting of specific cortical locations by applying current through flexible source-sink configurations of 256 electrodes in a geodesic array. We constructed a precision electric head model for 12 healthy individuals. Extraction of the individual's cortical surface allowed computation of the component of the induced current that is normal to the target cortical surface. In an effort to replicate the long-term depression (LTD) induced with pulsed protocols in invasive animal research and transcranial magnetic stimulation studies, we applied 100 ms pulses at 1.9 s intervals either in cortical-surface-anodal or cortical-surface-cathodal directions, with a placebo (sham) control. The results showed significant LTD of the motor evoked potential as a result of the cortical-surface-cathodal pulses in contrast to the placebo control, with a smaller but similar LTD effect for anodal pulses. The cathodal LTD after-effect was sustained over 90 min following current injection. These results support the feasibility of pulsed protocols with low total charge in non-invasive neuromodulation when the precision of targeting is improved with a dense electrode array and accurate head modeling.
Collapse
Affiliation(s)
- Phan Luu
- Electrical Geodesics, Inc., EugeneOR, USA; Department of Psychology, University of Oregon, EugeneOR, USA
| | | | | | | | | | - Sergei Turovets
- Electrical Geodesics, Inc., EugeneOR, USA; NeuroInformatics Center, University of Oregon, EugeneOR, USA
| | - Don M Tucker
- Electrical Geodesics, Inc., EugeneOR, USA; Department of Psychology, University of Oregon, EugeneOR, USA
| |
Collapse
|
30
|
Luu P, Essaki Arumugam EM, Anderson E, Gunn A, Rech D, Turovets S, Tucker DM. Slow-Frequency Pulsed Transcranial Electrical Stimulation for Modulation of Cortical Plasticity Based on Reciprocity Targeting with Precision Electrical Head Modeling. Front Hum Neurosci 2016; 10:377. [PMID: 27531976 PMCID: PMC4969286 DOI: 10.3389/fnhum.2016.00377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022] Open
Abstract
In pain management as well as other clinical applications of neuromodulation, it is important to consider the timing parameters influencing activity-dependent plasticity, including pulsed versus sustained currents, as well as the spatial action of electrical currents as they polarize the complex convolutions of the cortical mantle. These factors are of course related; studying temporal factors is not possible when the spatial resolution of current delivery to the cortex is so uncertain to make it unclear whether excitability is increased or decreased with anodal vs. cathodal current flow. In the present study we attempted to improve the targeting of specific cortical locations by applying current through flexible source-sink configurations of 256 electrodes in a geodesic array. We constructed a precision electric head model for 12 healthy individuals. Extraction of the individual's cortical surface allowed computation of the component of the induced current that is normal to the target cortical surface. In an effort to replicate the long-term depression (LTD) induced with pulsed protocols in invasive animal research and transcranial magnetic stimulation studies, we applied 100 ms pulses at 1.9 s intervals either in cortical-surface-anodal or cortical-surface-cathodal directions, with a placebo (sham) control. The results showed significant LTD of the motor evoked potential as a result of the cortical-surface-cathodal pulses in contrast to the placebo control, with a smaller but similar LTD effect for anodal pulses. The cathodal LTD after-effect was sustained over 90 min following current injection. These results support the feasibility of pulsed protocols with low total charge in non-invasive neuromodulation when the precision of targeting is improved with a dense electrode array and accurate head modeling.
Collapse
Affiliation(s)
- Phan Luu
- Electrical Geodesics, Inc., EugeneOR, USA; Department of Psychology, University of Oregon, EugeneOR, USA
| | | | | | | | | | - Sergei Turovets
- Electrical Geodesics, Inc., EugeneOR, USA; NeuroInformatics Center, University of Oregon, EugeneOR, USA
| | - Don M Tucker
- Electrical Geodesics, Inc., EugeneOR, USA; Department of Psychology, University of Oregon, EugeneOR, USA
| |
Collapse
|
31
|
Rehmann R, Sczesny-Kaiser M, Lenz M, Gucia T, Schliesing A, Schwenkreis P, Tegenthoff M, Höffken O. Polarity-Specific Cortical Effects of Transcranial Direct Current Stimulation in Primary Somatosensory Cortex of Healthy Humans. Front Hum Neurosci 2016; 10:208. [PMID: 27242473 PMCID: PMC4860403 DOI: 10.3389/fnhum.2016.00208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/22/2016] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive stimulation method that has been shown to modulate the excitability of the motor and visual cortices in human subjects in a polarity dependent manner in previous studies. The aim of our study was to investigate whether anodal and cathodal tDCS can also be used to modulate the excitability of the human primary somatosensory cortex (S1). We measured paired-pulse suppression (PPS) of somatosensory evoked potentials in 36 right-handed volunteers before and after anodal, cathodal, or sham stimulation over the right non-dominant S1. Paired-pulse stimulation of the median nerve was performed at the dominant and non-dominant hand. After anodal tDCS, PPS was reduced in the ipsilateral S1 compared to sham stimulation, indicating an excitatory effect of anodal tDCS. In contrast, PPS in the stimulated left hemisphere was increased after cathodal tDCS, indicating an inhibitory effect of cathodal tDCS. Sham stimulation induced no pre-post differences. Thus, tDCS can be used to modulate the excitability of S1 in polarity-dependent manner, which can be assessed by PPS. An interesting topic for further studies could be the investigation of direct correlations between sensory changes and excitability changes induced by tDCS.
Collapse
Affiliation(s)
- Robert Rehmann
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | | | - Melanie Lenz
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Tomasz Gucia
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Annika Schliesing
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Peter Schwenkreis
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| | - Oliver Höffken
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum Bochum, Germany
| |
Collapse
|
32
|
Fujimoto S, Kon N, Otaka Y, Yamaguchi T, Nakayama T, Kondo K, Ragert P, Tanaka S. Transcranial Direct Current Stimulation Over the Primary and Secondary Somatosensory Cortices Transiently Improves Tactile Spatial Discrimination in Stroke Patients. Front Neurosci 2016; 10:128. [PMID: 27064531 PMCID: PMC4814559 DOI: 10.3389/fnins.2016.00128] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/14/2016] [Indexed: 11/13/2022] Open
Abstract
In healthy subjects, dual hemisphere transcranial direct current stimulation (tDCS) over the primary (S1) and secondary somatosensory cortices (S2) has been found to transiently enhance tactile performance. However, the effect of dual hemisphere tDCS on tactile performance in stroke patients with sensory deficits remains unknown. The purpose of this study was to investigate whether dual hemisphere tDCS over S1 and S2 could enhance tactile discrimination in stroke patients. We employed a double-blind, crossover, sham-controlled experimental design. Eight chronic stroke patients with sensory deficits participated in this study. We used a grating orientation task (GOT) to measure the tactile discriminative threshold of the affected and non-affected index fingers before, during, and 10 min after four tDCS conditions. For both the S1 and S2 conditions, we placed an anodal electrode over the lesioned hemisphere and a cathodal electrode over the opposite hemisphere. We applied tDCS at an intensity of 2 mA for 15 min in both S1 and S2 conditions. We included two sham conditions in which the positions of the electrodes and the current intensity were identical to that in the S1 and S2 conditions except that current was delivered for the initial 15 s only. We found that GOT thresholds for the affected index finger during and 10 min after the S1 and S2 conditions were significantly lower compared with each sham condition. GOT thresholds were not significantly different between the S1 and S2 conditions at any time point. We concluded that dual-hemisphere tDCS over S1 and S2 can transiently enhance tactile discriminative task performance in chronic stroke patients with sensory dysfunction.
Collapse
Affiliation(s)
- Shuhei Fujimoto
- Tokyo Bay Rehabilitation HospitalChiba, Japan; Laboratory of Psychology, Hamamatsu University School of MedicineShizuoka, Japan; Department of Public Health, Kyoto University Graduate School of MedicineKyoto, Japan; Medley, Inc.Tokyo, Japan
| | - Noriko Kon
- Department of Public Health, Kyoto University Graduate School of Medicine Kyoto, Japan
| | - Yohei Otaka
- Tokyo Bay Rehabilitation HospitalChiba, Japan; Department of Rehabilitation Medicine, Keio University School of MedicineTokyo, Japan
| | - Tomofumi Yamaguchi
- Tokyo Bay Rehabilitation HospitalChiba, Japan; Department of Rehabilitation Medicine, Keio University School of MedicineTokyo, Japan
| | - Takeo Nakayama
- Department of Public Health, Kyoto University Graduate School of Medicine Kyoto, Japan
| | | | - Patrick Ragert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Faculty of Sport Science, Institute for General Kinesiology and Exercise Science, University of LeipzigLeipzig, Germany
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine Shizuoka, Japan
| |
Collapse
|
33
|
Transcranial direct current stimulation as a tool in the study of sensory-perceptual processing. Atten Percept Psychophys 2016; 77:1813-40. [PMID: 26139152 DOI: 10.3758/s13414-015-0932-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulatory technique with increasing popularity in the fields of basic research and rehabilitation. It is an affordable and safe procedure that is beginning to be used in the clinic, and is a tool with potential to contribute to the understanding of neural mechanisms in the fields of psychology, neuroscience, and medical research. This review presents examples of investigations in the fields of perception, basic sensory processes, and sensory rehabilitation that employed tDCS. We highlight some of the most relevant efforts in this area and discuss possible limitations and gaps in contemporary tDCS research. Topics include the five senses, pain, and multimodal integration. The present work aims to present the state of the art of this field of research and to inspire future investigations of perception using tDCS.
Collapse
|
34
|
Hanley CJ, Tommerdahl M, McGonigle DJ. Stimulating somatosensory psychophysics: a double-blind, sham-controlled study of the neurobiological mechanisms of tDCS. Front Cell Neurosci 2015; 9:400. [PMID: 26500499 PMCID: PMC4595660 DOI: 10.3389/fncel.2015.00400] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/22/2015] [Indexed: 12/17/2022] Open
Abstract
The neuromodulation technique transcranial direct current stimulation (tDCS) is thought to produce its effects on behavior by altering cortical excitability. Although the mechanisms underlying the observed effects are thought to rely on the balance of excitatory and inhibitory neurotransmission, the physiological principles of the technique are not completely understood. In this study, we examine the influence of tDCS on vibrotactile adaptation, using a simple amplitude discrimination paradigm that has been shown to exhibit modifications in performance due to changes in inhibitory neurotransmission. Double-blind tDCS (Anodal/Sham) of 1 mA was delivered for 600 s to electrodes positioned in a somatosensory/contralateral orbit montage. Stimulation was applied as part of a pre/post design, between blocks of the behavioral tasks. In accordance with previous work, results obtained before the application of tDCS indicated that amplitude discrimination thresholds were significantly worsened during adaptation trials, compared to those achieved at baseline. However, tDCS failed to modify amplitude discrimination performance. Using a Bayesian approach, this finding was revealed to constitute substantial evidence for the null hypothesis. The failure of DC stimulation to alter vibrotactile adaptation thresholds is discussed in the context of several factors that may have confounded the induction of changes in cortical plasticity.
Collapse
Affiliation(s)
- Claire J Hanley
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University Cardiff, UK ; School of Biosciences, Cardiff University Cardiff, UK
| | - Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - David J McGonigle
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University Cardiff, UK ; School of Biosciences, Cardiff University Cardiff, UK
| |
Collapse
|
35
|
Vaseghi B, Zoghi M, Jaberzadeh S. Differential effects of cathodal transcranial direct current stimulation of prefrontal, motor and somatosensory cortices on cortical excitability and pain perception - a double-blind randomised sham-controlled study. Eur J Neurosci 2015; 42:2426-37. [DOI: 10.1111/ejn.13043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 01/30/2023]
Affiliation(s)
- B. Vaseghi
- Department of Physiotherapy; School of Primary Health Care; Faculty of Medicine; Nursing and Health Sciences; Monash University; Frankston Vic. Australia
| | - M. Zoghi
- Department of Medicine; Royal Melbourne Hospital; The University of Melbourne; Parkville Vic. Australia
| | - S. Jaberzadeh
- Department of Physiotherapy; School of Primary Health Care; Faculty of Medicine; Nursing and Health Sciences; Monash University; Frankston Vic. Australia
| |
Collapse
|
36
|
Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation. Neuropsychologia 2015; 79:246-55. [PMID: 26164474 DOI: 10.1016/j.neuropsychologia.2015.07.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/19/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Emerging evidence indicates impairments in somatosensory function may be a major contributor to motor dysfunction associated with neurologic injury or disorders. However, the neuroanatomical substrates underlying the connection between aberrant sensory input and ineffective motor output are still under investigation. The primary somatosensory cortex (S1) plays a critical role in processing afferent somatosensory input and contributes to the integration of sensory and motor signals necessary for skilled movement. Neuroimaging and neurostimulation approaches provide unique opportunities to non-invasively study S1 structure and function including connectivity with other cortical regions. These research techniques have begun to illuminate casual contributions of abnormal S1 activity and connectivity to motor dysfunction and poorer recovery of motor function in neurologic patient populations. This review synthesizes recent evidence illustrating the role of S1 in motor control, motor learning and functional recovery with an emphasis on how information from these investigations may be exploited to inform stroke rehabilitation to reduce motor dysfunction and improve therapeutic outcomes.
Collapse
|
37
|
Modulation of attention functions by anodal tDCS on right PPC. Neuropsychologia 2015; 74:96-107. [DOI: 10.1016/j.neuropsychologia.2015.02.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 11/19/2022]
|
38
|
Shin YI, Foerster Á, Nitsche MA. Reprint of: Transcranial direct current stimulation (tDCS) – Application in neuropsychology. Neuropsychologia 2015; 74:74-95. [DOI: 10.1016/j.neuropsychologia.2015.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 01/07/2023]
|
39
|
Wang Y, Hao Y, Zhou J, Fried PJ, Wang X, Zhang J, Fang J, Pascual-Leone A, Manor B. Direct current stimulation over the human sensorimotor cortex modulates the brain's hemodynamic response to tactile stimulation. Eur J Neurosci 2015; 42:1933-40. [PMID: 25989209 DOI: 10.1111/ejn.12953] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 11/29/2022]
Abstract
Tactile stimuli produce afferent signals that activate specific regions of the cerebral cortex. Noninvasive transcranial direct current stimulation (tDCS) effectively modulates cortical excitability. We therefore hypothesised that a single session of tDCS targeting the sensory cortices would alter the cortical response to tactile stimuli. This hypothesis was tested with a block-design functional magnetic resonance imaging protocol designed to quantify the blood oxygen level-dependent response to controlled sinusoidal pressure stimulation applied to the right foot sole, as compared with rest, in 16 healthy young adults. Following sham tDCS, right foot sole stimulation was associated with activation bilaterally within the precentral cortex, postcentral cortex, middle and superior frontal gyri, temporal lobe (subgyral) and cingulate gyrus. Activation was also observed in the left insula, middle temporal lobe, superior parietal lobule, supramarginal gyrus and thalamus, as well as the right inferior parietal lobule and claustrum (false discovery rate corrected, P < 0.05). To explore the regional effects of tDCS, brain regions related to somatosensory processing, and cortical areas underneath each tDCS electrode, were chosen as regions of interest. Real tDCS, as compared with sham tDCS, increased the percent signal change associated with foot stimulation relative to rest in the left posterior paracentral lobule. These results indicate that tDCS acutely modulated the cortical responsiveness to controlled foot pressure stimuli in healthy adults. Further study is warranted, in both healthy individuals and patients with sensory impairments, to link tDCS-induced modulation of the cortical response to tactile stimuli with changes in somatosensory perception.
Collapse
Affiliation(s)
- Ye Wang
- Center for BioMed-X Research, Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Ying Hao
- Center for BioMed-X Research, Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Junhong Zhou
- Center for BioMed-X Research, Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Peter J Fried
- Harvard Medical School, Boston, MA, USA.,Berenson-Allen Center for Noninvasive Brain Stimulation and Cognitive Neurology Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Xiaoying Wang
- Center for BioMed-X Research, Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China.,Department of Radiology, Peking University First Hospital, Beijing, China
| | - Jue Zhang
- Center for BioMed-X Research, Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China.,College of Engineering, Peking University, Beijing, China
| | - Jing Fang
- Center for BioMed-X Research, Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China.,College of Engineering, Peking University, Beijing, China
| | - Alvaro Pascual-Leone
- Harvard Medical School, Boston, MA, USA.,Berenson-Allen Center for Noninvasive Brain Stimulation and Cognitive Neurology Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Brad Manor
- Harvard Medical School, Boston, MA, USA.,Berenson-Allen Center for Noninvasive Brain Stimulation and Cognitive Neurology Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
| |
Collapse
|
40
|
Nitsche MA, Polania R, Kuo MF. Transcranial Direct Current Stimulation: Modulation of Brain Pathways and Potential Clinical Applications. Brain Stimul 2015. [DOI: 10.1002/9781118568323.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
41
|
Matsushita R, Andoh J, Zatorre RJ. Polarity-specific transcranial direct current stimulation disrupts auditory pitch learning. Front Neurosci 2015; 9:174. [PMID: 26041982 PMCID: PMC4434966 DOI: 10.3389/fnins.2015.00174] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/28/2015] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioral outcomes, possibly due to differences in stimulation parameters, task-induced brain activity, or task measurements used in each study. Further research, using well-validated tasks is therefore required for clarification of behavioral effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for 3 days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold) over the 3 days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the 3 days. The results support a causal role for the right auditory cortex in pitch discrimination learning.
Collapse
Affiliation(s)
- Reiko Matsushita
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University Montreal, QC, Canada ; International Laboratory for Brain, Music, and Sound Research Montreal, QC, Canada ; Centre for Research on Brain, Language, and Music Montreal, QC, Canada
| | - Jamila Andoh
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health Mannheim Mannheim, Germany
| | - Robert J Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University Montreal, QC, Canada ; International Laboratory for Brain, Music, and Sound Research Montreal, QC, Canada ; Centre for Research on Brain, Language, and Music Montreal, QC, Canada
| |
Collapse
|
42
|
Vaseghi B, Zoghi M, Jaberzadeh S. A meta-analysis of site-specific effects of cathodal transcranial direct current stimulation on sensory perception and pain. PLoS One 2015; 10:e0123873. [PMID: 25978673 PMCID: PMC4433259 DOI: 10.1371/journal.pone.0123873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/23/2015] [Indexed: 11/18/2022] Open
Abstract
The primary aim of our meta-analysis was to evaluate the effects of cathodal transcranial direct current stimulation (c-tDCS) on sensory and pain thresholds (STh and PTh) in healthy individuals and pain level (PL) in patients with chronic pain. Electronic databases were searched for c-tDCS studies. Methodological quality was evaluated using the PEDro and Downs and Black (D&B) assessment tools. C-tDCS of the primary motor cortex (S1) increases both STh (P<0.001, effect size of 26.84%) and PTh (P<0.001, effect size of 11.62%). In addition, c-tDCS over M1 led to STh increase (P<0.005, effect size of 30.44%). Likewise, PL decreased significantly in the patient group following application of c-tDCS. The small number of studies precluded subgroup analysis. Nevertheless, meta-analysis showed that in all groups (except c-tDCS of S1) active c-tDCS and sham stimulation produced significant differences in STh/PTh in healthy and PL in patient group. This review provides evidence for the site-specific effectiveness of c-tDCS in increasing STh/PTh in healthy individuals and decreasing PL in patients with chronic pain. However, due to small sample sizes in the included studies, our results should be interpreted with caution. Given that the level of blinding was not considered in the inclusion criteria, the results of the current study should be interpreted with caution.
Collapse
Affiliation(s)
- Bita Vaseghi
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- * E-mail:
| | - Maryam Zoghi
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
43
|
Transcranial direct current stimulation (tDCS) – Application in neuropsychology. Neuropsychologia 2015; 69:154-75. [DOI: 10.1016/j.neuropsychologia.2015.02.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 12/21/2022]
|
44
|
Cohen Kadosh R. Modulating and enhancing cognition using brain stimulation: Science and fiction. JOURNAL OF COGNITIVE PSYCHOLOGY 2015. [DOI: 10.1080/20445911.2014.996569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Woods AJ, Bryant V, Sacchetti D, Gervits F, Hamilton R. Effects of Electrode Drift in Transcranial Direct Current Stimulation. Brain Stimul 2014; 8:515-9. [PMID: 25583653 DOI: 10.1016/j.brs.2014.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/19/2014] [Accepted: 12/20/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Conventional transcranial direct current stimulation (tDCS) methods involve application of weak electrical current through electrodes encased in saline-soaked sponges affixed to the head using elastic straps. In the absence of careful preparation, electrodes can drift from their original location over the course of a tDCS session. OBJECTIVE The current paper investigates the influence of electrode drift on distribution of electric fields generated by conventional tDCS. METHODS MRI-derived finite element models of electric fields produced by tDCS were used to investigate the influence of incremental drift in electrodes for two of the most common electrode montages used in the literature: M1/SO (motor to contralateral supraorbital) and F3/F4 (bilateral frontal). Based on these models, we extracted predicted current intensity from 20 representative structures in the brain. RESULTS Results from separate RM-ANOVAs for M1/SO and F3/F4 montages demonstrated that 5% incremental drift in electrode position significantly changed the distribution of current delivered by tDCS to the human brain (F's > 8.6, P's < 0.001). Pairwise comparisons demonstrated that as little as 5% drift was able to produce significant differences in current intensity in structures distributed across the brain (P's < 0.03). CONCLUSIONS Drift in electrode position during a session of tDCS produces significant alteration in the intensity of stimulation delivered to the brain. Elimination of this source of variability will facilitate replication and interpretation of tDCS findings. Furthermore, measurement and statistically accounting for drift may prove important for better characterizing the effects of tDCS on the human brain and behavior.
Collapse
Affiliation(s)
- Adam J Woods
- Cognitive Aging and Memory Clinical Translational Research Program, Institute on Aging, Department of Aging and Geriatric Research, University of Florida, USA.
| | - Vaughn Bryant
- Cognitive Aging and Memory Clinical Translational Research Program, Institute on Aging, Department of Aging and Geriatric Research, University of Florida, USA
| | - Daniela Sacchetti
- Center for Cognitive Neuroscience, Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, USA
| | - Felix Gervits
- Center for Cognitive Neuroscience, Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, USA
| | - Roy Hamilton
- Center for Cognitive Neuroscience, Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, USA
| |
Collapse
|
46
|
Westgeest A, Morales M, Cabib C, Valls-Sole J. The effects of transcranial direct current stimulation on conscious perception of sensory inputs from hand palm and dorsum. Eur J Neurosci 2014; 40:3818-27. [DOI: 10.1111/ejn.12743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Affiliation(s)
| | - Merche Morales
- Neurology Department; Hospital Clínic; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS); Facultad de Medicina; Universitat de Barcelona; Barcelona Spain
| | - Christopher Cabib
- Neurology Department; Hospital Clínic; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS); Facultad de Medicina; Universitat de Barcelona; Barcelona Spain
| | - Josep Valls-Sole
- Neurology Department; Hospital Clínic; Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS); Facultad de Medicina; Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
47
|
Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study. Clin Neurophysiol 2014; 125:1847-58. [DOI: 10.1016/j.clinph.2014.01.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/01/2014] [Accepted: 01/09/2014] [Indexed: 11/21/2022]
|
48
|
Fujimoto S, Yamaguchi T, Otaka Y, Kondo K, Tanaka S. Dual-hemisphere transcranial direct current stimulation improves performance in a tactile spatial discrimination task. Clin Neurophysiol 2014; 125:1669-74. [DOI: 10.1016/j.clinph.2013.12.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 11/30/2022]
|
49
|
Schaal N, Krause V, Lange K, Banissy M, Williamson V, Pollok B. Pitch Memory in Nonmusicians and Musicians: Revealing Functional Differences Using Transcranial Direct Current Stimulation. Cereb Cortex 2014; 25:2774-82. [DOI: 10.1093/cercor/bhu075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
50
|
Ellison A, Ball KL, Moseley P, Dowsett J, Smith DT, Weis S, Lane AR. Functional interaction between right parietal and bilateral frontal cortices during visual search tasks revealed using functional magnetic imaging and transcranial direct current stimulation. PLoS One 2014; 9:e93767. [PMID: 24705681 PMCID: PMC3976402 DOI: 10.1371/journal.pone.0093767] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/09/2014] [Indexed: 11/18/2022] Open
Abstract
The existence of a network of brain regions which are activated when one undertakes a difficult visual search task is well established. Two primary nodes on this network are right posterior parietal cortex (rPPC) and right frontal eye fields. Both have been shown to be involved in the orientation of attention, but the contingency that the activity of one of these areas has on the other is less clear. We sought to investigate this question by using transcranial direct current stimulation (tDCS) to selectively decrease activity in rPPC and then asking participants to perform a visual search task whilst undergoing functional magnetic resonance imaging. Comparison with a condition in which sham tDCS was applied revealed that cathodal tDCS over rPPC causes a selective bilateral decrease in frontal activity when performing a visual search task. This result demonstrates for the first time that premotor regions within the frontal lobe and rPPC are not only necessary to carry out a visual search task, but that they work together to bring about normal function.
Collapse
Affiliation(s)
- Amanda Ellison
- Department of Psychology, Durham University, Durham, United Kingdom
- * E-mail:
| | - Keira L. Ball
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Peter Moseley
- Department of Psychology, Durham University, Durham, United Kingdom
| | - James Dowsett
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Daniel T. Smith
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Susanne Weis
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Alison R. Lane
- Department of Psychology, Durham University, Durham, United Kingdom
| |
Collapse
|