1
|
Domingos-Melo A, Maia ACD, Milet-Pinheiro P. Anthophilous beetles ubiquitously inhabit night-blooming cacti but exhibit distinct responses to the spatial distribution of flowers. AN ACAD BRAS CIENC 2024; 96:e20231361. [PMID: 39699507 DOI: 10.1590/0001-3765202420231361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/12/2024] [Indexed: 12/20/2024] Open
Abstract
Night-blooming cacti, primarily pollinated by bats and hawkmoths, also attract beetles seeking food and safe shelter for mating and brooding their offspring. The influence of flower density on beetle visitation rates remains unclear, with responses varying by species and environmental factors. In the Caatinga Seasonally Dry Tropical Forest, we studied the flower occupancy distribution of two beetle species, Cyclocephala paraguayensis and Nitops aff. pilosocerei, in Pilosocereus pachycladus cacti. Our findings indicate that both beetle species act as commensals with minimal impact on effective pollination. They forage for nectar and pollen without causing damage to pistils or ovaries. N. aff. pilosocerei was more abundant than C. paraguayensis, and their distributions significantly differed, with N. aff. pilosocerei displaying a more uniform spread. Instances of both species occupying the same flower were more frequent than exclusive occupation. Nitops aff. pilosocerei abundance exhibited spatial autocorrelation. Flower height and beetle species influenced the total number of beetles within flowers. Future studies should explore the impact of cactus flower distribution on beetle abundance with other species, conduct selective pollination experiments to determine their role as pollinators, and investigate how flower-beetle interaction systems are affected by flower and individual distribution in processes like florivory and pollination.
Collapse
Affiliation(s)
- Arthur Domingos-Melo
- Universidade Federal de Sergipe, Laboratório de Biologia Floral e Ecologia Reprodutiva, Departamento de Biociências, Campus Prof. Alberto Carvalho. Av. Vereador Olímpio Grande, s/n, 49506-036 Itabaiana, SE, Brazil
- Universidade de Pernambuco, Laboratório de Interações Ecológicas e Semioquímicos (LIES), Campus Petrolina, Rodovia BR 203, Km 2, s/n, Vila Eduardo, 56328-900 Petrolina, PE, Brazil
| | - Artur C D Maia
- University of Corsica, Laboratory of Sciences for the Environment, UMR 6134 SPE, Ajaccio, Corsica, France
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Av. Reitor Joaquim Amazonas, s/n, Cidade Universitária, 50740-570 Recife, PE, Brazil
| | - Paulo Milet-Pinheiro
- Universidade de Pernambuco, Laboratório de Interações Ecológicas e Semioquímicos (LIES), Campus Petrolina, Rodovia BR 203, Km 2, s/n, Vila Eduardo, 56328-900 Petrolina, PE, Brazil
| |
Collapse
|
2
|
Santos GKN, Navarro DMDAF, Maia ACD. Cuticular lipid profiles of selected species of cyclocephaline beetles (Melolonthidae, Cyclocephalini). BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:124-133. [PMID: 38268108 DOI: 10.1017/s0007485323000664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Neotropical cyclocephaline beetles, a diverse group of flower-loving insects, significantly impact natural and agricultural ecosystems. In particular, the genus Cyclocephala, with over 350 species, displays polymorphism and cryptic complexes. Lacking a comprehensive DNA barcoding framework, accessible tools for species differentiation are needed for research in taxonomy, ecology, and crop management. Moreover, cuticular hydrocarbons are believed to be involved in sexual recognition mechanisms in these beetles. In the present study we examined the cuticular chemical profiles of six species from the genus Cyclocephala and two populations of Erioscelis emarginata and assessed their efficiency in population, species, and sex differentiation. Overall we identified 74 compounds in cuticular extracts of the selected taxa. Linear alkanes and unsaturated hydrocarbons were prominent, with ten compounds between them explaining 85.6% of species dissimilarity. Although the cuticular chemical profiles efficiently differentiated all investigated taxa, only C. ohausiana showed significant cuticular profile differences between sexes. Our analysis also revealed two E. emarginata clades within a larger group of 'Cyclocephala' species, but they were not aligned with the two studied populations. Our research underscores the significance of cuticular lipid profiles in distinguishing selected cyclocephaline beetle species and contemplates their potential impact as contact pheromones on sexual segregation and speciation.
Collapse
Affiliation(s)
- Geanne Karla N Santos
- Secretaria Executiva de Meio Ambiente de Paulista (SEMA), Prefeitura Municipal do Paulista, Paulista, 53401-441, Brazil
- Department of Fundamental Chemistry, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, 50740-560, Brazil
| | - Daniela Maria do Amaral F Navarro
- Department of Fundamental Chemistry, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, 50740-560, Brazil
| | - Artur Campos D Maia
- Department of Zoology, Centro de Biociências, Universidade Federal de Pernambuco, Recife PE, 50670-901, Brazil
- Laboratory of Sciences for the Environment, University of Corsica, UMR 6134 SPE, Ajaccio, France
| |
Collapse
|
3
|
Claudel C, Loiseau O, Silvestro D, Lev-Yadun S, Antonelli A. Patterns and drivers of heat production in the plant genus Amorphophallus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:874-894. [PMID: 37340521 DOI: 10.1111/tpj.16343] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023]
Abstract
Thermogenesis - the ability to generate metabolic heat - is much more common in animals than in plants, but it has been documented in several plant families, most prominently the Araceae. Metabolic heat is produced in floral organs during the flowering time (anthesis), with the hypothesised primary functions being to increase scent volatilisation for pollinator attraction, and/or to provide a heat reward for invertebrate pollinators. Despite in-depth studies on the thermogenesis of single species, no attempts have yet been made to examine plant thermogenesis across an entire clade. Here, we apply time-series clustering algorithms to 119 measurements of the full thermogenic patterns in inflorescences of 80 Amorphophallus species. We infer a new time-calibrated phylogeny of this genus and use phylogenetic comparative methods to investigate the evolutionary determinants of thermogenesis. We find striking phenotypic variation across the phylogeny, with heat production in multiple clades reaching up to 15°C, and in one case 21.7°C above ambient temperature. Our results show that the thermogenic capacity is phylogenetically conserved and is also associated with inflorescence thickness. Our study paves the way for further investigations of the eco-evolutionary benefits of thermogenesis in plants.
Collapse
Affiliation(s)
- Cyrille Claudel
- Institute for Plant Science and Microbiology, Department of Biology, University of Hamburg, Ohnhorststraße 18, 22609, Hamburg, Germany
| | - Oriane Loiseau
- School of GeoSciences, King's Buildings, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Daniele Silvestro
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE 405 30, Gothenburg, Sweden
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
- Swiss Institute of Bioinformatics (SIB), 1015, Lausanne, Switzerland
| | - Simcha Lev-Yadun
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon, 36006, Israel
| | - Alexandre Antonelli
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE 405 30, Gothenburg, Sweden
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
4
|
Nagamine RRVK, Costa CG, Fuhrmann J, Rodrigues SR. Antennal sensilla in Cyclocephala literata Burmeister, 1847 (Coleoptera: Scarabaeidae: Dynastinae). BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2021-1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract: Adults of the beetle Cyclocephala literata Burmeister, 1847 are important pollinators to some Magnoliaceae. Is known that insects could find host plants by detecting volatiles through antennal sensilla. Cyclocephala has its three distal antennomeres lamellate, and the surface of each lamella has sensilla trichodea, chaetica, placodea, coeloconica, basiconica and ampullacea. Three kinds of sensilla placodea were found (type I, II and III), and two kinds of sensilla coeloconica were observed (type I and II). Females have on average 10,776 sensilla, of which 10,214 are sensilla placodea, 536 are sensilla coeloconica, and 26 are sensilla basiconica. Males have on average 10,386 sensilla, of which 9,873 are sensilla placodea, 464 are sensilla coeloconica, and 49 are sensilla basiconica. Males and females have similar quantities of sensilla, and sensilla placodea are predominant. The differences observed in the number of sensilla of males and females were found in other beetles and were attributed to the detection of cospecific sexual pheromones by one of the sexes, or to the detection of plant volatiles. The antennal sensilla of C. literata is described and quantified in present study, and some perspectives about the differences kind of chemical communication, pollination, and antennae dimorphism is discussed.
Collapse
|
5
|
Claudel C, Lev-Yadun S. Odor polymorphism in deceptive Amorphophallus species - a review. PLANT SIGNALING & BEHAVIOR 2021; 16:1991712. [PMID: 34839800 PMCID: PMC9208769 DOI: 10.1080/15592324.2021.1991712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Some plant lineages, such as Araceae and Orchidaceae, have independently evolved deceptive flowers. These exploit the insect's perception and deceive the insects into believing to have located a suitable opportunity for reproduction. The scent compounds emitted by the flowers are the key signals that dupe the insects, guiding them to the right spots that in turn ensure flower pollination. Most species of the genus Amorphophallus of the Araceae emit scent compounds that are characteristic of a deceit, suggesting a specific plant pollinator interaction and according odors. However, only a few clear evolutionary trends in regard to inflorescence odors in Amorphophallus could be traced in previous studies - an intriguing result, considered the multitude of characteristic scent compounds expressed in Amorphophallus as well as the key function of scent compounds in deceptive floral systems in general. At least two factors could account for this result. (1) The deceptive pollinator-attraction floral system, including the emitted scent compounds, is less specific than assumed. (2) An evolutionary trend cannot be discerned if the intraspecific scent variation (odor polymorphism) exceeds the interspecific odor variation. Therefore, we discuss the potential deceptive function of the emitted scent compounds, in particular those that are related to cadaveric decomposition. Moreover, we review the data about emitted scent compounds in Amorphophallus with a focus on putative odor polymorphism. Upon examination, it appears that the emitted scent compounds in Amorphophallus are highly mimetic of decomposing organic materials. We show that several species display odor polymorphism, which in turn might constitute an obstacle in the analysis of evolutionary trends. An important odor polymorphism is also indicated by subjective odor perceptions. Odor polymorphism may serve several purposes: it might represent an adaptation to local pollinators or it might assumingly prevent insects from learning to distinguish between a real decomposing substrate and an oviposition-site mimic.
Collapse
Affiliation(s)
- Cyrille Claudel
- Institute for Plant Science and Microbiology, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Simcha Lev-Yadun
- Department of Biology & Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon, Israel
| |
Collapse
|
6
|
Paz FS, Pinto CE, de Brito RM, Imperatriz-Fonseca VL, Giannini TC. Edible Fruit Plant Species in the Amazon Forest Rely Mostly on Bees and Beetles as Pollinators. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:710-722. [PMID: 33440000 PMCID: PMC8042744 DOI: 10.1093/jee/toaa284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 05/26/2023]
Abstract
Edible fruit plants of tropical forests are important for the subsistence of traditional communities. Understanding the most important pollinators related to fruit and seed production of these plants is a necessary step to protect their pollination service and assure the food security of these communities. However, there are many important knowledge gaps related to floral biology and pollination in megadiverse tropical rainforests, such as the Amazon Forest, due mainly to the high number of plant species. Our study aims to indicate the main pollinators of edible plants (mainly fruits) of the Amazon forest. For this, we adopted a threefold strategy: we built a list of edible plant species, determined the pollination syndrome of each species, and performed a review on the scientific literature searching for their pollinator/visitors. The list of plant species was determined from two specialized publications on Amazon fruit plants, totaling 188 species. The pollination syndrome was determined for 161 species. The syndromes most frequently found among the analyzed species were melittophily (bee pollination), which was found in 101 of the analyzed plant species (54%) and cantharophily (beetle pollination; 26 species; 14%). We also found 238 pollinator/visitor taxa quoted for 52 (28%) plant species in previous publications, with 124 taxa belonging to Apidae family (bees; 52%), mainly from Meliponini tribe (58 taxa; 47%). Knowledge about pollinators is an important step to help on preserving their ecosystem services and maintaining the productivity of fruit trees in the Amazon.
Collapse
Affiliation(s)
- Fabricia Sousa Paz
- Instituto Tecnológico Vale. Rua Boaventura da Silva 955. Belém, Pará, Brazil
- Centro de Ciências Naturais e Tecnologia, Universidade do Estado do Pará. Rua do Una 156. Belém, Pará, Brazil
| | | | | | | | - Tereza Cristina Giannini
- Instituto Tecnológico Vale. Rua Boaventura da Silva 955. Belém, Pará, Brazil
- Ciências Biológicas, Universidade Federal do Pará. R. Augusto Corrêa, 1. Belém, Pará, Brazil
| |
Collapse
|
7
|
Paiva ÉAS, Ballego-Campos I, Gibernau M. True nectar or stigmatic secretion? Structural evidence elucidates an old controversy regarding nectaries in Anthurium. AMERICAN JOURNAL OF BOTANY 2021; 108:37-50. [PMID: 33449391 DOI: 10.1002/ajb2.1595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Floral rewards are essential in understanding floral function and evolution of the relationships between flowers and pollinators. Whether sugars are present in stigmatic exudates in Anthurium and whether it has floral nectaries have remained controversial because of the scarcity of structural studies. To solve these questions, we investigated the floral anatomy of A. andraeanum to elucidate whether (1) tepals are secretory organs, (2) tepals possess a structurally recognizable nectary, and (3) tepalar secretion differs from stigmatic secretion. METHODS Floral structure was assessed through light and electron microscopy of samples of immature, pistillate, and staminate flowers. The dynamics of the starch reserve was investigated using histochemical tests, and the sugar content in the floral exudates was assessed using thin-layer chromatography. RESULTS Sugar analysis did not detect sucrose, glucose, or fructose in stigmatic secretions, but confirmed their presence in tepalar secretions. Stigmatic secretion was produced by secretory stigmatic papillae; tepalar exudates were produced by nonvascularized nectaries in the apex of tepals. These nectaries were characterized by modified stomata and cells with cytoplasm rich in organelles, and a high content of calcium oxalate crystals. CONCLUSIONS Our results showed for the first time nectaries on tepals and true nectar secretion for A. andraeanum. Stigmatic secretion appears to be a distinct substance, and its often-reported sugar content seems to be a result of sample contamination. Nectar and stigmatic secretions have been often mistaken in other Anthurium species and deserve a revision for this genus.
Collapse
Affiliation(s)
- Élder Antônio Sousa Paiva
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Igor Ballego-Campos
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Marc Gibernau
- CNRS, University of Corsica Pascal Paoli, UMR 6134 SPE, Equipe Chimie et Biomasse, Route des Sanguinaires - Vignola, 20000, Ajaccio, France
| |
Collapse
|
8
|
Saldanha FG, Rodrigues SR, Amaro RA, Fuhrmann J. Description of mating behavior, life cycle, and antennal sensilla of Cyclocephala putrida Burmeister, 1847 (Coleoptera, Scarabaeidae, Dynastinae). BIOTA NEOTROPICA 2020. [DOI: 10.1590/1676-0611-bn-2020-0973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Abstract The genus Cyclocephala is common in Brazil (Coleoptera, Scarabaeidae, Dynastinae). The adults of some species are important pollinators, and the larvae develop in the soil, feed on organic matter, and contribute to nutrient cycle, but immatures of some species feed on plant roots, and some were registered causing damage in crops. The mating process of some phytophagous scarab beetles has a chemical recognition step, and the antenna is the main structure involved in the detection of odorants associated with insect communication. In the present study the mating behavior, life cycle, and antennal sensilla of C. putrida are described. The study was conducted at the Universidade Estadual de Mato Grosso do Sul, Cassilândia, Brazil. Adults were collected by a light trap installed from January 2016 to December 2017 and were taken to the laboratory for studies. Adults swarms are brief and were registered from January to February, and specimens were mostly collected at 20:00 to 22:00h. Chemical recognition may occur at least during one of the mating steps, during which the couple kept their antennae moving and the lamellae open, while females select males. In laboratory, the mating process lasted 7.5 minutes on average. The antennae of females have about 3399 sensilla and males about 4229 sensilla. Sensilla placodea types I, II, and III are the most abundant, and sensilla ampullacea, basiconica, and coeloconica are also present. The embryonic period lasted 16.0 days; first, second and third instars lasted 16.0, 48.3, and 165.3 days, respectively. The pupal period lasted 24.0 days. The period between egg deposition and adult emergency is about 271.5 days.
Collapse
|
9
|
Amancio G, Aguirre-Jaimes A, Hernández-Ortiz V, Guevara R, Quesada M. Vertical and Horizontal Trophic Networks in the Aroid-Infesting Insect Community of Los Tuxtlas Biosphere Reserve, Mexico. INSECTS 2019; 10:insects10080252. [PMID: 31443212 PMCID: PMC6722588 DOI: 10.3390/insects10080252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022]
Abstract
Insect-aroid interaction studies have focused largely on pollination systems; however, few report trophic interactions with other herbivores. This study features the endophagous insect community in reproductive aroid structures of a tropical rainforest of Mexico, and the shifting that occurs along an altitudinal gradient and among different hosts. In three sites of the Los Tuxtlas Biosphere Reserve in Mexico, we surveyed eight aroid species over a yearly cycle. The insects found were reared in the laboratory, quantified and identified. Data were analyzed through species interaction networks. We recorded 34 endophagous species from 21 families belonging to four insect orders. The community was highly specialized at both network and species levels. Along the altitudinal gradient, there was a reduction in richness and a high turnover of species, while the assemblage among hosts was also highly specific, with different dominant species. Our findings suggest that intrinsic plant factors could influence their occupation, and that the coexistence of distinct insect species in the assemblage could exert a direct or indirect influence on their ability to colonize such resources.
Collapse
Affiliation(s)
- Guadalupe Amancio
- Red de Interacciones Multitróficas, Instituto de Ecología A.C., Xalapa, Veracruz 91073, Mexico
| | - Armando Aguirre-Jaimes
- Red de Interacciones Multitróficas, Instituto de Ecología A.C., Xalapa, Veracruz 91073, Mexico
| | - Vicente Hernández-Ortiz
- Red de Interacciones Multitróficas, Instituto de Ecología A.C., Xalapa, Veracruz 91073, Mexico.
| | - Roger Guevara
- Red de Biologia Evolutiva, Instituto de Ecología A.C., Xalapa, Veracruz 91073, Mexico
| | - Mauricio Quesada
- Laboratorio Nacional de Análisis y Síntesis Ecológica, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia 58190 Michoacán, Mexico
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia 58190 Michoacán, Mexico
| |
Collapse
|
10
|
Amancio G, Hernández-Ortiz V, Aguirre-Jaimes A, Guevara R, Quesada M. Feeding Specialization of Flies (Diptera: Richardiidae) in Aroid Infructescences (Araceae) of the Neotropics. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:28. [PMID: 31234211 PMCID: PMC6592413 DOI: 10.1093/jisesa/iez065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Evolution and radiation between insects and flowering plants are both opportunistic and obligatory when the former feeds on the reproductive structures of the latter, whereas direct and indirect effects can influence the fitness of individuals, populations, and plant communities. The Araceae family constitutes an important element of the tropical rainforest of the Neotropics, and its morphology and floral biology provide a remarkable system for studying trophic interactions with insects, including the Richardiidae flies (Diptera). We studied the trophic interactions of the aroid-fly system, assessing infestation rates under natural conditions over an annual cycle. In the Neotropical region, we discovered for the first time that seven aroid species became infested by four richardiid species: Beebeomyia tuxtlaensis Hernández-Ortiz and Aguirre with Dieffenbachia oerstedii Schott and D. wendlandii Schott; B. palposa (Cresson) with Xanthosoma robustum Schott; Beebeomyia sp.3. in association with Philodendron radiatum Schott, P. tripartitum (Jacq.) Schott, and P. sagittifolium Liebm.; while Sepsisoma sp. only infested Rhodospatha wendlandii Schott. Infestation rates differed significantly among hosts, but comparisons with morphological traits did not provide evidence of a causal factor of the infestation. In contrast, larval density and time of development both exhibited significant differences between hosts. The findings suggest the high specialization of the flies, and that intrinsic factors of the plants, such as the presence of secondary metabolites and their maturation periods, may influence their infestation rates.
Collapse
Affiliation(s)
- Guadalupe Amancio
- Red de Interacciones Multitróficas, Instituto de Ecología AC, Xalapa, Veracruz, México
| | | | | | - Roger Guevara
- Red de Biología Evolutiva, Instituto de Ecología AC, Xalapa, Veracruz, México
| | - Mauricio Quesada
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, México
| |
Collapse
|
11
|
Hoe YC, Gibernau M, Wong SY. Diversity of pollination ecology in the Schismatoglottis Calyptrata Complex Clade (Araceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:563-578. [PMID: 29316090 DOI: 10.1111/plb.12687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Field studies integrating pollination investigations with an assessment of floral scent composition and thermogenesis in tropical aroids are rather few. Thus, this study aimed to investigate the pollination biology of nine species belonging to Schismatoglottis Calyptrata Complex Clade. The flowering mechanism, visiting insect activities, reproductive system, thermogenesis and floral scent composition were examined. Anthesis for all species started at dawn and lasted 25-29 h. Colocasiomyia (Diptera, Drosophilidae) are considered the main pollinators for all the investigated species. Cycreon (Coleoptera, Hydrophilidae) are considered secondary pollinators as they are only present in seven of the nine host plants, despite the fact that they are the most effective pollen carrier, carrying up to 15 times more pollen grains than Colocasiomyia flies. However, the number of Colocasiomyia individuals was six times higher than Cycreon beetles. Chaloenus (Chrysomelidae, Galeuricinae) appeared to be an inadvertent pollinator. Atheta (Coleoptera, Staphylinidae) is considered a floral visitor in most investigated species of the Calyptrata Complex Clade in Sarawak, but a possible pollinator in S. muluensis. Chironomidae midges and pteromalid wasps are considered visitors in S. calyptrata. Thermogenesis in a biphasic pattern was observed in inflorescences of S. adducta, S. calyptrata, S. giamensis, S. pseudoniahensis and S. roh. The first peak occurred during pistillate anthesis; the second peak during staminate anthesis. Inflorescences of all investigated species of Calyptrata Complex Clade emitted four types of ester compound, with methyl ester-3-methyl-3-butenoic acid as a single major VOC (volatile organic compound). The appendix, pistillate zone, staminate zone and spathe emitted all these compounds. A mixed fly-beetle pollination system is considered an ancestral trait in the Calyptrata Complex Clade, persisting in Sarawak taxa, whereas the marked reduction of interpistillar staminodes in taxa from Peninsular Malaysia and especially, Ambon, Indonesia, is probably linked to a shift in these taxa to a fly-pollinated system.
Collapse
Affiliation(s)
- Y C Hoe
- Tunku Abdul Rahman University College, Johor Branch Campus, Johor, Malaysia
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia
| | - M Gibernau
- Natural Resources Project, Vignola Route des Sanguinaires Ajaccio, CNRS - University of Corsica, Ajaccio, France
| | - S Y Wong
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia
- Harvard University Herbaria, Cambridge, MA, USA
| |
Collapse
|
12
|
Moore MR, Cave RD, Branham MA. Annotated catalog and bibliography of the cyclocephaline scarab beetles (Coleoptera, Scarabaeidae, Dynastinae, Cyclocephalini). Zookeys 2018; 745:101-378. [PMID: 29670449 PMCID: PMC5904534 DOI: 10.3897/zookeys.745.23685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 11/12/2022] Open
Abstract
Cyclocephaline scarab beetles represent the second largest tribe of the subfamily Dynastinae, and the group includes the most speciose genus of dynastines, Cyclocephala. The period following publication of Sebő Endrődi's The Dynastinae of the World has seen a huge increase in research interest on cyclocephalines, and much of this research has not been synthesized. The objective of this catalog and bibliography is to compile an exhaustive list of taxa in Cyclocephalini. This paper provides an updated foundation for understanding the taxonomy and classification of 14 genera and over 500 species in the tribe. It discusses the history of cataloging dynastine species, clarifies issues surrounding the neotype designations in Endrődi's revision of Cyclocephalini, synthesizes all published distribution data for cyclocephaline species, and increases accessibility to the voluminous literature on the group by providing an easily searchable bibliography for each species. We propose the nomen novum Cyclocephala rogerpauli, new replacement name, for C. nigra Dechambre.
Collapse
Affiliation(s)
- Matthew R. Moore
- Department of Entomology and Nematology, University of Florida, Building 1881 Natural Area Drive, Steinmetz Hall, Gainesville, FL 32611, USA
| | - Ronald D. Cave
- Department of Entomology and Nematology, University of Florida, Indian River Research and Education Center, 2199 South Rock Road, Fort Pierce, FL 34945, USA
| | - Marc A. Branham
- Department of Entomology and Nematology, University of Florida, Building 1881 Natural Area Drive, Steinmetz Hall, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
Schiestl FP. Innate Receiver Bias: Its Role in the Ecology and Evolution of Plant–Animal Interactions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-023039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Receiver bias in plant–animal interactions is here defined as “selection mediated by behavioral responses of animals, where those responses have evolved in a context outside the interactions.” As a consequence, the responses are not necessarily linked to fitness gains in interacting animals. Thus, receiver bias can help explain seemingly maladaptive patterns of behavior in interacting animals and the evolution of plant traits that trigger such behavior. In this review, I discuss principles of receiver bias, show its overlap with mimicry and how it differs from mimicry, and outline examples in different plant–animal interactions. The most numerous and best documented examples of receiver bias occur within plant–pollinator interactions. I elaborate on the ability of some plants to heat up their flowers (i.e., floral thermogenesis) and argue that this trait likely evolved under receiver bias, especially in pollination systems with oviposition mimicry. Further examples include signals in insect-mediated seed dispersal and plant defense through repellence of aphids. These examples show that receiver bias is widespread in different plant–animal interactions. For a broader understanding of the role of receiver bias in those interactions, we need more data on how animals respond to plant signals, the context and evolutionary history of those behaviors, and the evolutionary patterns of plant signals.
Collapse
Affiliation(s)
- Florian P. Schiestl
- Department of Systematic and Evolutionary Botany, University of Zürich, 8008 Zürich, Switzerland
| |
Collapse
|
14
|
Hoe YC, Gibernau M, Maia ACD, Wong SY. Flowering mechanisms, pollination strategies and floral scent analyses of syntopically co-flowering Homalomena spp. (Araceae) on Borneo. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:563-576. [PMID: 26780890 DOI: 10.1111/plb.12431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
In this study, the flowering mechanisms and pollination strategies of seven species of the highly diverse genus Homalomena (Araceae) were investigated in native populations of West Sarawak, Borneo. The floral scent compositions were also recorded for six of these species. The selected taxa belong to three out of four complexes of the section Cyrtocladon (Hanneae, Giamensis and Borneensis). The species belonging to the Hanneae complex exhibited longer anthesis (53-62 h) than those of the Giamensis and Borneensis complexes (ca. 30 h). Species belonging to the Hanneae complex underwent two floral scent emission events in consecutive days, during the pistillate and staminate phases of anthesis. In species belonging to the Giamensis and Borneensis complexes, floral scent emission was only evident to the human nose during the pistillate phase. A total of 33 volatile organic compounds (VOCs) were detected in floral scent analyses of species belonging to the Hanneae complex, whereas 26 VOCs were found in samples of those belonging to the Giamensis complex. The floral scent blends contained uncommon compounds in high concentration, which could ensure pollinator discrimination. Our observations indicate that scarab beetles (Parastasia gestroi and P. nigripennis; Scarabaeidae, Rutelinae) are the pollinators of the investigated species of Homalomena, with Chaloenus schawalleri (Chrysomelidae, Galeuricinae) acting as a secondary pollinator. The pollinators utilise the inflorescence for food, mating opportunities and safe mating arena as rewards. Flower-breeding flies (Colocasiomyia nigricauda and C. aff. heterodonta; Diptera, Drosophilidae) and terrestrial hydrophilid beetles (Cycreon sp.; Coleoptera, Hydrophilidae) were also frequently recovered from inflorescences belonging to all studied species (except H. velutipedunculata), but they probably do not act as efficient pollinators. Future studies should investigate the post-mating isolating barriers among syntopically co-flowering Homalomena sharing the same visiting insects.
Collapse
Affiliation(s)
- Y C Hoe
- Department of Plant Science and Environmental Ecology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia
| | - M Gibernau
- CNRS - University of Corsica, UMR 6134 - SPE, Natural Resources Project, Ajaccio, France
| | - A C D Maia
- Programa de Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - S Y Wong
- Department of Plant Science and Environmental Ecology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia
| |
Collapse
|
15
|
Hernández-Ortiz V, Aguirre A. A new species of the Neotropical genus Beebeomyia(Diptera: Richardiidae) with observations of its biology on Dieffenbachia oerstedii(Araceae). J NAT HIST 2015. [DOI: 10.1080/00222933.2015.1005712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Chartier M, Jabbour F, Gerber S, Mitteroecker P, Sauquet H, von Balthazar M, Staedler Y, Crane PR, Schönenberger J. The floral morphospace--a modern comparative approach to study angiosperm evolution. THE NEW PHYTOLOGIST 2014; 204:841-53. [PMID: 25539005 PMCID: PMC5526441 DOI: 10.1111/nph.12969] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Morphospaces are mathematical representations used for studying the evolution of morphological diversity and for the evaluation of evolved shapes among theoretically possible ones. Although widely used in zoology, they--with few exceptions--have been disregarded in plant science and in particular in the study of broad-scale patterns of floral structure and evolution. Here we provide basic information on the morphospace approach; we review earlier morphospace applications in plant science; and as a practical example, we construct and analyze a floral morphospace. Morphospaces are usually visualized with the help of ordination methods such as principal component analysis (PCA) or nonmetric multidimensional scaling (NMDS). The results of these analyses are then coupled with disparity indices that describe the spread of taxa in the space. We discuss these methods and apply modern statistical tools to the first and only angiosperm-wide floral morphospace published by Stebbins in 1951. Despite the incompleteness of Stebbins’ original dataset, our analyses highlight major, angiosperm-wide trends in the diversity of flower morphology and thereby demonstrate the power of this previously neglected approach in plant science.
Collapse
Affiliation(s)
- Marion Chartier
- Department of Botany and Biodiversity Research, University of
Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Florian Jabbour
- Institute of Systematics, Evolution and Biodiversity, National
Museum of Natural History, 57 rue Cuvier – CP 39, 75231 Paris Cedex 05,
France
| | - Sylvain Gerber
- Department of Earth Sciences, University of Cambridge, Downing
Street, Cambridge, CB2 3EQ, UK
| | - Philipp Mitteroecker
- Department of Theoretical Biology, Vienna University, Althanstrasse
14, 1090 Vienna, Austria
| | - Hervé Sauquet
- Laboratoire Écologie, Systématique, Évolution,
Université Paris-Sud, CNRS UMR 8079, 91405 Orsay, France
| | - Maria von Balthazar
- Department of Botany and Biodiversity Research, University of
Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Yannick Staedler
- Department of Botany and Biodiversity Research, University of
Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Peter R. Crane
- Yale School of Forestry and Environmental Studies, 195 Prospect
Street, New Haven, CT 06511, USA
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of
Vienna, Rennweg 14, 1030 Vienna, Austria
| |
Collapse
|
17
|
Pereira J, Schlindwein C, Antonini Y, Maia ACD, Dötterl S, Martins C, Navarro DMDAF, Oliveira R. Philodendron adamantinum(Araceae) lures its single cyclocephaline scarab pollinator with specific dominant floral scent volatiles. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12232] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juliana Pereira
- Programa de Pós Graduação em Ecologia de Biomas Tropicais; Universidade Federal de Ouro Preto - UFOP; Ouro Preto MG Brazil
| | - Clemens Schlindwein
- Departamento de Botânica; Universidade Federal de Minas Gerais - UFMG; Belo Horizonte MG Brazil
| | - Yasmine Antonini
- Departamento de Biodiversidade; Evolução e Meio Ambiente; Universidade Federal de Ouro Preto - UFOP; Ouro Preto MG 35400 000 Brazil
| | - Artur Campos Dália Maia
- Departamento de Química Fundamental; Universidade Federal de Pernambuco - UFPE; Recife PE Brazil
| | - Stefan Dötterl
- AG Ökologie; Biodiversität und Evolution der Pflanzen; Universität Salzburg; Salzburg Austria
| | - Cristiane Martins
- Programa de Pós Graduação em Ecologia de Biomas Tropicais; Universidade Federal de Ouro Preto - UFOP; Ouro Preto MG Brazil
| | | | - Reisla Oliveira
- Departamento de Biodiversidade; Evolução e Meio Ambiente; Universidade Federal de Ouro Preto - UFOP; Ouro Preto MG 35400 000 Brazil
| |
Collapse
|
18
|
Maia ACD, Gibernau M, Dötterl S, Navarro DMDAF, Seifert K, Müller T, Schlindwein C. The floral scent of Taccarum ulei (Araceae): attraction of scarab beetle pollinators to an unusual aliphatic acyloin. PHYTOCHEMISTRY 2013; 93:71-78. [PMID: 23582213 DOI: 10.1016/j.phytochem.2013.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/05/2013] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
The strongly fragrant thermogenic inflorescences of Taccarum ulei (Araceae) are highly attractive to night-active scarab beetles of Cyclocephala celata and C. cearae (Scarabaeidae, Cyclocephalini), which are effective pollinators of plants in the wild in northeastern Brazil. GC-MS analysis of headspace floral scent samples of T. ulei established that two constituents, (S)-2-hydroxy-5-methyl-3-hexanone (an aliphatic acyloin rarely detected in flowers) and dihydro-β-ionone (an irregular terpene) accounted for over 96% of the total scent discharge. Behavioral tests (in both field and cages) showed that male and female C. celata and C. cearae were attracted to traps baited with a synthetic mixture of both compounds; however, they were also responsive to (S)-2-hydroxy-5-methyl-3-hexanone alone, which thus functions as a specific attractive cue. These findings support other recent research in suggesting that angiosperms pollinated by cyclocephaline scarab beetles release floral odors of limited complexity in terms of numbers of compounds, but often dominated by unusual compounds that may ensure attraction of specific pollinator species.
Collapse
Affiliation(s)
- Artur Campos Dália Maia
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50740-560, Brazil.
| | | | | | | | | | | | | |
Collapse
|
19
|
de Souza TB, Maia ACD, Schlindwein C, de Albuquerque LSC, Iannuzzi L. The life ofCyclocephala celataDechambre, 1980 (Coleoptera: Scarabaeidae: Dynastinae) in captivity with descriptions of the immature stages. J NAT HIST 2013. [DOI: 10.1080/00222933.2013.791886] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Moore MR, Jameson ML. Floral associations of cyclocephaline scarab beetles. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:100. [PMID: 24738782 PMCID: PMC4062068 DOI: 10.1673/031.013.10001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 11/13/2012] [Indexed: 06/03/2023]
Abstract
The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses, host plant shifts, and mutualisms with angiosperms.
Collapse
Affiliation(s)
- Matthew Robert Moore
- Wichita State University, Department of Biological Sciences, 1845 Fairmount, Wichita, KS, USA 67260-0026
| | - Mary Liz Jameson
- Wichita State University, Department of Biological Sciences, 1845 Fairmount, Wichita, KS, USA 67260-0026
| |
Collapse
|